建材秒知道
登录
建材号 > 能源科技 > 正文

郑州苏豫川再生能源科技有限公司怎么样

开朗的外套
无聊的小蝴蝶
2023-01-01 08:48:13

郑州苏豫川再生能源科技有限公司怎么样?

最佳答案
清秀的大象
香蕉咖啡
2025-08-08 10:01:52

简介:郑州苏豫川再生能源科技有限公司主要从事晶硅片切割废砂浆的回收再利用,是一家资源综合利用型高新企业。公司目前年回收再生利用晶硅片废砂浆能力达6万吨/年,是国内晶硅片废砂浆回收再生利用企业中的生力军。

法定代表人:刘同军

成立时间:2011-03-23

注册资本:2000万人民币

工商注册号:410106000007785

企业类型:有限责任公司(自然人投资或控股)

公司地址:郑州市上街区新安西路52号院

最新回答
无限的天空
个性的玫瑰
2025-08-08 10:01:52

建筑垃圾再生利用项目如下:

所谓的“建筑垃圾再生利用项目”指的是:把建筑垃圾中的许多废弃物经分拣、剔除或粉碎后,作为再生资源重新利用的,经过处理再利用可产生经济效益的项目之称。

如建筑垃圾再生骨料可以代砂,用于砌筑砂浆、抹灰砂浆、打混凝土垫层等,还可以用于制作砌块、铺道砖、花格砖等建材制品,这也是建筑垃圾资源化利用的主要途径。

建筑废物的利用:

将建筑废弃物分选、粉碎后剩余的淤泥、石粉为原料,添加其他各种废弃物(主要包括污水处理厂的污泥,酒厂、食品厂的废渣)和泥炭土微量元素,按一定的质量比例,经混合搅拌而成建筑垃圾再生种植土,除具备天然土壤的特性外,还具有肥效高、透气好和保水强的特点。

据介绍,经相关分析论证,再生种植土土壤特性达到并超越全国土壤标准,符合高产农田肥力要求。

眼睛大的毛巾
凶狠的鸡
2025-08-08 10:01:52
四新包括:新材料、新设备、新工艺、新技术。

1.建筑物围护结构新技术,包括建筑物外墙外保温,外墙内保温、墙体自保温、屋面保温、建筑门窗保温和幕墙等。例如,外墙外保温,可采用低温砂浆保温系统、保温板外墙外保温系统和保温装饰板外墙外保温等新技术,并具有造价低、生产方便和隔热效果好、可达到建筑节能50%%的要求。

2.在用电新技术方面,包括采用新型节能照明技术、智能照明节能控制系统和蓄冷空调技术等新技术:例如对电压、电流、有功、无功和功率因素数值的调整,以达到节能降耗目的;还有蓄冷空调技术,即用晚上的谷电制冰蓄冷,在白天用电高峰时释放出冷量以减少电网压力的空调系统新技术。

3.再生能源应用新技术同样应用广泛,目前可利用再生能源的新技术主要有以下几种:地源热泵技术,这一技术在民用建筑和有热水需求的大型公共建筑中的应用范围越来越广泛;空气源热泵技术,即以空气作为热源和冷源,通过高效热泵机组向建筑物供热或供冷等;城市污水热泵,即利用城市污水蕴含的能量作为热源和冷源,通过高效热泵机组向建筑物供热或供冷等;还有太阳能供热、太阳能供电和雨水蓄集及利用等技术。

4.绿色建筑节能新技术则包括节地与室外环境、节能与能源利用、节水与水资源利用、节材与材料资源利用等新技术,以达到建筑物与周围环境的和谐协调等。

怕孤单的老虎
时尚的大米
2025-08-08 10:01:52

新型建筑节能材料有哪些

新型建筑节能材料是指在制造过程中使用新的工艺技术,具有节能,节土,利废和保护环境等特点,能改善建筑功能的一类建筑材料。建新型建筑节能材料突出在产品制作和使用过程中具有节约能源的特点。那么,新型建筑节能材料有哪些呢?下面一起来看看吧。

新型建筑节能材料是指在制造过程中使用新的工艺技术,具有节能,节土,利废和保护环境等特点,能改善建筑功能的一类建筑材料。建新型建筑节能材料突出在产品制作和使用过程中具有节约能源的特点。那么,新型建筑节能材料有哪些呢?下面一起来看看吧。

新型建筑节能材料种类

节能建材是一种用于降低建筑物能耗的材料,主要包括新型墙体材料,保温隔热材料,防水密封材料,陶瓷材料,新型化学材料,装饰装修材料以及各种工业废渣的综合利用等。使用这些材料的建筑物,可以达到“冬暖夏凉”的效果,既节能又舒适。在能源这么紧缺的情况下,节能建材的推广应该是有很大现实意义的。

各类新型建筑节能材料具体介绍

1、新型墙体材料

就其品种而言,新型墙体材料主要包括砖、块、板等,如粘土空心砖、掺废料的粘土砖、非粘土砖、建筑砌块、加气混凝土、轻质板材、复合板材等。通常这些新型墙体材料以粉煤灰、煤矸石、石粉、炉渣、竹炭等为主要原料。

新型墙体材料具有质轻、隔热、隔音、保温、无甲醛、无苯、无污染等特点。部分新型复合节能墙体材料集防火、防水、防潮、隔音、隔热、保温等功能于一体,装配简单快捷,使墙体变薄,具有更大的使用空间。

