建材秒知道
登录
建材号 > 新能源产业 > 正文

新能源有哪些

烂漫的雪糕
魔幻的爆米花
2023-01-01 07:56:12

新能源有哪些?各种新能源的优缺点是什么?

最佳答案
清秀的月饼
生动的鲜花
2025-08-05 21:50:57

新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。

据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。

联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电(Small-hydro)、太阳能(Solar)、风能(Wind)、现代生物质能(Modern biomass)、地热能(Geothermal)、海洋能(Ocean)(潮汐能);传统生物质能(Traditional biomass)。

一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。

新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等。

太阳能

太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式

广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。

利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。

太阳能可分为3种:

1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。

核能

核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:

A.核裂变能

所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

B.核聚变能

由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

C.核衰变

核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用

核能的利用存在的主要问题:

(1)资源利用率低

(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决

(3)反应堆的安全问题尚需不断监控及改进

(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

(5)核电建设投资费用仍然比常规能源发电高,投资风险较大

海洋能

海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。

潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。

风能

风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。

1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。

生物质能

生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。

生物质能利用现状

2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。

中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。

地热能

地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。

氢能

在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。

海洋渗透能

如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。

海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。

水能

水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。

可以利用电解水分子和光以及化学分解水分子的方式,来分解到可燃烧的氢气,它可作为新的,多用途的能源来替代现有的矿物质能源。水分子的分解过程简而易行,投资少见效快。这给水能的综合利用带来了广泛的前景,在地球上,水是一种到处可见的液态物质。通过水的分解装置,制备出氢燃料,可用于汽车,航天航空,热力发电等工业和民用方面,在较大的程度上,缓解了人类对矿物质资源的过分依赖。

新能源的发展现状和趋势

部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。

目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。

我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。

新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。

太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。

风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。

早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。

新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。

随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。

新能源的环境意义和能源安全战略意义

我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。

国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。

此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。

未来的几种新能源

波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。

可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。

煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。

微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。

第四代核能源:当今,世界科学家已研制出利用正反物质的核聚变,来制造出无任何污染的新型核能源。正反物质的原子在相遇的瞬间,灰飞烟灭,此时,会产生高当量的冲击波以及光辐射能。这种强大的光辐射能可转化为热能,如果能够控制正反物质的核反应强度,来作为人类的新型能源,那将是人类能源史上的一场伟大的能源革命。

最新回答
无情的冰淇淋
优秀的睫毛膏
2025-08-05 21:50:57

硅可以作为未来能源,而不是二氧化硅。

下面是一篇一位叫做徐阳的化学老师写的科普文章:

我们都知道硅可以作为电子产品的芯片,太阳能电池板的材料,它还是电源的材料,为我们提供电能,但它还可以燃烧为我们提供热能。硅作为一种新能源,有很多优点已经被科学界广泛关注。

一、生产硅的原材料来源广泛,地球上硅的含量占26.30%,仅次于氧元素。

二、硅是无毒固体,贮存、运输和使用十分安全。

三、它可以和氧气燃烧,也可以和氮气燃烧,生成的产物污染极小,且燃烧产物可以循环利用,燃烧产物sio2 、si3n4在工业上的用途很广泛,可以生产一系列很有经济价值的产品。硅氮化物无毒,可用于制造非常坚硬和如今非常昂贵的瓷器。工业上需要这种物质作为其他材料的涂层,使它们不怕刮、不伯潮湿、不伯火或酸。 此外,完全可以使硅氮化物变成生产氮化肥的基本原料氨。这将为生产化肥开辟一条全新的道路。更令人感兴趣的是,如果用硅大量取代化石燃料,那么产生的氨会大大超过生产化肥所需的数量,这种刺鼻的气体还含有一部分能量,它还能燃烧继续提供能量。也可以向燃料电池汽车供应所需的氢。

四、释放出的能量很高。硅作为产生能量的物质,甚至可能比石油和煤还多。

作为还在研究的新能源,它也受到了一些技术限制。我们知道自然界的硅元素都是以化合物的形式存在,作为燃料的硅是单质,如何能够成功地以低成本把硅的化合物冶炼成单质硅用做产生能量的物质,是硅能源广泛应用要解决的最紧迫的问题,若这一瓶颈能够突破,那么人类将摆脱对资源用尽的一切忧虑。

