煤的液化技术有怎样的发展?
据考证,煤的液化技术早在20世纪20~30年代就开始发展了。在第二次世界大战期间,德国人就曾使用液化煤代替石油用作军车燃料。战后和平时期,石油市场占了上风。但南非国家依然发展液化煤,1959年建成了第一家商业化液化煤工厂,且产量一直稳步上升,到80年代后期,其全国汽车燃料消耗量的一半,是液化煤。不过,这些都是旧技术,液化效率很低。
近10多年来,一些工业先进国家发展了水煤浆加压气化技术,把水—煤混合燃料提高到一个新水平。美国、日本和德国发展最快,从1975年到1987年间先后建立了3套中试装置、3套工业示范装置和5套商业化装置,其中美、日各一套商业化装置已稳定运行6年以上。这些装置一般每天可处理200~600吨煤,取得很好的效果。法国、奥地利、澳大利亚、英国等国也在积极开发中。
我国自1981年开始也进行了水煤浆的开发研究工作,在添加剂筛选上已获得可喜成果,使水煤浆的浓度已达75%,稳定性也很好,保证一个半月静置中不沉淀,经1500公里长途运输后仍可直接燃烧。1986年1月,作为我国“六五”科技攻关项目通过了国家鉴定,表明水煤浆制备和燃烧技术已达到先进水平。北京造纸一厂作为第一个试用工业应用单位,经两年5次试验证明,经济效益明显。据调查,1986年时,该厂所用燃料油每吨为280元,而水煤浆每吨只需120元,1.8吨水煤浆就可顶替1吨杂油。一年要耗杂油2.2万吨,如改烧水煤浆,每年可节约燃料费103万元。
从煤炭质量来看,我国本来适于作水煤浆的高硫烟煤和褐煤很多,这些煤液化后,含硫高,往往起到对液化的反应催化作用,成为液化的良好原料。近几年又发现了陕西神木、黄陵、铜川一带的“黑金带”和“黑金三角”地区蕴藏着大量优质煤,更可为发展水煤浆提供重要原料。我国现有设计烧油的发电机组约7000万千瓦,年烧油量约1100万吨,约占我国年产油量的10%左右。如果全国能将80%的烧油锅炉用水煤浆把油顶替出来,每年可为国家换取外汇15亿美元,其经济效益是十分可观的。
从世界看,从我国看,水煤浆技术的开发,虽仍处于中试阶段,但只要抓紧技术攻关,水煤浆在世界能源结构中必将获得一席之地。
煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
大家知道,呈固体状态的煤使用和运输起来都很麻烦。直接烧固体煤,不仅热效率低,浪费大,还会放出二氧化硫、氧化氮等多种有害气体,对环境的污染相当严重。煤的问题不在于找煤,而在于干净的使用煤。为了预防或减少煤燃料对环境和人体健康带来的危害,近二三十年来,世界各国大力开展了对煤利用新技术的研究,其中主要包括对煤的液化和汽化。
所谓煤的液化技术,就是在加温、加压的状态下,对煤直接或间接地加氢,使它成为流体化的技术。在日本,液化煤将成为代替石油能源的”核心“。
煤的汽化主要包括低热值汽化和高热值汽化。所谓高热值汽化是指生产发热量为每立方米2万千焦以上的煤气,特别是指每立方米3.6~4万千焦的代用天然气。而低热值汽化则是指生产每立方米4千到6千千焦的煤气,用以发电、加热,以及化工合成等。
(1)煤直接液化煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。裂化是一种使烃类分子分裂为几个较小分子的反应过程。因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。
(2)煤间接液化间接液化是以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。
煤炭直接液化是把煤直接转化成液体燃料,煤直接液化的操作条件苛刻,对煤种的依赖性强。典型的煤直接液化技术是在400摄氏度、150个大气压左右将合适的煤催化加氢液化,产出的油品芳烃含量高,硫氮等杂质需要经过后续深度加氢精制才能达到目前石油产品的等级。一般情况下,一吨无水无灰煤能转化成半吨以上的液化油。煤直接液化油可生产洁净优质汽油、柴油和航空燃料。但是适合于大吨位生产的直接液化工艺目前尚没有商业化,主要的原因是由于煤种要求特殊,反应条件较苛刻,大型化设备生产难度较大,使产品成本偏高。