2、保温隔热材料

保温材料和隔热材料统称绝热材料。

常用保温隔热材料分类:矿物棉、岩棉、玻璃棉(是以岩石、矿渣为主要原料,经高温熔融,用离心等方法制成的棉及以热固型树脂为粘结剂生产的绝热制品。),泡沫塑料及多孔聚合物,膨胀珍珠岩及其制品,硅酸钙绝热制品,各种复合保温隔热材料等。

(1)主要应用于建筑物墙体和屋顶的保温绝热;

(2)热工设备、热力管道的保温;

(3)冷藏室及冷藏设备上也大量使用。

3、防水密封材料

防水材料是建筑业及其他相关行业所需要的重要功能材料,是建材工业的一个重要组成部分。随着我国国民经济的快速发展,工业建筑与民用建筑对防水材料提出了多品种高质量的要求。

4、节能门窗和节能玻璃

建筑门窗和建筑幕墙是建筑围护结构的组成部分,是建筑物热交换、热传导最活跃、最敏感的部位,是墙体失热损失的5-6倍。门窗和幕墙的节能约占建筑节能的40%左右,具有权其重要的地位。

5、太阳能综合利用

太阳能是人类可以利用的最丰富、最洁净、最理想的能源,随着太阳能光电转换技术的不断突破,在建筑中利用太阳能成为了可能。

以上关于新型建筑节能材料有哪些就简单介绍到这里了,希望对您有所帮助。

稳重的小鸽子
活力的牛排
2025-08-08 10:01:52
简介:2015年11月3日,公司名称由芜湖东方雨虹建筑材料有限公司变更为芜湖卧牛山建筑节能材料有限公司。

法定代表人:刘晓俊

成立时间:2014-08-29

注册资本:5000万人民币

工商注册号:340208000019589

企业类型:有限责任公司(自然人投资或控股的法人独资)

公司地址:芜湖市三山区经济开发区峨溪路5号

激昂的小甜瓜
酷炫的电源
2025-08-08 10:01:52
谈废旧混凝土的资源化

水中和 万惠文

武汉理工大学硅酸盐材料工程教育部重点实验室 (武汉 430070)

前言

水泥混凝土的产生对人类文明和进步发挥了积极的推动作用。但随着混凝土需求的急剧增长和废旧混凝土的大量产生,由此引发的资源、能源和环境问题也日益严重。以我国当前混凝土产量20亿立方米计,需要使用水泥8亿吨,需消耗天然砂石36亿吨以上。统计表明,生产每吨水泥需消耗石灰石0.95~0.98吨,生产1吨熟料约排放CO2大约1吨,还会产生大量的硫化物、氮化物和其他有害气体和粉尘。在混凝土中比例最高的骨料是分布较为广泛的自然资源,但由于长年开采,已经开始出现石料资源难以为继的问题[1]。其中,有工业价值的石灰石仅可维持30~40年的开采。同时,天然材料的大量开采和使用,也造成水土流失和自然景观恶化,严重影响社会的可持续发展,甚至危及子孙后代的生存。据不完全统计,中国目前每年产生的建筑垃圾达到1亿吨左右,而长期积累的建筑废弃物将高达数亿吨。如果这些建筑废弃物能够加以资源化,其意义将是难以估量的。

将建筑废弃物回收利用,代替部分自然资源生产建筑材料,是保护自然资源,改善环境,推进可持续发展的一条重要途径。将废旧混凝土收集加工后,进行再生利用,不但可以节省天然资源,还可以减轻环境污染,促进社会的可持续发展。由于对废旧混凝土进行再生利用的意义重大,世界各国纷纷开展了对这一问题的研究[2]。

1 废旧混凝土与再生骨料

废旧混凝土可能由不同类型(等级)的混凝土所组成。要想改善废旧混凝土的质量,就需要对不同类型的混凝土加以分选。CS Poon和水中和等[3]对香港地区几种废旧混凝土的性能作了检测,部分结果列于表1。三种骨料的表观密度和吸水率等指标差别较大,天然骨料密实度最高,由较高强混凝土制得的骨料HPC密实度其次,而普通混凝土NC骨料的密实度最低。采用压汞法分析了三种骨料的孔分布,结果与上述性质相一致,三种骨料的孔隙率分别为:天然骨料1.6%,普通混凝土NC再生骨料16.8%,高强混凝土HPC再生骨料7.86%。从两种再生骨料的孔分布情况看,NC骨料的孔隙主要集中在0.01至1微米范围;而HPC骨料的大部分孔隙处于0.1微米以下。

再生混凝土骨料(RCA)就是废弃的旧混凝土块经过分选、破碎和筛分等过程,所获得的具有一定力学性能和颗粒级配的人工石料。分选和破碎过程中,必须将夹杂在原始混凝土中的钢筋木材等杂物除去[4]。废弃混凝土经过破碎处理,生产出的再生骨料含有一定量的硬化水泥砂浆,这些水泥砂浆大多数独立成块,少量附着在天然骨料的表面,导致再生骨料棱角较多,表面粗糙密度小,吸水率高,粘结能力弱。废弃混凝土块再生破坏过程中由于损伤积累会使再生骨料内部存在大量微裂纹。

表1 天然和再生骨料的物理性质[3]

骨料类型 10%压碎指标* (kN) 表观密度 (kg/m3) 吸水率 (%) 含水率 (%)