    目前汽油价格不断上涨,是所有的化石燃料开始耗尽的初期迹象。不管石油藏量还够人类使用50多年还是100多年,碳作为能源首选目标的时代正在逐渐成为历史,人类不得不艰难地寻找新的能源。硅能源将最有希望成为未来理想的能源。

拼搏的墨镜
笨笨的摩托
2025-08-05 21:50:57

1、资源丰富,普遍具备可再生特性,可供人类永续利用;比如,陆上估计可开发利用的风力资源为253GW, 而截止2003年只有0.57GW被开发利用,预计到2010年可以利用的达到4GW, 到2020年到20GW,而太阳能光伏并网和离网应用量预计到2020年可以从的0.03GW增加1至2个GW。

2、能量密度低,开发利用需要较大空间。

3、不含碳或含碳量很少,对环境影响小。

4、分布广,有利于小规模分散利用。

5、间断式供应,波动性大,对持续供能不利。

6、除水电外,可再生能源的开发利用成本较化石能源高。

扩展资料

发展

政策和资源一直是影响我国新能源产业布局的重要因素。近年来,在区域政策和资源影响下,依托于各区域产业基础,我国新能源产业集聚特征显现。目前已初步形成了以环渤海、长三角、西南、西北等为核心的新能源产业集聚区。

并且,各集聚区新能源产业发展迅速,特色明显。其中,长三角区域是我国新能源产业发展的高地,聚集了全国约1/3的新能源产能;环渤海区域是我国新能源产业重要的研发和装备制造基地;西北区域是我国重要的新能源项目建设基地;西南区域是我国重要的硅材料基地和核电装备制造基地。

参考资料来源:百度百科—新能源

冷艳的墨镜
悲凉的钻石
2025-08-05 21:50:57
新能源

新能源

太阳能

太阳能一般指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源利用方式。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。

利用太阳能的方法主要有:

使用太阳电池,通过光电转换把太阳光中包含的能量转化为电能

使用太阳能热水器,利用太阳光的热量加热水

利用太阳光的热量加热水,并利用热水发电

利用太阳能进行海水淡化

现在,太阳能的利用还不很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳电池在为人造卫星提供能源方面得到了应用。

目前,全球最大的屋顶太阳能面板系统位于德国南部比兹塔特(Buerstadt),面积为四万平方米,每年的发电量为450万千瓦。

日本为了达成京都议定书的二氧化碳减量要求,全日本都普设太阳能光电板,位于日本中部的长野县饭田市,居民在屋顶设置太阳能光电板的比率甚至达2%,堪称日本第一。

太阳能可分为2种:

1.太阳能光伏

光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

2.太阳热能

现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

核能

首先要认识核能。

核能是通过转化其质量从原子核释放的能量,符合阿尔伯特爱因斯坦的方程E=mc²,其中E=能量,m=质量,c=光速常量。核能通过三种核反应之一释放:

核裂变,打开原子核的结合力。

核聚变,原子的粒子熔合在一起。

核衰变,自然的慢得多的裂变形式。

核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。

相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。

目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。

目前主要的几种可控核聚变方式:

超声波核聚变

激光约束(惯性约束)核聚变

磁约束核聚变(托卡马克)

核聚变

比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才 能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。

但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。核能发电

nuclear electric power generation

核能→水和水蒸气的内能→发电机转子的机械能→电能。

利用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。

简史 核能发电的历史与动力堆的发展历史密切相关。动力堆的发展最初是出于军事需要。1954年,苏联建成世界上第一座装机容量为 5兆瓦(电)的核电站。英、美等国也相继建成各种类型的核电站。到1960年,有5个国家建成20座核电站,装机容量1279兆瓦(电)。由于核浓缩技术的发展,到1966年,核能发电的成本已低于火力发电的成本。核能发电真正迈入实用阶段。1978年全世界22个国家和地区正在运行的30兆瓦(电)以上的核电站反应堆已达200多座,总装机容量已达107776兆瓦(电)。80年代因化石能源短缺日益突出,核能发电的进展更快。到1991年,全世界近30个国家和地区建成的核电机组为423套,总容量为3.275亿千瓦,其发电量占全世界总发电量的约16%。世界上第一座核电站—苏联奥布宁斯克核电站.