煤直接液化技术研究始于上世纪初的德国,1927年在Leuna建成世界上第一个10万吨/年直接液化厂。1936~1943年间,德国先后建成11套直接液化装置,1944年总生产能力达到400万吨/年,为德国在第二次世界大战中提供了近三分之二的航空燃料和50%的汽车及装甲车用油。第二次世界大战结束,美国、日本、法国、意大利及前苏联等国相继开展了煤直接液化技术研究。50年代后期,中东地区廉价石油的大量开发,使煤直接液化技术的发展处于停滞状态。1973年,爆发石油危机,煤炭液化技术重新活跃起来。德国、美国及日本在原有技术基础上开发出一些煤直接液化新工艺,其中研究工作重点是降低反应条件的苛刻度,从而达到降低液化油生产成本的目的。目前不少国家已经完成了中间放大试验,为建立商业化示范厂奠定了基础。
煤转化为洁净燃料主要有以下4种技术:
(1)煤的气化技术,有常压气化和加压气化2种,它是在常压或加压条件下,保持一定温度,通过气化剂(空气、氧气和蒸汽)与煤炭反应生成煤气,煤气中主要成分是一氧化碳、氢气、甲烷等可燃气体。用空气和蒸汽做气化剂,煤气热值低;用氧气做气化剂,煤气热值高。煤在气化中可脱硫除氮,排去灰渣,因此,煤气就是洁净燃料了。
(2)煤的液化技术,有间接液化和直接液化两种。间接液化是先将煤气化,然后再把煤气液化,如煤制甲醇,可替代汽油,我国已有应用。直接液化是把煤直接转化成液体燃料,比如直接加氢将煤转化成液体燃料,或煤炭与渣油混合成油煤浆反应生成液体燃料,我国已开展研究。
(3)煤气化联合循环发电技术,先把煤制成煤气,再用燃气轮机发电,排出高温废气烧锅炉,再用蒸汽轮机发电,整个发电效率可达45%。我国正在开发研究中。
(4)燃煤磁流体发电技术,当燃煤得到的高温等离子气体高速切割强磁场,就直接产生直流电,然后把直流电转换成交流电。发电效率可过50%~60%。我国正在开发研究这种技术。
煤电联动
煤电联动政策始于2004年年底。当时国家规定,以不少于6个月为一个煤电价格联动周期,若周期内平均煤价较前一个周期变化幅度达到或超过5%,便将相应调整电价。第一次煤电联动在2005年5月,当时电价上调了0.0252元。而随后2005年11月份虽然再次满足了联动条件,但却并未有所动作。时隔一年之后,第二轮煤电价格联动终于在5月1日开始实施。按照国家发改委5月1日公布的煤电价格联动实施方案,全国销售电价从5月1日起平均每度提高2.52分钱,旨在解决2004年6月以来煤炭价格上涨、部分电厂经营亏损以及取消超发电价等对电价的影响,这也超出了此前业界预测的每度涨1分或者1.6分的提价幅度。
煤的间接液化技术是先将煤全部气化成合成气,然后以煤基合成气(一氧化碳和氢气)为原料,在一定温度和压力下,将其催化合成为烃类燃料油及化工原料和产品的工艺,包括煤炭气化制取合成气、气体净化与交换、催化合成烃类产品以及产品分离和改制加工等过程。 1923年,德国化学家首先开发出了煤炭间接液化技术。40年代初,为了满足战争的需要,德国曾建成9个间接液化厂。二战以后,同样由于廉价石油和天然气的开发,上述工厂相继关闭和改作它用。之后,随着铁系化合物类催化剂的研制成功、新型反应器的开发和应用,煤间接液化技术不断进步,但由于煤炭间接液化工艺复杂,初期投资大,成本高,因此除南非之外,其它国家对煤炭间接液化的兴趣相对于直接液化来说逐渐淡弱。