10mm 20mm 10mm 20mm

天然花岗石 159.7 2.620 1.25 1.24 0.52 0.56

再生NC骨料 101.9 2.409 8.82 7.89 3.64 3.25

再生HPC骨料 123.8 2.390 6.77 6.53 5.36 2.89

*根据英国BS标准

为了更好地发挥再生骨料的使用价值,需对破碎的混凝土粒料进行必要的加工。在荷兰,提高粒状垃圾质量的主要目的是降低有害物质的渗析并改善其作为骨料的性能。为了改善再生混凝土骨料的性能,关键是要选择有效的分离净化技术。用于粒状建筑垃圾分离净化的常见技术有:尺寸分选技术,密度(重力)分离技术,磁选技术,涡流分离技术和浮选技术等[5]。

经过破碎后的再生混凝土骨料,其颗粒级配经适当调整是可以满足有关标准要求的。由于不同粒级的再生骨料中水泥砂浆的含量不同,其物理力学性能也有所不同。通常,细骨料部分所含高吸水性砂浆较多,将会影响混凝土的工作性,可通过加入适量的天然砂而加以调节。表2给出了比较典型的试验结果[4]。

表2 天然和再生骨料的性质对比

骨料类型 尺寸(mm) 密度(kg/m3) 吸水率(%) 洛杉矶磨耗

(%) 附着砂浆的含量(%)

天然卵石 4-8

8-16

16-32 2500

2620

2610 3.7

1.8

0.8 25.9

22.7

18.8 0

0

0

再生骨料H

(W/C=0.40) 4-8

8-16

16-32 2340

2450

2490 8.5

5.0

3.8 30.1

26.7

22.4 58

38

35

再生骨料M

(W/C=0.70) 4-8

8-16

16-32 2350

2440

2480 8.7

5.4

4.0 32.6

29.2

25.4 64

39

28

再生骨料L

(W/C=1.20) 4-8

8-16

16-32 2340

2420

2490 8.7

5.7

3.7 41.4

37.0

31.5 61

39

25

再生骨料M

(W/C=0.70) <5 2280 9.8 - -

2 再生骨料混凝土性能

2.1 新拌混凝土性能

试验表明,在相同的W/C条件下,随着再生骨料取代率增加,混凝土的坍落度逐渐变小。显然,因再生骨料表面粗糙、孔隙率高、吸水率大而明显影响了新拌混凝土的和易性。在以上研究的基础上,选取样品50%天然碎石和50%再生骨料(重量),用10~30%的原状粉煤灰等量取代水泥,可以看到,再生混凝土的坍落度随粉煤灰的取代率增加而缓慢增加。由此可知,在混凝土配料组成中,用粉煤灰等量取代水泥可明显改善新拌混凝土的和易性。但较高的粉煤灰取代量会使再生混凝土的早期强度下降。高效减水剂可以显著地改善再生混凝土的流动性,而矿物外加剂能较好地改善再生混凝土粘聚性和保水性[6,7]。

随再生骨料取代量的增加,混凝土的坍落度损失的幅度逐渐增大,这与再生骨料表面吸水需要一定时间达到平衡有密切的关系。再生骨料混凝土的初始流动度和坍落度损失与再生骨料的含水状态有关[8]。

2.2 硬化混凝土的物理力学性能

表3给出了由三种不同的RCA配制的混凝土的抗压强度[7]。结果表明,在龄期为7天和28天时,天然骨料混凝土的强度高于再生骨料混凝土。但是,强度差别在28天有所减小。到了90天龄期,HPC骨料混凝土的强度达到了与天然骨料混凝土相当的水平,但NC骨料混凝土的强度仍然有一定的差距。由此可见,骨料的类型对混凝土的强度有一定的影响。当骨料表面孔隙率高,骨料本身强度较低,那么,用它配制的混凝土的强度也较低。

表3 用三种骨料配制的混凝土的抗压强度

骨料类型 表观密度

(kg/m3) 抗压强度 (MPa)

7 day 28 day 90 day

花岗石 2382 32.8 41.5 54.7

再生NC骨料 2233 26.2 32.6 46.5

再生HPC骨料 2266 29.9 38.7 55.0

再生混凝土的强度与基体混凝土的强度、再生骨料破碎工艺、再生骨料的替代率以及再生混凝土的配合比等密切相关。由于基体混凝土的强度等级、使用环境与碳化程度各不相同,解体、破碎的工艺及质量控制措施的差异,导致再生混凝土强度变化的规律性较差,不同的研究者所得的结论也有所不同。Hansen[4]的试验结果表明,随着基体混凝土的强度降低,再生混凝土的强度呈下降趋势。但对于不同强度等级的再生混凝土,再生骨料对其强度的影响不同:配制高强再生混凝土时,再生骨料的性能对再生混凝土的强度影响最大;配制中等强度再生混凝土时,影响程度次之;配制低强度的再生混凝土时,再生骨料对其强度的影响最小。

实际上,通过采用适当的技术手段,含再生骨料的混凝土的强度完全可以达到或超过天然骨料混凝土。原因在于:再生骨料表面粗糙,界面啮合能力强;再生骨料吸水率高,加水搅拌后,再生骨料大量吸收新拌水泥浆中多余的水分,既降低了粗骨料表面水灰比,又降低了混凝土拌和物的有效水灰比。另外,再生骨料表面包裹着水泥砂浆,使再生骨料与新的水泥砂浆之间弹性模量相差较小,界面结合可能得到加强。界面结合的加强,因再生骨料强度较低而导致的再生混凝土性能的劣化得到了一定程度的补偿[9]。

