建材秒知道
登录
建材号 > 能源科技 > 正文

edf是什么意思

繁荣的百褶裙
紧张的老师
2023-01-01 07:18:30

edf是什么意思?

最佳答案
高高的吐司
个性的河马
2025-08-05 02:49:49

法国电力集团(EDF:Electricite De France) 成立于1946年,是负责全法国发、输、配电业务的国有企业。为了完成公共服务事业的使命,法国电力集团负责电力设施的设计、建设和运营。法国电力集团是世界能源市场上的主力之一,是全球范围内最大的供电服务商之一。 

凭借50多年能源开发经验,法国电力集团已经成为世界领先电力公司之一。作为一家在核能、热能、水电和可再生能源方面具有世界级工业竞争力的大型企业,法国电力集团可以提供包括电力投资、工程设计以及电力管理与配送在内的一体化解决方案。

相关信息:

法国电力公司的在华投资以及它与中方电力部门的合作力求尽可能结合中国的工业和能力。法国电力公司对中国经济发展充满信心。尽管亚洲发生了金融危机,我们坚信中国政府有能力维护稳定的环境和良好经济形势。自1986年以来,法国电力公司成为中国核工业领域的长期伙伴。

1994年,中国以法国PWR技术为标准的大亚湾核电机组开始运行。自1986始法国电力公司提供了包括设计、建设管理、实验、培训操作人员及运行的技术服务。电厂完全由中方管理,它的技术和经济指标表明了此次合作的成功。

最新回答
爱听歌的樱桃
甜美的小白菜
2025-08-05 02:49:49

向智能电网运营商、能源产业价值链整合商、能源生态系统服务商转型的战略取向。

法国电力集团(EDF,以下简称法电)是一家在核能、热能、水电和可再生能源方面具有世界级工业竞争力的大型企业、能源转型的领军企业之一,拥有超过70家子公司和分支机构,投资遍布世界各地,为全球近4000万用户提供能源服务。

法国的电力体制改革始于上世纪90年代中期,早于现行的中国新一轮电力体制改革20年,整个过程有着较大的借鉴意义。在1996年,随着96/92号法令的颁布,法国能源市场逐步向竞争性市场放开。

结实的冰淇淋
故意的诺言
2025-08-05 02:49:49

作者 | 欧阳明高

编辑?|?Jane

来自帮宁工作室(gbngzs)的报道

01.

点评2019年新能源汽车技术热点

第一,?补贴退坡阵痛与全球转型大势。

就国内形势看,补贴政策退坡,新能源汽车销量不及预期,商用车下降最严重,从20万辆掉到10万辆。

从国际形势看,德国、法国、美国都发布了新能源汽车继续补贴政策。令我感到意外的是美国,计划将单个汽车公司20万辆电动汽车免税门槛提高到60万辆。

从中国公司看,以比亚迪和宁德时代为代表的中国公司加快技术创新力度,尤其在电池技术方面,相继推出C2P技术和刀片电池技术,具有里程碑意义。而且,这两家公司还进一步扩大国际配套的速度和规模。

从跨国公司看,以大众汽车集团为代表的跨国公司战略清晰化,从规划转向行为。

从新兴公司看,特斯拉市值突破700亿美元,超过奔驰和宝马,仅次于大众和丰田,成为第三大市值公司。其上海超级工厂建成,即将大规模量产。全球转型已成大势。

第二,?新能源汽车动力系统技术价值越来越受到重视。

2019年锂电池获得诺贝尔化学奖;中国科协发布2019年20个重大科学技术难题,其中的两个难题,一是高比能量动力电池,一是氢燃料动力电池系统。此外,中国工程院发布全球工程前沿2019,动力电池被提到4次,燃料电池被提到2次,氢能与可再生能源被提到4次,电驱动和混合电动驱动系统被提到2次。

第三,?电动汽车核心技术市场前景非常明朗,但正在遭受阵痛。

现在PHEV和EV遇到的情况相当于20年前(1999年)的手机状态,燃料电池可能会再晚十年。每个技术都是S曲线发展过程,新能源汽车技术正在S曲线底部,即将要上坡。

第四,?新能源汽车推动新能源革命的战略意义被认识,但还没受重视。

以前我们谈新能源汽车往往是基于交通工具角度,或者化石能源角度来谈,其实应该从新能源和交通电动化双重角度来看,否则其价值会被大大低估甚至误解。

动力电气化——电池、燃料电池、氢能本身就是新能源革命的核心技术。《第三次工业革命》里提到新能源革命五大支柱,概括起来就是动力电气化;能源低碳化;系统智能化。

因为新能源汽车所具有的双重属性,补贴新能源汽车其实也是投资国家新一代能源基础设施,如果2035年我们有1亿辆电动汽车,车载电池储电容量就是50亿度电。从这个角度看,补贴很值。

02.