煤炭间接液化技术主要有三种,即的南非的萨索尔(Sasol)费托合成法、美国的Mobil甲醇制汽油法和正在开发的直接合成法。煤间接液化技术在国外已实现商业化生产,全世界共有3家商业生产厂正在运行,它们分别是南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。新西兰煤炭间接液化厂采用的是Mobil液化工艺,但只进行间接液化的第一步反应,即利用天然气或煤气化合成气生产甲醇,而没有进一步以甲醇为原料生产燃料油和其它化工产品,生产能力1.25万桶/天。马来西亚煤炭间接液化厂所采用的液化工艺和南非萨索尔公司相似,但不同的是它以天然气为原料来生产优质柴油和煤油,生产能力为50万吨/年。因此,从严格意义上说,南非萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。
南非萨索尔公司成立于50年代初,1955年公司建成第一座由煤生产燃料油的Sasol-1厂。70年代石油危机后,1980年和1982年又相继建成Sasol-2厂和Sasol-3厂。3个煤炭间接液化厂年加工原煤约4600万t,产品总量达768万t,主要生产汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛等113种产品,其中油品占60%,化工产品占40%。该公司生产的汽油和柴油可满足南非28%的需求量,其煤炭间接液化技术处于世界领先地位。
此外,美国SGI公司于80年代末开发出了一种新的煤炭液化技术,即LFC(煤提油)技术。该技术是利用低温干馏技术,从次烟煤或褐煤等非炼焦煤中提取固态的高品质洁净煤和液态可燃油。美国SGI公司于1992年建成了一座日处理能力为1000t的次烟煤商业示范厂。 费托合成(Fisher-Tropsch Sythesis)合成是指CO在固体催化剂作用下非骏相氢化生成不同链长的烃类(C1~C25)和含氧化合物的反应。该反应于1923年由F.Fischer和H.Tropsch首次发现后经Fischer等人完善,并于1936年在鲁尔化学公司实现工业化,费托(F-T)合成因此而得名。
费托合成反应化学计量式因催化剂的不同和操作条件的差异将导致较大差别,但可用以下两个基本反应式描述。
(1)烃类生成反应
CO+2H2→(-CH2-)+H2O
(2)水气变换反应
CO+ H2O→H2+ CO2
由以上两式可得合成反应的通用式:
2CO+H2→(-CH2-)+ CO2
由以上两式可以推出烷烃和烯烃生成的通用计量式如下:
(3)烷烃生成反应
nCO+(2n+1)H2→CnH2n+2+nH2O
2nCO+(n+1)H2→CnH2n+2+nCO2
3nCO+(n+1)H2O→CnH2n+2+(2n+1)CO2
nCO2+(3n+1)H2→CnH2n+2+2nH2O
(4)烯烃生成反应
nCO+2nH2→CnH2n+nH2O
2nCO+nH2→CnH2n+nCO2
3nCO+nH2O→CnH2n+2nCO2
nCO2+3nH2→CnH2n+2nH2O
间接液化的主要反应就是上面的反应,由于反应条件的不同,还有甲烷生成反应,醇类生成反应(生产甲醇就需要此反应),醛类生成反应等等。 煤间接液化可分为高温合成与低温合成两类工艺。高温合成得到的主要产品有石脑油、丙烯、α-烯烃和C14~C18烷烃等,这些产品可以用作生产石化替代产品的原料,如石脑油馏分制取乙烯、α-烯烃制取高级洗涤剂等,也可以加工成汽油、柴油等优质发动机燃料。低温合成的主要产品是柴油、航空煤油、蜡和LPG等。煤间接液化制得的柴油十六烷值可高达70,是优质的柴油调兑产品。
煤间接液化制油工艺主要有Sasol工艺、Shell的SMDS工艺、Syntroleum技术、Exxon的AGC-21技术、Rentech技术。己工业化的有南非的Sasol的浆态床、流化床、固定床工艺和Shell的固定床工艺。国际上南非Sasol和Shell马来西亚合成油工厂已有长期运行经验。
