建材秒知道
登录
建材号 > 太阳能光伏 > 正文

光伏(特指不向电网发送功率的产品)为何要并网

年轻的哈密瓜
忐忑的帆布鞋
2023-01-01 07:40:19

光伏(特指不向电网发送功率的产品)为何要并网?

最佳答案
整齐的乌龟
天真的巨人
2025-08-05 11:12:44

可逆流并网是目前应用的主流技术,就是将分布式电源中的电能转换成与市政电网同频、同相、同幅的交流电后并入市政电网,由市政电网供给负载使用,典型的应用就是太阳能电站的建设。

不可逆流并网是分布式能源应用的新型模式,又被称为共网或单方向联网。就是以微电网和市政电力联网共同向负载供电,而且在供电时,微电网中的电能不会流向市政电网,只有当微电网不能满足负载的功耗时,市政电网作为补充供应.

您所说的情况时不可逆流并网系统(特指不向电网发送功率的产品)

它主要因为光伏发电的能量是来源于组件装换光能所来的电能,而光电装换取决于阳光的强度及温度等;这意味着光伏发电的功率是不稳定的,它不一定能够满足您的使用(即不能通过自发自用来满足您所需要的全部电能),这时候不够的那部分电能,就需要从我们的公共电网取得,这个就是不可逆流并网系统需要并网的一个非常重要的原因

最新回答
机灵的大碗
柔弱的大门
2025-08-05 11:12:44

可以,绝对可行,以目前的电力电子技术已经非常的成熟。风电了解不多,但是也是需要风电变流器这个电力电子设备做为接入网的关键设备。光伏则是通过并网逆变器接入电网。无论变流器还是逆变器,均属于电力电子技术的一个应用环节,实现一个DC-AC的转换,在转换过程中通过跟踪电网电流波形,然后同步锁相实现与电网的同期运行,所以此时的光伏或者风电均属于大电网中一个供电电源。首先,当然单就光伏或者风能其输出负载受天气影响而变化的,但接入电网后,整个大电网将做为此类能源的backup电源,所以在接入数量不多的情况下是非常稳定,不会对电网造成大的影响。当然此类分布式电源接入电网之后,对于电网也会造成一定影响,比如过去在10KV及其以下电压等级中,潮流计算中基本不考虑逆向潮流,所以整个网间的整定保护值是按照不存在逆向潮流进行整定设定,大规模接入分布式新能源之后,或许会对电网的继保造成影响。其次,大规模的新能源接入之后,会对电网的稳定运行造成影响,因为对于整个电网而言,出力是等于负载的,但如果不稳定的新能源大规模接入之后,怎么样在新能源发电端出力下降后,常规的核电,火电,水电等快速将出力加大补足将会成为一个新的挑战,这个也就是前段时间整个新能源行业讨论比较热烈的德国电网怎么安稳的度过日食影响一样,(一句题外话,看到当时整个讨论的各种意见,我觉得蛋疼,其实一个很好的解决方案,日食是可以预测的,那么只是需要在日食那天将接入的新能源解列,进行系统维护就可以,电力由常规能源补足不就可以解决这个日食问题了)但要达到这个程度,需要接入的新能源将需要达到一个非常的数量,按照目前我们国家电网的实际情况,新能源的接入比例控制在5%左右就不会对整个电网造成冲击影响,如果电网智能化之后,也会使新能源的接入比例提高,当然随着科技进步,天气预报的准确性的提高,新能源出力的可预测性会更准确,那么其对电网的影响就越小,而且电网的可承接力也就越大。

迷人的烤鸡
淡然的摩托
2025-08-05 11:12:44

分布式发电技术是充分开发和利用可再生能源的理想发生,它具有投资小、清洁环保、供电可靠和发电方式灵活等优点,可以对未来大电网提供有力补充和有效支撑,是未来电力系统的重要发展趋势之一。微电网的提出旨在实现分布式电源的灵活、高效应用,解决数量庞大、形式多样的分布式电源并网问题 。 开发和延伸微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。微电网的提出旨在实现分布式电源的灵活、高效应用,解决数量庞大、形式多样的分布式电源并网问题 。 开发和延伸微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。

苹果胡萝卜
深情的中心
2025-08-05 11:12:44
分布式光伏的光伏电源处于用户侧,发电供给当地负荷,视作负载,可以有效减少对电网供电的依赖,减少线路损耗。充分利用建筑物表面,可以将光伏电池同时作为建筑材料,有效减少光伏电站的占地面积。与智能电网和微电网的有效接口,运行灵活,适当条件下可以脱稿电网独立运行。配电网中的潮流方向会适时变化,逆潮流导致额外损耗,相关的保护都需要重新整定,变压器分接头需要不断变换,等问题。电压和无功调节的困难,大容量光伏的接入后功率因数的控制存在技术型难题,短路电力也将增大。需要在配电网级的能量管理系统,在大规模光伏接入的情况下进行负载的同一管理。对二次设备和通讯提供了新的要求,增加了系统的复杂性。