中国大陆的核电起步较晚,80年代才动工兴建核电站。中国自行设计建造的30万千瓦(电)秦山核电站在1991年底投入运行。大亚湾核电站正加紧施工。

核能发电原理 核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。

要用反应堆产生核能,需要解决以下4个问题:①为核裂变链式反应提供必要的条件,使之得以进行。②链式反应必须能由人通过一定装置进行控制。失去控制的裂变能不仅不能用于发电,还会酿成灾害。③裂变反应产生的能量要能从反应堆中安全取出。④裂变反应中产生的中子和放射性物质对人体危害很大,必须设法避免它们对核电站工作人员和附近居民的伤害。

利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。

第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。

目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。

另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。

原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。

尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。

虚拟的汽车
甜美的小天鹅
2025-08-05 21:50:57
2021年11月3日中国化学(601117)发布公告称:华安证券刘万鹏、华西证券杨伟、华泰证券方宴荷、长江证券毕春晖、国盛证券程龙戈、东吴证券柳强、申万宏源证券李峙屹、光大证券孙伟风、兴业证券孟杰、开源证券吉金于2021年11月1日调研我司。

本次调研主要内容:

问:中国化学工程主业有哪些方面的技术优势?今年新签合同额及呈现的特点情况?

答:中国化学是我国石油和化学工业体系建设的“国家队”,在基础化工、石油化工、煤化工上具备绝对领先优势,可提供项目全生命周期工程服务,在国内外占据较大的市场份额;在基础化工领域,公司掌握氮肥、磷肥、复合肥等世界先进技术,纯碱、氯碱等盐化工等技术处于国际先进水平,硫酸、硝酸、盐酸、硝铵等技术处于国内领先水平;在煤化工领域,中国化学掌握最核心和先进的技术,如多喷嘴对置式水煤浆气化、大规模碎煤加压气化、五环炉、神宁炉、一步法甲醇制汽油(MTG)、合成气制乙二醇等现代煤化工产业核心技术,在国际上处于领先地位;在石油化工领域,公司在炼油、聚合物、芳烃等技术处于国内领先水平。在精细化工领域,公司在氟化物、甲烷、氯化物、钛白粉等技术处于国内领先水平。截至目前,中国化学2021年累计新签合同中,工程总承包的合同占比约为52%,勘察、设计、监理、咨询合同占比约为2%,在特点方面,结合公司的设计与建筑工程优势,呈现出新能源类、新材料类、化工石化产业绿色升级类等合同,占比近40%。

问:己二腈项目进展情况?天辰公司其他储备技术介绍与产业化规划?

答:己二腈项目进展顺利,项目总体累计完成进度90%,预计2021年底投产,中国化学旗下天辰公司经过多年的努力,成功开发绿色双氧水法环氧丙烷(HPPO)技术,具备打造环氧丙烷生产基地的条件,此外,天辰公司已开展中试和小试试验的技术包括尼龙-12成套技术、1,3丁二醇技术、1,6己二醇技术、环己烷二甲醇(CHDM)技术、POE、水合肼技术等,以上技术均具有产业化潜力。

问:气凝胶项目进展情况?后续投建规划?有什么优势?

答:气凝胶项目进展顺利,预计2021年底投产5万立方米,公司计划在2023年启动项目二期和三期,计划2025年建成达到30万立方米。10月24日,中共中央、国务院印发《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》中第二十一条提出“推动气凝胶等新型材料研发应用”的明确意见,在国家提出加快先进适用技术研发和推广之际,华陆气凝胶项目即将投产,这对华陆公司大力发展气凝胶新材料业务起到了非常大的鼓舞和支持作用。气凝胶项目在产品生产工艺、原料选用、自动化控制方面具有很大的优势。第一,华陆气凝胶的生产工艺采用的是超临界二氧化碳流体干燥及分离制备气凝胶复合材料技术,本技术原主要用于生产航空航天及军用气凝胶材料,现可用于生产民用气凝胶绝热材料,为军转民技术;第二,华陆气凝胶生产原料选用的是有机硅源,能形成更稳定的凝胶结构,溶剂可重复利用,生产过程绿色环保,可有效节约原料成本;第三,华陆气凝胶项目自动化水平高,生产过程平稳,工作环境对操作人员友好,可有效降低运行费用。相比于同行业产品,华陆新材气凝胶产品生产成本将大幅降低,有利于产品的广泛推广和应用。

问:公司在氢能产业方面有哪些项目和技术?