典型煤基F-T合成工艺包括:煤的气化及煤气净化、变换和脱碳;F-T合成反应;油品加工等3个纯“串联”步骤。气化装置产出的粗煤气经除尘、冷却得到净煤气,净煤气经CO宽温耐硫变换和酸性气体(包括H2和CO2等)脱除,得到成分合格的合成气。合成气进入合成反应器,在一定温度、压力及催化剂作用下,H2S和CO转化为直链烃类、水以及少量的含氧有机化合物。生成物经三相分离,水相去提取醇、酮、醛等化学品;油相采用常规石油炼制手段(如常、减压蒸馏),根据需要切割出产品馏份,经进一步加工(如加氢精制、临氢降凝、催化重整、加氢裂化等工艺)得到合格的油品或中间产品;气相经冷冻分离及烯烃转化处理得到LPG、聚合级丙烯、聚合级乙烯及中热值燃料气。 (1)合成条件较温和,无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0-3.0MPa;
(2)转化率高,如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上,循环比为2.0时,总转化率即达90%左右。Shell公司的SMDS工艺采用钴基催化剂,转化率甚至更高;
(3)受合成过程链增长转化机理的限制,目标产品的选择性相对较低,合成副产物较多,正构链烃的范围可从C1至C100;随合成温度的降低,重烃类(如蜡油)产量增大,轻烃类(如CH4、C2H4、C2H6、……等)产量减少;
(4)有效产物-CH2-的理论收率低,仅为43.75%,工艺废水的理论产量却高达56.25%;
(5)煤消耗量大,一般情况下,约5~7t原煤产1t成品油。
(6)反应物均为气相,设备体积庞大,投资高,运行费用高;
(7)煤基间接液化全部依赖于煤的气化,没有大规模气化便没有煤基间接液化。 我国从50年代初即开始进行煤炭间接液化技术的研究,曾在锦州进行过4500t/年的煤间接液化试验,后因发现大庆油田而中止。由于70年代的两次石油危机,以及“富煤少油”的能源结构带来的一系列问题,我国自80年代初又恢复对煤间接液化合成汽油技术的研究,由中科院山西煤化所组织实施。
“七五”期间,山西煤化所开的煤基合成汽油技术被列为国家重点科技攻关项目。1989年在代县化肥厂完成了小型实验。“八五”期间,国家和山西省政府投资2000多万元,在晋城化肥厂建立了年产2000吨汽油的工业试验装置,生产出了90号汽油。在此基础上,提出了年产10万吨合成汽油装置的技术方案。2001年,国家863计划和中科院联合启动了“煤变油”重大科技项目。中科院山西煤化所承担了这一项目的研究,科技部投入资金6000万,省政府投入1000万和本地企业的支持,经过一年多攻关,千吨级浆态床中试平台在2002年9月实现了第一次试运转,并合成出第一批粗油品,低温浆态合成油可以获得约70%的柴油,十六烷值达到70以上,其它产品有LPG(约5%~10%)、含氧化合物等。其核心技术费托合成的催化剂、反应器和工艺工程也取得重大突破。
万吨级煤基合成汽油工艺技术软件开发和集成的研究正在进行,从90年代初开始研究用于合成柴油的钴基催化剂技术也正处在试验阶段。经过20年的开发和研究,目前我国已经具备建设万吨级规模生产装置的技术储备,在关键技术、催化剂的研究开发方面已拥有了自主知识产权。可以这样讲,我国自己研发的煤炭液化技术已达到世界先进水平。中科院山西煤化所与连顺能源有限公司就共同组建合成油品实验室达成协议,连顺公司为山西煤化所技术研究和开发出资1500万元,用于关键技术的研究和有关技术的开发,并最终用3-5年时间在山西朔州建一个年产15万t合成液化油的间接液化生产厂。中科院和山西省政府签署了“发展山西煤间接液化合成油产业的框架协议”,根据这个协议,在今后5-10年内,山西省将以自己的煤炭资源优势为依托,借助产业化部门的加盟,通过国家投资和社会融资方式,在朔州和大同几个大煤田之间建成一个以百万吨煤基合成油为核心的、多联产特大型企业集团。
在技术开发的同时,国内煤炭企业对引进成熟技术、建设煤间接液化工厂做了大量工作。平顶山煤业集团、宁夏煤业集团以及神华集团就建设间接液化商业化示范工厂进行了煤种评价试验和建厂预可行性研究,并就引进技术、投融资、立项等做了大量前期工作,项目正在论证阶段。