集中式光伏的充分利用荒漠地区丰富和相对稳定的太阳能资源构建大型光伏电站,接入高压输电系统供给远距离负荷。由于选址更加灵活,光伏出力稳定性有所增加,并且充分利用太阳辐射与用电负荷的正调峰特性,起到削峰的作用。运行方式较为灵活,相对于分布式光伏可以更方便地进行无功和电压控制,参加电网频率调节也更容易实现。建设周期短,环境适应能了强,不需要水源、燃煤运输等原料保障,运行成本低,便于集中管理,受到空间的限制小,可以很容易地实现扩容。

灵巧的店员
可靠的老鼠
2025-08-05 11:12:44
1、首先我们将风电、光伏归入分布式发电,简单理解就是分散。那么为什么要推广分布式发电:大规模互联电网弊端凸显,成本高,运行难度大,难以适应用户更高层次的安全性和可靠性要求(出现过大规模停电事故),供电方式多样化也受到限制能源危机爆发及环保意识的增强科研、企业人员要生存(逃)等。

2、推广分布式发电有何优点那:分布式发电可以简单根据负荷现场布置,使得其布局灵活,电力资源有效分配在一定程度上延缓了输、配电网升级换代所需的巨额投资与传统大电网互为备用,提供供电可靠性新电改推出,说不定还能赚点钱,体验老板的感觉推动供电方竞价机制的建立。

3、但是搞了这么多年分布式发电,似乎更多是口号和利益的分割,而细心观察自然会发现分布式发电都是直接接入电网的,其中涉及到分布式发电电源到电网之间的连接点——电力电子变流器转换环节,以及相关控制、保护等环节,这估计也算是技术的难点,也是企业差异的体现。

4、那么分布式发电到底存在哪些技术问题:(1)设计规划问题:分布式发电逐步渗透电网,自身随机性强,需要考虑可靠性问题分布式发电种类多样、规模多样,运行方式多变,如何安装、安装在哪里、何种运行方式,带来的总体评价性能是不一样的当前及未来电网的承载能力及“三公”分配问题,在一定程度上影响了分布式发电的并网情况,如西北地区悠闲转动的风力发电机。(2)电能质量问题:就目前看,少量的分布式发电装置对电网来说基本上忽略的,但是逐步放开后,新能源比重增加,会对电力系统的电压形态、短路电流、电压闪边、谐波、直流注入、网损、潮流、继电保护等带来一系列影响。因为分布式发电许多采用电力电子装置接入电网,变流器(逆变器)的控制策略对电网不平衡电压会有影响。||许多分布式发电并网采用防逆流装置,正常运行时不会向电网注入功率,但当配电系统发生故障时,短路瞬间会有分布式电源的电流注入电网,增加了配电网开关的短路电流水平,可能使配电网的开关短路电流超标。因此, 大功率分布式电源接入电网时,必须事先进行电网分析和计算,以确定分布式电源对配电网短路电流水平的影响程度。||并网时一般不会发生闪变,孤岛运行时如储能元件能量太小,易发生电压闪变||因为电力电子装置自身易产生谐波,主动和被动谐波治理也得以被推动发展。||因为变流器并网过程存在有无(高频)隔离变压器之分,而无变压器情况下系统整体效率得以提升,使得其存在一定市场份额,当无隔离(高频)变压器时,那么存在分布式电源侧直流和电网交流侧的互相交互作用(可以直观想象一下太阳能发电),当电网存在直流注入时,将直接造成系统电磁元件(如变压器)的磁饱和现象,同时产生转矩脉动。||分布式电源的接入改变了配电网中各支路的潮流流动情况,使得系统网损发生变化,其受到负载、连接的分布式电源的位置和容量大小等影响。||分布式电源的接入,使得系统潮流不再单向流动,难以预测,极大影响电压调整。||因为传统大电网的继电保护装置已经成形,短时内不会重新改造,一方面分布电源的接入要考虑与之配合问题,不合理(就算有时合理)的控制策略和配置方式,会造成重合闸失败、继电保护装置的保护区缩小、潮流改变使得继电保护误动作。||另外注意孤岛问题。(3)储能配置、功率预测及平滑等问题,目前估计很多都不愿意这么搞的。(4)管理、监控、维护问题。(5)效益权利纷争问题(这真的也算个技术活)。

5、以上只是具有代表性的一部分问题,针对这些问题,当前更多采用建模、预测等手段初步验算。不过应用与现场还是困难重重,既然如此难以搞定,电网就对这样一种不可控电源进行了限制、隔离的处理方式,一方面要求电源端设备的性能指标,另一方面一旦电网故障,要求分布式电源必须马上退出运行(IEEE1547)。

6、为了更好协调分布式发电和电网之间关系,微电网的概念得以推出。微网的定义尚未统一,这里给出一种:微网是指由微电源(分布式电源)、储能装置、负荷和监控、保护装置汇集而成的小型发配电系统,是一个能够实现自我控制、管理和保护的自治系统。微电网对外可以看做一个单一的可控单元,通过公共耦合点的静态开关接入电网,实际操作时微网的入网标准只针对微网和电网的公共连接点,而不考虑微网内各个(分布式)电源,从而实现分布式发电和电网更和谐的相处。目前,微网从整体控制策略上主要有主从控制、对等控制、基于多代理的分层控制等,而内部微电源的控制主要有恒功率控制(P/Q)、恒压恒频控制(V/F)和下垂控制(DROOP)等。