弹性模量

由于再生骨料中有大量的旧砂浆附着于原骨料颗粒上,导致再生混凝土的弹性模量通常较低,一般约为普通混凝土的70%~80%。由于弹性模量低,变形大,可以预计再生混凝土具有较好的抗震性能和抵抗动荷载的能力。掺入塑化剂后,再生混凝土的弹性模量有所提高。当掺入最佳数量(10%)的膨胀剂后,弹性模量可提高8%~10%。水灰比对再生混凝土的弹性模量影响较大,当水灰比由0.8降低到0 4时,再生混凝土的抗压弹性模量增加33 .7%。再生混凝土泊松比在0.18~0.23范围内[4]。

干缩与徐变

与普通混凝土相比,再生混凝土的干缩量和徐变量增加。干缩率的增大数值取决于基体混凝土的性能、再生骨料的品质以及再生混凝土的配合比。粘附在再生骨料颗粒上的水泥浆含量越高再生混凝土的干缩率越大[10]。研究表明,再生骨料与天然骨料共同使用时,再生混凝土的干缩率增加;水灰比增加,再生混凝土的干缩率增大。还有观点认为由于再生混凝土中的砂浆量大大提高,其干缩率必然会提高。当采用较低水灰比或较高强度的再生骨料时,可使徐变值降低。干缩和徐变较高是影响再生骨料混凝土推广应用的重要因素,如何降低再生混凝土的收缩和徐变,有待于进一步研究。

2.3显微结构

再生骨料具有多孔性,因此,它与水泥浆体之间的界面结合的状态将直接关系到新混凝土的微观结构和耐久性能。从当前的试验结果看,天然花岗岩骨料的吸水率为0.5~2%,而再生骨料可达到5~20%。再生骨料的多孔性和高吸水率,将在混凝土拌合的早期引起骨料-水泥浆体界面剧烈的水分迁移,并导致微观结构的复杂变化[10,11]。

CS Poon和水中和[11]利用扫描电子显微镜观察了三种不同的骨料和水泥浆体之间界面的形貌特征。结果显示,天然花岗岩骨料-水泥浆体之间界面上可看到大量的孔洞,较大的孔隙尺寸约为10~20m。某些孔隙呈条状,其长度达50m左右。从SEM照片中可以很容易看到发育良好的Ca(OH)2晶体和须状钙矾石晶体。大量的研究已经证实在界面处存在丰富的Ca(OH)2晶体[12,13],笔者采用EDX作了进一步的验证。而在NC骨料的界面的形态呈现不同的特点。在界面区的水化产物为疏松多孔的颗粒。水化物颗粒的形状不规则,颗粒的尺寸为10-50m,颗粒之间有接触,但似乎没有牢固的连接,有少量的片状和须状晶体夹杂在颗粒状水化物中。经EDX分析表明,颗粒状水化物主要为CSH凝胶。由于NC骨料孔隙多,在拌合过程中容易吸收大量的水分。当水泥水化一段时间之后,NC骨料又向外释放水分。这样,可能导致界面区比较宽厚。因此,水化产物有较大的生长发育的空间。这是普通混凝土骨料-水泥浆体界面存在大量孔隙和发育良好的水化产物的主要原因。

高强混凝土再生骨料(HPC)与水泥浆体之间的界面呈现出与天然骨料相似的微观结构特征,尽管在界面处存在一些孔洞,但界面处水化产物比较密实,呈板块状。在这一界面上比较显著的特征是,在孔洞处很少看到片状、絮状或须状的水化产物,而这些水化产物在天然骨料-水泥界面上比较容易发现,而在NC骨料-水泥界面更容易找到。HPC骨料-水泥界面比较密实且在孔隙中难以形成发育良好的水化产物,可能的原因有两方面:其一是HPC骨料具有适中的吸水能力,它所吸收的水分既能保证界面周围水泥的水化,又不至于形成较大的充水空间,所以,水化产物在这一区域十分密实。其二,HPC骨料中含有硅灰,因此,该骨料中硬化水泥浆体的碱度比较低,高碱性的水化产物难以在这样的环境中生成。

2.4 耐久性相关性能

抗渗性

由于再生骨料的孔隙率较大,基于自由水灰比设计方法之上的再生混凝土的抗渗性比普通混凝土低。在有些情形,曾观察到再生混凝土的抗渗性较普通骨料混凝土高出三倍[4]。降低水灰比是改善再生骨料混凝土抗渗性的一条途径。研究表明,掺加了粉煤灰之后,粉煤灰能细化再生骨料的毛细孔道使抗渗透性有很大改善。

抗硫酸盐侵蚀性

由于孔隙率及渗透性较高,再生混凝土的抗硫酸盐和酸侵蚀性比普通混凝土稍差。掺加粉煤灰后,能减少硫酸盐的渗透,使其抗硫酸盐侵蚀性有较大改善。

耐磨性

再生骨料的抗磨损性较差。从不同强度的基体混凝土中得到的再生骨料其抗磨性不相同。日本Roshikana从强度分别为15MPa、16MPa、21MPa、30MPa、38MPa和40MPa的基体混凝土中得到了再生骨料并进行了LA磨损性测试,结果损失率分别为28.7%、27.3%、28.0%、25.6%、22.9%和20.1%。可见,随着基体混凝土强度的增加,再生骨料的抗磨性提高。Hansen[4]的试验表明,随着再生骨料尺寸的减小,其抗磨性明显降低。原因是再生骨料尺寸越小,其含有硬化砂浆颗粒的概率越大,而砂浆的抗磨性较差。