B.温度越高速率越大,T2>T1,所以T1时的反应速率小于T2时的反应速率,故B错误;
C.由图可知,T2>T1时,平衡时甲醇的物质的量减小,说明升高温度平衡向逆反应方向移动,化学平衡常数降低,在T1时的平衡常数比T2时的大,故C正确;
D.由图可知,处于A点的反应体系从T1变到T2,温度增大,平衡向逆反应方向移动,氢气物质的量增大,甲醇的物质的量减小,
n(H2) |
n(CH3OH) |
故答案为:ACD;
②a、该反应为前后气体体积变小的反应,所以当体系压强不变时,反应达到平衡状态了;
b、未指明是正反应速率还是逆反应速率,所以无法判断反应是否处于平衡状态;
c、CH3OH与H2物质的量之比为1:3时,无法确定此时正逆反应速率是否相等,故无法判断反应是否处于平衡状态;
d、每消耗1mol CO2的同时生成3molH2说明v( CO2正):v( H2逆)=1:3,而反应中与的计量数之比也是1:3,故该反应的正逆反应速率相等,故可作为平衡状态的判断标志;
e、由于该反应在反应前后气体的总体积和总质量均不发生变化,故密度不能作为平衡状态的判断标志;
f、当CH3OH的体积分数不变时,说明反应体系中各组分都保持不变,也就说明反应处于平衡状态,故可作为平衡状态的判断标志;
故答案为:adf;
③CO2的转化率为60%,即反应转化的CO2为2×60%=1.2mol,
由化学平衡的三段法计算可知,
CO2 (g)+3H2(g)=CH3OH(g)+H2O(g)
起始(mol) 2 6 0 0
变化(mol) 1.2 3.6 1.2 1.2
平衡(mol) 0.8 2.4 1.2 1.2
根据相同条件下气体的压强之比等于物质的量之比,
则容器内的压强与起始压强之比为=(0.8+2.4+1.2+1.2):(2+6)=7:10,
反应的平衡常数为:
| ||||
|
故答案为:7:10;0.52.
自从Fischer和Tropsch发现在碱化的铁催化剂上可从CO和H2生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费托合成技术工业化的国家。1992和1993年,又有两座基于天然气的费托合成工厂建成,分别是南非 Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 F-T合成的主反应:
生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O
生成烯烃:nCO+(2n)H2 = CnH2n+nH2O
另外还有一些副反应,如:
生成甲烷:CO+3H2 = CH4+H2O
生成甲醇:CO+2H2 = CH3OH
生成乙醇:2CO+4H2 = C2H5OH+ H2O
结炭反应:2CO = C+CO2 固定床反应器首先由鲁尔化学(Ruhrchemir)和鲁齐(Lurge)两家公司合作开发而成,简称Arge反应器。1955年第一个商业化Arge反应器在南非建成投产。反应器直径3米,由2052根管子组成,管内径5厘米,长12米,体积40m3;管外为沸腾水,通过水的蒸发移走管内的反应热,产生蒸汽。管内装填了挤出式铁催化剂。反应器的操作条件是225°C,2.6MPa。大约占产品50%的液蜡顺催化剂床层流下。基于SASOL的中试试验结果,一个操作压力4.5 MPa的Arge反应器在1987年投入使用。管子和反应器的尺寸和Arge 反应器基本一致。
通常多管固定床反应器的径向温差为大约2~4°C。轴向温度差为15~20°C。为防止催化剂失活和积碳,绝不可以超过最高反应温度,因为积碳可导致催化剂破碎和反应管堵塞,甚至需要更换催化剂。固定床中铁催化剂的使用温度不能超过260°C,因为过高的温度会造成积碳并堵塞反应器。为生产蜡,一般操作温度在230°C左右。最大的反应器的设计能力是1500桶/天。