答:中国化学旗下华陆公司大力推广绿氢和化工生产装置的耦合集成技术,特别是在绿氢和煤化工耦合方面开展了很多具体工作;同时,华陆公司也在和光伏产业的龙头企业隆基股份,以及一些高校进行电解水制氢装置、氢气纯化装置的合作开发;在储能方面,利用自身的技术储备,正在进行氢液化工艺和装备的开发;另外参与大化所绿氢和CO2合成甲醇技术(液态阳光)的研究;利用氢能资源进行低压合成氨技术的开发等。中国化学旗下赛鼎公司与五环公司开发垃圾清洁气化耦合制氢技术、以及化学储氢等相继都在中试过程中。

问:请问中国化学在碳达峰,碳中和方面的技术储备?

答:中国化学积极贯彻落实国家碳达峰碳中和目标,以“源头减碳、过程降碳、尾端固碳”为理念,成立中国化学碳中和科学技术研究院,开展技术研发和布局,为形成碳循环及二氧化碳的资源化利用做了诸多技术储备和战略布局。公司目前一边对存量化工石化项目进行减碳、降碳绿色升级改造——例如旗下成达公司开发先进纯碱技术、五环公司开发的高效低能耗合成尿素技术、赛鼎公司采用上升管余热利用/干熄焦余热利用等高效节能技术,一边推动增量项目采用碳循环工艺——例如旗下华陆公司与相关单位联合开发高效电解制氢技术、天辰公司以二氧化碳和环氧丙烷为原料制备的聚碳酸亚丙酯(PPC)、十四公司承建的国内最大规模燃煤电厂碳捕集示范工程国华锦能CCUS(碳捕获、利用与封存)项目,不断完善碳减排、碳中和在研技术,并在氢能、光伏等各新能源领域布局,提供中国化学的最优化、低碳化综合解决方案,服务业主、造福社会。

问:公司全年业绩情况预计如何?

答:2021年1月-9月,公司营收及利润整体是上升的,仅第三季度单季度同比增速下降,即有新冠疫情带来的不可抗力因素、大宗材料上涨,而相应的调价机制实施具有一定的周期,再加上第三季度属于开工高峰期,公司的研发投入加大等各方面因素,随着公司业务发展和精细化管理的实施,公司对全年目标任务完成充满信心。

问:公司下一步的发展举措以及四季度提升经营业绩的措施?

答:在“十四五”这个关键时期,公司将聚焦化学工程主责主业,加快打造工业工程领域综合解决方案服务商、高端化学品和先进材料供应商,更好推进转型升级和高质量发展,不断做强做优做大,加快建设特色鲜明、专业领先、核心竞争力强的世界一流工程公司。公司将在2021年四季度开展“大干九十天,实现新跨越”会战活动,进一步完善大经营格局,拓市场,稳经营,切实压控“两金”,加快生产经营组织模式变革,加强“核心层”作业层队伍建设,推动企业全面精细化管理,打造“提质增效升级版”,努力超额完成全年新签合同额2600亿元,营业总收入1180亿元,利润总额48.6亿元目标任务。

中国化学主营业务:建筑工程(化学工程、基础设施、环境治理)、实业和现代服务业业务

中国化学2021三季报显示,公司主营收入904.95亿元,同比上升36.17%;归母净利润28.98亿元,同比上升4.46%;扣非净利润27.29亿元,同比上升2.18%;其中2021年第三季度,公司单季度主营收入342.35亿元,同比上升15.53%;单季度归母净利润9.66亿元,同比下降27.33%;单季度扣非净利润9.49亿元,同比下降24.83%;负债率67.3%,投资收益6020.05万元,财务费用2.33亿元,毛利率9.51%。

该股最近90天内共有15家机构给出评级,买入评级13家,增持评级2家;过去90天内机构目标均价为15.25;近3个月融资净流入2.05亿,融资余额增加;融券净流入817.09万,融券余额增加。证券之星估值分析工具显示,中国化学(601117)好公司评级为3星,好价格评级为4星,估值综合评级为3.5星。