抗裂性

一项研究表明,再生混凝土的极限延伸率为(2.5-3.0)×10-4。同普通混凝土相比,再生混凝土极限延伸率增加27.7%。由于再生混凝土弹性模量低,拉压比高,因此再生骨料混凝土抗裂性优于普通天然骨料混凝土。

抗冻融性

再生混凝土的抗冻融性比普通混凝土差。Yamato等人[4]的试验表明,再生骨料与天然骨料共同使用时或通过减小水灰比可提高再生混凝土的抗冻融性。

3技术问题

3.1 配合比设计与优化

由于再生骨料各方面的性能不同于天然骨料,为合理有效地推广再生混凝土,必须根据再生骨料的特点,对再生混凝土的配合比设计进行专门研究。张亚梅[9]等研究了C20,C30和C40三个系列的再生混凝土,对再生混凝土配合比设计进行了初探。研究结果表明,当设计强度为C20时,以普通混凝土配合比设计方法配制的再生混凝土强度高于基准混凝土,但工作性能显著降低。在此基础上,她提出了再生骨料预吸水法,这种方法与史巍等针对再生骨料吸水率较大而建议的基于自由水灰比之上的配合比设计方法是一致的。即将再生混凝土拌和用水量分为两部分,一部分为骨料所吸附的水分,称为吸附水,它是骨料吸水至饱和面干状态时的用水量;另一部分为拌和水用量,除了一部分蒸发外,这部分水用来提高拌合物的流动性并参与水泥的水化反应。吸附水的用量根据试验确定,拌和水用量按普通混凝土配合比设计方法确定。在实际操作中,两部分水是一起加入的。

在配合比设计中,可以采用再生骨料和天然骨料相混和以及掺加外掺料与外加剂等来改善再生混凝土的性能[14]。Saroj等人的试验中掺加了10%的粉煤灰,使再生混凝土的性能有了很大的改善,具体表现为不但使得再生混凝土的干缩应变、渗透性和吸水性接近普通混凝土,而且再生混凝土的抗酸性大大提高。张亚梅[9]等全部采用再生骨料作为粗骨料,并掺加了高效减水剂和粉煤灰,配制出强度为54.6MPa再生混凝土。邢振贤等[6]采用基体强度为C20-C25的废弃混凝土骨料,通过掺加高效减水剂使水灰比降低到0.35,配制出了强度为40.4MPa的再生混凝土。由此可见,再生混凝土配合比设计要比普通混凝土复杂,但只要措施得当,仍可以获得比较满意的力学性能。

3.1 表面处理与复合改性

不少研究者尝试用聚合物或水泥浆来封堵再生骨料的表面孔隙。再生骨料表面用聚合物水溶液处理,经干燥后,可在其表面形成很薄的薄膜,有些聚合物水溶液还会渗入表面的孔隙中,起到了封闭或堵塞再生骨料表面孔隙的作用,从而降低了吸水率,达到了提高再生混凝土流动性的目的。尽管再生骨料表面的聚合物薄膜具有水溶性,但在短时间内(2h)是不会被溶掉的;随着水化龄期的延长,薄膜会溶解、消失,这有利于骨料与水泥浆体的结合。

机械活化和化学改性可以改善再生骨料的性能。机械活化的目的在于破坏弱的再生碎石颗粒或除去粘附于碎石上的低强度水泥石残渣,这是从再生骨料上消除残留砂浆的一种可行办法。但是没有必要通过高耗能途径来去掉附着的砂浆,原因是这样不但会消耗掉大量的能量,而且会产生大量的粉末,这些粉末进一步处理非常困难。化学方法是用聚合物和防水剂等外加剂来处理再生骨料。借鉴普通混凝土的高强途径,将水泥和外掺超细矿物质(如粉煤灰、纯水泥浆和硅粉等)与水按比例调成浆液,分别对再生骨料进行浸泡和干燥处理,可以降低再生骨料的吸水性。试验表明,浆液能够在一定程度上填充再生骨料的孔隙并粘合破碎过程中其内部产生的一些微裂缝,强化后再生骨料本身的强度得到一定程度的提高。万惠文等[10]将再生骨料分别用1%PVA聚合物溶液和MS高效防水剂浸泡48h,并在50℃烘箱中烘干,冷却至室温后配制成再生混凝土,得到的混凝土拌合物的流动性明显提高。

3.4 移动加工技术

从实践经验看,固定的再生骨料生产场地由于运输量大而导致生产成本的大幅度上升。而采用移动式破碎加工设备,在废弃物产生的现场生产再生骨料,将大大降低运输费用,可以使再生骨料的成本控制在天然骨料成本之下。当前,欧美国家非常重视移动加工处理系统的开发和推广,而中国在这一方面基本上处于空白。发展移动破碎加工设备和技术是废弃混凝土和类似固体废弃物资源化的关键问题之一。

4 环境评价

在再生混凝土的环境评价方面,万惠文等进行了资源消耗、能量消耗和二氧化碳排放量3方面研究[15]。

表4是配制1m3混凝土所消耗的资源。表中显示:用废弃混凝土作再生骨料,可节省62%的天然石子资源;若用废弃混凝土作生产水泥的原料,还可以节约制造水泥的60%优质石灰石和近40%粘土与铁粉资源。