固定床反应器的优点有:易于操作;由于液体产品顺催化剂床层流下,催化剂和液体产品分离容易,适于费托蜡生产。由于合成气净化厂工作不稳定而剩余的少量的H2S,可由催化剂床层的上部吸附,床层的其它部分不受影响。固定床反应器也有不少缺点:反应器制造昂贵。高气速流过催化剂床层所导致的高压降和所要求的尾气循环,提高了气体压缩成本。费托合成受扩散控制要求使用小催化剂颗粒,这导致了较高的床层压降。由于管程的压降最高可达0.7 MPa,反应器管束所承受的应力相当大。大直径的反应器所需要的管材厚度非常大,从而造成反应器放大昂贵。另外,装填了催化剂的管子不能承受太大的操作温度变化。根据所需要的产品组成,需要定期更换铁基催化剂;所以需要特殊的可拆卸的网格,从而使反应器设计十分复杂。重新装填催化剂也是一个枯燥和费时的工作,需要许多的维护工作,导致相当长的停车时间;这也干扰了工厂的正常运行。 德国人在上世纪的40和50年代曾经研究过三相鼓泡床反应器,但是没有商业化。SASOL的研发部门在二十世纪七十年代中期开始了对浆态床反应器的研究。1990年研发有了突破性进展,一个简单而高效的蜡分离装置成功地通过了测试。100桶/天的中试装置于1990年正式开车。SASOL于1993年5月实现了ID=5m,20m高的产能为2500桶/天的浆态床反应器的开工。
SASOL的三相浆态床反应器(Slurry Phase Reactor)可以使用铁催化剂生产蜡、燃料和溶剂。压力2.0 MPa,温度高于200℃。反应器内装有正在鼓泡的液态反应产物(主要为费托产品蜡)和悬浮在其中的催化剂颗粒。SASOL浆态床技术的核心和创新是其拥有专利的蜡产物和催化剂实现分离的工艺;此技术避免了传统反应器中昂贵的停车更换催化剂步骤。浆态床反应器可连续运转两年,中间仅维护性停车一次。反应器设计简单。SASOL浆态床技术的另一专利技术是把反应器出口气体中所夹带的“浆”有效地分离出来。
典型的浆态床反应器为了将合成蜡与催化剂分离,一般内置2~3层的过滤器,每一层过滤器由若干过滤单元组成,每一组过滤单元又由3~4根过滤棒组成。正常操作下,合成蜡穿过过滤棒排出,而催化剂被过滤棒挡住留在反应器内。当过滤棒被细小的催化剂颗粒堵塞时可以采用反冲洗的方法进行清洗。在正常工况下一部分过滤单元在排蜡,另一部分在反冲洗,第三部分在备用。另外为了将反应热移走,反应器内还设置2~3层的换热盘管,进入管内的是锅炉给水,通过水的蒸发移走管内的反应热,产生蒸汽。通过调节汽包的压力来控制反应温度。此外在反应器的下部设有合成气分配器,上部设有除尘除沫器。其操作过程如下:合成气经过气体分配器在反应器截面上均匀分布,在向上流动穿过由催化剂和合成蜡组成的浆料床层时,在催化剂作用下发生FT合成反应。生成的轻烃、水、CO2和未反应的气体一起由反应器上部的气相出口排出,生成的蜡经过内置过滤器过滤后排出反应器,当过滤器发生堵塞导致器内器外压差过大时,启动备用过滤器,对堵赛的过滤器应切断排蜡阀门,而后打开反冲洗阀门进行发冲洗,直至压差消失为止。为了维持反应器内的催化剂活性,反应器还设置了一个新鲜催化剂/蜡加入口和一个催化剂/蜡排出口。可以根据需要定期定量将新鲜催化剂加入同时排出旧催化剂。