超帅的水杯
年轻的鸵鸟
2025-08-05 21:50:57
就目前常见的有:太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。

一下就具体每种能量细说:

太阳能:太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式。

细分就是:

1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。

2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。

3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。

核能:核能是通过转化其质量从原子核释放的能量

具体方式:1.核裂变能:所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

2:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

3:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

核能的利用存在的主要问题:

1:资源利用率低。

2:反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决。

3:反应堆的安全问题尚需不断监控及改进。

4:核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

5:核电建设投资费用仍然比常规能源发电高,投资风险较大

海洋能:

海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

风能:

风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

生物质能:

生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。

地热能:

地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。

氢能:

在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。

海洋渗透能:

如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。

水能:

水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。

当然常见的,已经实现的是下面几种:

生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

还有一些不常见,或者很少听见的就是:可燃冰,煤层气,微生物。

可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。

煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。

微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。

其实很多能源都是来自于太阳能,想海洋能,煤层气,微生物,风能,水能,都是有太阳能而来。只是他们之间转换了一下。

淡淡的小松鼠
活力的夕阳
2025-08-05 21:50:57
1.可燃冰是一种新能源。可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80%—99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。西方科学家称其为“21世纪能源”或“未来能源”。1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。

据专家估计,全世界石油总储量在2700亿吨到6500亿吨之间。按照目前的消耗速度,再有50-60年,全世界的石油资源将消耗殆尽。可燃冰的发现,让陷入能源危机的人类看到一条新的出路。

迄今,世界上至少有30多个国家和地区在进行可燃冰的研究与调查勘探。美国在1998年把可燃冰作为国家发展的战略能源列入国家级长远计划,计划到2015年进行商业性试开采。日本关注可燃冰是在1992年,目前,已基本完成周边海域的可燃冰调查与评价,钻探了7口探井,圈定了12块矿集区,并成功取得可燃冰样本。它的目标是在2010年进行商业性试开采。

但人类要开采埋藏于深海的可燃冰,尚面临着许多新问题。有学者认为,在导致全球气候变暖方面,甲烷所起的作用比二氧化碳要大10—20倍。而可燃冰矿藏哪怕受到最小的破坏,都足以导致甲烷气体的大量泄漏。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。

由此可见,可燃冰在作为未来新能源的同时,也是一种危险的能源。可燃冰的开发利用就像一柄“双刃剑”,需要小心对待。

2.当化石燃料危机以及由此带来的环境危机越来越成为关系国计民生和人类未来的重要问题的时候,一个全新的“氢能经济”的蓝图正在逐步形成。

氢能是一种完全清洁的新能源和可再生能源。它是利用化石燃料、核能和可再生能源等来生产氢气,氢气可直接用作燃料,也可通过燃料电池通过电化学反应直接转换成电能,用于发电及交通运输等,还可用作各种能源的中间载体。氢作为燃料用于交通运输、热能和动力生产中时,具有高效率、高效益的特点,而且氢反应的产物是水和热,是真正意义上的清洁能源和可持续能源,这对能源可持续性利用、环境保护、降低空气污染与大气温室效应方面将产生革命性的影响。氢可作为一种储备的能源,如果利用丰富的过剩电能实现电解水制氢,可以建独立的氢供应站,不必区域联网。因此,氢与可再生一次能源相结合可以满足未来能源的所有需求。目前,以美国为

代表的世界各国正以前所未有的速度和力度加强对氢能和燃料

(a) 不可持续能源系统 (b)可持续能源系统

图1 可持续和不可持续能源系统示意图

电池的研发,积极建构一个“氢能经济”的未来。需要指出的是,氢能不是“一次能源”。目前,氢的制备技术一般分两种:一种是以煤炭、石油、天然气等碳氢化合物为原料,采用蒸汽重整法制备。这种方式有利于解决现有城市环境污染问题,将污染源集中处理,但这种方式不能实现未来能源的可持续发展。另一种则是利用太阳能、水能等可再生能源,从水、生物质来大量制备。这种制备技术才能从真正意义上实现能源的可持续发展。