表4 配制1m3混凝土所消耗的资源 Kg/m3

石灰石 粘土 铁粉 石子作骨料

用天然原料 372(100%) 62.0(100%) 18.5(100%) 1800(100%)

用废弃砼作再生骨料 372(100%) 62.0(100%) 18.5(100%) 682(38%)

用废弃砼作水泥原料 143.4(39%) 37.6(61%) 12.1(65%) 682(39%)

表5是生产1m3混凝土所消耗的大致能量和CO2排放量。总的来说,能耗相差并不大,但当用废弃混凝土作水泥原料时,可节省少量的煤,因为煅烧石灰石需要大量的能量,而废弃混凝土中已有部分水泥的水化产物,所需的分解能量较石灰石少。废弃混凝土中含有一定量的水泥水化产物,如:氢氧化钙、水化硅酸钙、水化铝(铁)酸钙、钙矾石等,在高温下分解并不放出CO2,因此,用废弃混凝土作制造水泥原料可减少CO2的排放量。

量化分析结果表明,当利用废弃混凝土作再生骨料时,石灰石资源可节省62%,而当废弃混凝土用作制造水泥的原料时,除可节省62%石灰石资源外,还可节约制造水泥的优质石灰石60%、粘土40%和铁粉35%的资源,同时,可减少20%的CO2排放量,所以,再生混凝土有利于保护自然资源和环境。

表5 配制1m3混凝土所消耗的能耗及所排放的CO2量

指标 能耗 CO2排放量(Kg/m3)

水泥制造 骨料生产 水泥制造 骨料生产 合计

用天然原料 42.0kwh+1004MJ 25.2kwh 254.0 6.2 260.2(100%)

用废弃砼作再生粗骨料 42.0kwh+1004MJ 24.6kwh 254.0 6.2 260.2(100%)

用废弃砼作水泥原料 39kwh+967.6MJ 24.6kwh 200.7 6.9 297.6(100%)

5 结语

我国每年需要消耗石子和砂子达数十亿吨,这两种材料的消耗量可能占整个建筑材料资源需要量的一半以上,由此对资源、能源和环境产生重大影响。所以,开展对再生骨料混凝土的研究和推广应用有着十分重要的社会和经济意义。当然,废旧混凝土的资源化是一项系统工程,需要解决一系列技术问题,更需要政府在政策上的大力支持。随着人们对资源和环境问题的日益重视,废旧混凝土和其他固体废弃物都将得到合理和有效的再生利用。

参考文献

[1] 中国建筑材料科学研究院,绿色建材和建材绿色化,化学工业出版社,北京,2003.9。

[2] Hendriks, Ch.H., Nijkerk, A.A., The Building Cycle, Aneas technical publishers, The Netherlands, 2000.

[3] CS.Poon, ZH.Shui, L.Lam, Strength of concretes prepared with natural and recycled aggregates at different moisture conditions, International Conference on Advances in Building Technology (ABT), HK, Dec. 2002.

[4] RILEM Report 6, Recycling of Demolished Concrete and Masonry, Edited by T.C. Hansen, Published by E &FN Spon, Bodmin, UK,1992.

[5] Xing Weihong, Quality improvement of granular secondary raw materials by separation and cleansing techniques, Delft University of Technology, Delft, NL, 2004.

[6] 邢振贤,周曰农. 再生混凝土的基本性能研究[J]. 华北水利水电学院学报,1998,19(2):30-32.

[7] 水中和,潘智生,赵正齐,再生骨料含水状态与新拌混凝土的性能,国外建材科技,2003年第五期,pp.1-2。

[8] CS,Poon, ZH, Shui,L,Lam, et al, Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of hardened concrete, Cement and Concrete research, No.1 2004. pp.31-36.

[9] 张亚梅,李慧强,吴贤国。混凝土再生骨料强化试验研究[J]。混凝土与水泥制品,No,1,2002,pp7-9。

[10] 万惠文,林宗寿,水中和. 再生混凝土中的水分扩散机理与模型. 武汉理工大学学报, 2003,25(12):99~102.

[11] CS Poon, ZH Shui, L Lam, Effect of microstructure of ITZ on strength of concrete prepared with recycled aggregates, Construction and Building Materials, Vol.18(2004), 461-468.

[12] 水中和,万惠文,老混凝土中骨料水泥界面过渡区(ITZ)(二)元素在界面区的分布特征,武汉理工大学学报,2002, No.5. pp.22-25。

[13] 水中和,万惠文,老混凝土中骨料水泥界面过渡区(ITZ)(一)元素与化合物在ITZ的富集现象,武汉理工大学学报,2002, No.4.pp.21-23。

[14] 徐惠忠等编,固体废弃物资源化技术,化学工业出版社,北京,2004.1。

[15] 万惠文,水中和,林宗寿. 再生混凝土的环境评价[J]. 武汉理工大学学报, 2003,25(4):17~20。

爱听歌的摩托
长情的板栗
2025-08-08 10:01:52
普通硅酸盐水泥中氧化钙的含量在47%左右,废旧混凝土可能由不同类型(等级)的混凝土所组成。要想改善废旧混凝土的质量,就需要对不同类型的混凝土加以分选。CS Poon和水中和等[3]对香港地区几种废旧混凝土的性能作了检测,部分结果列于表1。三种骨料的表观密度和吸水率等指标差别较大,天然骨料密实度最高,由较高强混凝土制得的骨料HPC密实度其次,而普通混凝土NC骨料的密实度最低。采用压汞法分析了三种骨料的孔分布,结果与上述性质相一致,三种骨料的孔隙率分别为:天然骨料1.6%,普通混凝土NC再生骨料16.8%,高强混凝土HPC再生骨料7.86%。从两种再生骨料的孔分布情况看,NC骨料的孔隙主要集中在0.01至1微米范围;而HPC骨料的大部分孔隙处于0.1微米以下。