浆态床反应器和固定床相比要简单许多,它消除了后者的大部分缺点。浆态床的床层压降比固定床大大降低,从而气体压缩成本也比固定床低很多。可简易地实现催化剂的在线添加和移走。浆态床所需要的催化剂总量远低于同等条件下的固定床,同时每单位产品的催化剂消耗量也降低了70%。由于混合充分,浆态床反应器的等温性能比固定床好,从而可以在较高的温度下运转,而不必担心催化剂失活、积碳和破碎。在较高的平均转化率下,控制产品的选择性也成为可能,这就使浆态床反应器特别适合高活性的催化剂,SASOL现有的浆态床反应器的产能是2500桶/天,2003年为卡塔尔和尼日利亚设计的是ID=9.6m、17000桶/天的商业性反应器。SASOL认为设计使用Co催化剂的能力达到22300桶/天的反应器也是可行的,这在经济规模方面具有很大的优势。 1955年前后,萨索尔在其第一个工厂(Sasol I)中对美国Kellogg 公司开发的循环流化床反应器(CFB)进行了第一阶段的500倍的放大。放大后的反应器内径为2.3米,46米高,生产能力1500桶/天。此后克服了许多困难,多次修改设计和催化剂配方,这种后来命名为 Synthol 的反应器成功地运行了30年。后来SASOL通过增加压力和尺寸,反应器的处理能力提高了3倍。1980年在SASOL II、1982年在SASOL III分别建设了8台ID=3.6m、生产能力达到6500桶/天的Synthol 反应器。使用高密度的铁基催化剂。循环流化床的压降低于固定床,因此其气体压缩成本较低。由于高气速造成的快速循环和返混,循环流化床的反应段近乎处于等温状态,催化剂床层的温差一般小于2°C。循环流化床中,循环回路中的温度的波动范围为30°C左右。循环流化床的一个重要的特点是可以加入新催化剂,也可以移走旧催化剂。
循环流化床也有一些缺点:操作复杂;新鲜和循环物料在200°C 和2.5 MPa条件下进入反应器底部并夹带起部分从竖管和滑阀流下来的350°C的催化剂。在催化剂沉积区域,催化剂和气体实现分离。气体出旋风分离器而催化剂由于线速度降低从气体中分离出来并回到分离器中。从尾气中分离细小的催化剂颗粒比较困难。一般使用旋风分离器实现该分离,效率一般高于99.9%。但由于通过分离器的高质量流率,即使0.1% 的催化剂也是很大的量。所以这些反应器一般在分离器下游配备了油洗涤器来脱除这些细小的颗粒。这就增加了设备成本并降低了系统的热效率。另外在非常高线速度的部位,由碳化铁颗粒所引起的磨损要求使用陶瓷衬里来保护反应器壁,这也增加了反应器成本和停车时间。Synthol 反应器一般在2.5 MPa和340°C的条件下操作。 鉴于循环流化床反应器的局限和缺陷,SASOL开发成功了固定流化床反应器,并命名为SASOL Advanced Synthol(简称为SAS)反应器。
固定流化床反应器由以下部分组成:含气体分布器的容器;催化剂流化床;床层内的冷却管;以及从气体产物中分离夹带催化剂的旋风分离器。
固定流化床操作比较简单。气体从反应器底部通过分布器进入并通过流化床。床层内催化剂颗粒处于湍流状态但整体保持静止不动。和商业循环流化床相比,它们具有类似的选择性和更高的转化率。因此,固定流化床在SASOL得到了进一步的发展,一个内径1米的演示装置在1983年开车。一个内径5米的商业化装置于1989年投用并满足了所有的设计要求。1995年6月,直径8米的SAS反应器商业示范装置开车成功。1996年SASOL决定用8台SAS反应器代替SASOL II和SASOL III厂的16台Synthol 循环流化床反应器。其中4台直径8米的SAS反应器,每个的生产能力是11000桶/天;另外四个直径10.7米的反应器,每个生产能力是20000桶/天。这项工作于1999年完成,2000年SASOL又增设了第9台SAS反应器。固定流化床反应器的操作条件一般是2.0~4.0 MPa,大约340℃,使用的一般是和循环流化床类似的铁催化剂。
在同等的生产规模下,固定流化床比循环流化床制造成本更低,这是因为它体积小而且不需要昂贵的支承结构。由于SAS反应器可以安放在裙座上,它的支撑结构的成本仅为循环流化床的5%。因为气体线速较低,基本上消除了磨蚀从而也不需要定期的检查和维护。SAS反应器中的压降较低,压缩成本也低。积碳也不再是问题。SAS催化剂的用量大约是Synthol的50%。由于反应热随反应压力的增加而增加,所以盘管冷却面积的增加使操作压力可高达40巴,大大地增加了反应器的生产能力。