古罗马人在建筑工程中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。在相当长的一段历史时期内,它作为一种重要的胶凝材料,广泛应用于建筑工程。1756年,英国工程师J.斯米顿在研究某些石灰在水中硬化的特性时发现:要获得水硬性石灰,必须采用含有粘土的石灰石来烧制;用于水下建筑的砌筑砂浆,最理想的成分是由水硬性石灰和火山灰配成。这个重要的发现为近代水泥的研制和发展奠定了理论基础。1796年,英国人J.帕克用泥灰岩烧制出了一种水泥,外观呈棕色,很像古罗马时代的石灰和火山灰混合物,因此,将它命名为罗马水泥。因为它是采用天然泥灰岩作原料,不经配料直接烧制而成的,故又名天然水泥。罗马水泥具有良好的水硬性和快凝特性,除用于一般的建筑工程外,特别适用于与水接触的工程。罗马水泥广泛应用于土木工程中的兴盛时期,一直延续到1850年,以后才逐渐被波特兰水泥所替代。1824年,英国建筑工人J.阿斯普丁在前人工作的基础上,通过不断试验和实践,首先取得了波特兰水泥的专利权。他用石灰石和粘土为原料,按一定比例配合后,在类似于烧石灰的立窑内煅烧成熟料,再经磨细制成水泥。因水泥硬化后的颜色与英格兰岛上波特兰地方用于建筑的石头相似,阿斯普丁将它命名为波特兰水泥。由于波特兰水泥具有优良的建筑性能,因此,它逐渐取代了其他种类的胶凝材料,如水硬性石灰、罗马水泥等,应用日益广泛。波特兰水泥的发明,在水泥史上具有划时代意义。从此,水泥的发展进入了一个新的历史时期。

背后的豆芽
含蓄的发夹
2025-08-08 10:01:52
重晶石是以硫酸钡(BaSO 4 )为主要成分的非金属矿产品,纯重晶石显白色、有光泽, 由于杂质及混入物的影响也常呈灰色、浅红色、浅黄色等,结晶情况相当好的重晶石还可呈 透明晶体出现。重晶石的硬度为3~3.5(莫氏),比重为4.3~4.7,具有比重大、硬度低 、性脆 的特点。重晶石化学性质稳定,不溶于水和盐酸,无磁性和毒性。�

一、重晶石的开发利用�

重晶石是一种很重要的非金属矿物原料,具有广泛的工业用途。�

1、钻井泥浆加重剂� 在一些油、气井钻探时,一般使用的钻井泥浆、粘土比重为25左右,水的比重为1,因此 泥浆比重较低,有时泥浆重量不能与地下油、气压力平衡,则造成井喷事故。在地下压力较 高的情况下,就需要增加泥浆比重,往泥浆中加入重晶石粉是增加泥浆比重的有效措施。做 钻井泥浆用的重晶石一般细度要达到325目以上,如重晶石细度不够则易发生沉淀。钻井泥 浆用重晶石要求比重大于4.2,BaSO 4 含量不低于95%,可溶性盐类小于1%。�

2、锌钡白颜料� 锌钡白是一种常用的优质白色颜料,可作为油漆、绘画颜料的原料。将硫酸钡加热,使用还 原剂就可还原成硫化钡(BaS),然后与硫酸锌(ZnSO 4 )反应得到的硫酸钡和硫化锌的混合物 (BaSO 4 占70%,ZnS占30%)即为锌钡白颜料。制取锌钡白的重晶石要求BaSO 4 含量大于95% ,同时应不含有可见的有色杂物。�

3、各种钡化合物� 以重晶石为原料可以制造氧化钡、碳酸钡、氯化钡、硝酸钡、沉淀硫酸钡、氢氧化钡等化工 原料。�

化学纯的硫酸钡是测量白度的标准;碳酸钡是光学玻璃的重要原料,它向玻璃中引入BaO, 从而增大玻璃的折光率,并改善其它光学性能;在陶瓷中用来配制釉料;氯化钡是一种农用 杀虫剂;硝酸钡用于焰火和玻璃工业中;高锰酸钡是一种绿色颜料。�

4、填料工业用重晶石� 在油漆工业中,重晶石粉填料可以增加漆膜厚度、强度及耐久性。锌钡白颜料也用于制造白 色油漆,在室内使用比铅白、镁白具有更多的优点。油漆工业用重晶石要求有足够的细度和 较高的白度。�

造纸工业、橡胶和塑料工业也用重晶石作填料,这种填料能提高橡胶和塑料的硬度、耐磨性 及耐老化性。�

橡胶、造纸用重晶石填料一般要求BaSO 4 大于98%,CaO小于0.36%,不许含有氧化镁、铅等成分。�

5、水泥工业用矿化剂� 在水泥生产中采用重晶石、萤石复合矿化剂掺入对促进C 3 S形成、活化C 3 S具有明显的 效果,熟料质量得到了改善,水泥早期强度大约可提高20~25%,后期强度约提高10%,熟料 烧成温度由1450℃降低到1300±50℃。重晶石掺量为0.8~1.5%时,效果最好。� 在白水泥生产中,采用重晶石、萤石复合矿化剂后,烧成温度从1500℃降至1400℃,游离Ca O含量低,强度和白度都有所提高。� 在以煤矸石为原料的水泥生料中加入适量的重晶石,可使熟料饱和比低的水泥强度,特别是 早期强度得到大幅度的提高,这就为煤矸石的综合利用,为生产低钙、节能、早强和高强水 泥提供了一条有益途径。�

6、防射线水泥、砂浆及混凝土� 利用重晶石具有吸收X射线的性能,用重晶石制做钡水泥、重晶石砂浆和重晶石混凝土,用 以代替金属铅板屏蔽核反应堆和建造科研、医院防X射线的建筑物。�

钡水泥是以重晶石和粘土为主要原料,经烧结得到以硅酸二钡为主要矿物组成的熟料,再加 适量石膏,共同磨细而成。比重较一般硅酸盐水泥高,可达4.7~5.2。强度标号为325~425。由于钡水泥比重大,可与重质集料(如重晶石)配制成均匀、密实的防X射线混凝土。�

重晶石砂浆是一种容重较大、对X射线有阻隔作用的砂浆,一般要求采用水化热低的硅酸 盐水泥,通常用的水泥∶重晶石粉∶重晶石砂∶粗砂配合比为1∶0�25∶2�5∶1。� 重晶石混凝土是一种容重较大,对X射线具有屏蔽能力的混凝土,胶凝材料一般采用水化热 低的硅酸盐水泥或高铝水泥、钡水泥、锶水泥等特种水泥。硅酸盐水泥应用最广。常用的水 泥∶重晶石碎石∶重晶石砂∶水的配合比为1∶4�54∶3�4∶0�5;1∶5�44∶4�46∶0� 6;1∶5∶3�8∶0�2三种。�

做防射线砂浆及混凝土的重晶石,BaSO�4含量应不低于80%,其中含有的石膏、黄铁矿、 硫化物和硫酸盐等杂质不得超过7%。�

7、道路建设� 橡胶和含约10%重晶石的柏油混合物已成功地用于停车场,是一种耐久的铺路材料。目前 ,重型道路建设设备的轮胎已部分地填充有重晶石,以增加重量,利于填方地区的夯实。� 8、其它� 重晶石和油料调和后涂于布基上制造油布;重晶石粉用来精制煤油;在医药工业中做消化道 造影剂;还可制农药、制革、制焰火等。此外,重晶石还用作提取金属钡,用作电视和其它 真空管的吸气剂、粘结剂。钡与其它金属(铝、镁、铅、钙)制成合金,用于轴承制造。�

二、重晶石的发展及资源保护�

重晶石的主要用户是石油工业和化学工业。石油工业比较发达的国家,重晶石产量的50%以 上用于石油和地质钻探,据统计,钻井每钻进30米就要消耗一吨重晶石粉,因此消耗量较大 。在化学工业中,各种钡盐生产量与重晶石原料消耗量之间有固定关系,重晶石消耗量也很 大。�

目前,世界的重晶石生产上升的趋势还将继续下去,但增长的速度多半取决于世界石油和天 然气工业的钻探工程规模。据有关资料,1996年世界重晶石产量为441.5万吨,比1995年增 长了1.35%。目前中国已成为世界上最大的重晶石生产国,年产量达150万吨,约占世界总 产量的34%,其它主要的生产国还有墨西哥、原苏联、美国、印度、土耳其及摩洛哥 等。�

纵观世界重晶石市场,我国重晶石产品已居重要位置,年出口量在100万吨以上,占世界总 出口量的60%左右。但是我们也应该清醒地看到,我国主要是以廉价的原矿占据这些市场的 ,块状原矿出口量占总出口量的95%以上,平均价格只有25�2美元/吨,只是粉状产品出口 价格的1/2。低于非洲国家摩洛哥的出口价格,比欧美国家的价格更低。所以,对于我国重 晶石工业来说,当前的主要问题不是如何占据市场,如何扩大出口量,而是如何利用当前国 际市场需求量增加、价格上涨的有利时机,调整出口产品结构,扩大粉状产品出口比例。 向出口量少而创汇额多的方向发展。�

非金属矿出口有成本低、换汇率高等优点,但它牵扯到资源问题,矿产资源不可再生的特点 决定了我们发展非金属矿出口贸易必须从我国的具体情况出发,在资源许可的情况下发展出 口贸易。�

世界重晶石储量约91000万吨,世界人均占有量为0.18吨/人。我国重晶石储量约14000万吨 ,我国人均占有量约为0.13吨/人,据有关预测,到2000年,我国对重晶石的年需求量约为 75万吨,年平均增长率为3.2%,我国重晶石资源的可开采年限约70年。这组数据无情的给 我们敲响了警钟!我国重晶石在21世纪中、下期有可能出现资源紧缺现象。而到21世纪的中 、 下期,我国正发展到一个中等发达国家的水平。石油和天然气是主要的能源,并且这些工业 都是我国今后要大力发展的,需要大量的重晶石。为此,对代用困难,资源不太丰富的重晶 石,建议我国应限制出口,保护重晶石资源。