PHEV繁荣期10年左右

先来看插电混合动力。今年合资企业插电混动卖得非常火,比例上升很快,行业反响热烈。

从政策看,“双积分”油耗核算是加权平均值,这个值在不断下降,要满足这个法规就必须做新能源汽车。相对HEV,PHEV更有优势。为什么?PHEV成本跟HEV基本相当,但它有不限行的方便,有使用费用的降低,综合效益不错。

另外,PHEV残值比EV高。总体看,EV二手车残值偏低。从客户选车标准看,安全、性价比、便利性、车辆残值这些符合客户需求。

我个人估计,今后5年PHEV会上涨,但中间会出现一个高峰期,整个繁荣期10年左右。根据我们的计算,到2030年,100纯电里程的PHEV与500纯电里程的电动车相比,成本方面不具备优势,甚至各方面EV都会超过PHEV。

《新能源汽车产业发展规划(2021-2035年)》(征求意见稿)提出,2025年新能源汽车占比25%,PHEV将发挥重要作用。估计到2025年,PHEV会达到峰值,现在PHEV在总量中占比20%~25%。当然,纯电动汽车仍然会占新能源汽车主体。因此技术上,尤其国内企业要通过系统平台化,部件模块化的共享,来简化开发流程、降低开发成本,避免折腾和浪费,这非常重要。

本田汽车就是一个例子。今年本田汽车发布了电动平台化战略,以前本田技术路线非常多元化,最后统一到一个平台,叫串并联平台。何谓串并联平台?混合动力城区运行最好就是串联,高速公路最好就是并联,这可以从内燃机效率角度来解释。

为什么就剩一个?因为可以平台化、模块化、共享化,降低成本,而且这种系统的机械结构极其简单,给电驱动系统技术快速提升提供了很大空间,很值得我们学习,国内有些汽车企业已经在朝这个方向走。

03.

纯电动仍是新能源汽车主力

关于纯电动。我讲讲在应对纯电动汽车焦虑方面的一些进展。

成本方面。2019年中国动力电池成本降到0.6元~1元/瓦时,各种类型电池不一样,磷酸铁锂可做到100美元/千瓦时以下。

至于比能量,磷酸铁锂在提升。以前大家着重在单体比能量上下功夫,但单体比能量到一定时候,锂离子电池材料就会有瓶颈,要把比能量做到足够高,遇到安全瓶颈就要加东西,一加东西成本就上升,所以要有一个平衡。其实300瓦时/公斤的电池去年就做出来了,今年是推向市场。

今年电池厂在比能量方面做得最漂亮的工作不是单体,而是宁德时代和比亚迪做的电池包,以前是从单体电池,到电池模块,再到电池PACK这三个层次。现在基本上减少到两个层次,中间模块去掉,直接从单体电池到电池PACK。

这两个厂家,一个做三元电池,一个做磷酸铁锂电池,但具体做法不太一样。宁德时代电池包叫CTP,重量能量密度提升10%~15%,体积能量密度提升15%~20%。车上体积能量密度最重要,零部件减少40%。

比亚迪电池包叫刀片电池,已申请专利,很多国外企业都对这个技术感兴趣。车有多宽,电池也可以做多宽。以前电池很短,现在整个长条就像一个刀片,高度不变,一片一片叠起来,刚度和强度都非常好,还可以做结构件。而且电池单体制造成本还可以进一步下降,这是2019年的重要创新。

以前认为磷酸铁锂电池跑不了500公里,因为装不了那么多电池,现在就可以做到。一辆A级车装到60度电没问题,磷酸铁锂电池主要是体积比能量,而体积比能量偏低。

寿命和质保方面。大家总担心寿命,比亚迪电动大客车提出10年100万公里质保,这在商用车领域已经非常高。轿车分两种,如果是运营车,宁德时代提出5年50万公里,家用轿车是8年15万公里。

低温方面。宁德时代新的自加热技术,可以做到加热2度/分钟,不需要其他东西,就是自加热。自加热靠什么?靠电机里的电感电容回路,进行高频振荡。

快充问题。现在的常规电压平台,可以做到30分钟~45分钟充电80%。超级快充可以做到15分钟充电80%,主要在负极上改变材料,当然会增加成本。将来可能做到充10分钟就能走多远,比如续航里程500公里的汽车,可做到充5分钟续航100公里,比快充容易多了。

安全理念问题。我们开始强调系统安全性,而不是简单的单体安全性。比如只要把热蔓延防止住,就不会有事故,现在热蔓延法规开始实施。

另外,更多强调使用安全。还有就是电池、整车、充电桩系统安全,更多是预警,而不是报警。比如电压的监测、内短路、自放电都可以监测,所以电池厂更多在电池管理上做文章,而不是改变材料。

改变材料要么增加成本,要么有副作用,非常复杂。现在是不增加成本,就改算法,或者利用大数据,可以干很多事。

提高电池比能量只是一个方面,更重要的是降低整车电耗。如何降低?要从整车系统集成技术上想办法,这其中,电驱动系统技术进步所带来的重量和体积减少贡献最大。

如果是内燃机或者油电混合动力,打开前舱门,前舱里装满了动力系统部件。而电机比功率越来越大,体积越来越小,电机控制器也一样。国内有好几家企业在做碳化硅电力电子器件,体积缩小80%,再集成到电机上。电机和电机控制器又跟车轴集成,成为一体化电驱动车轴。车载充电器移到车下,由交流慢充变成直流慢充。

这样前舱就会慢慢空出来,逐渐实现电动底盘平台化,跟现在的汽车完全不一样。现在的承载式车身是封闭壳子,平台是虚拟的。大家知道,丰田汽车、大众汽车都在做电动底盘平台。最理想的电动底盘平台轴距可以灵活改变,底盘对各种车型适应性好,车身轻量化后花样多,就能灵活地做车型开发。

这都是带发动机的PHEV做不到的。我们预测,2030年前在轿车领域,各种路线中纯电动会做到最优秀。

综合以上,未来5年PHEV会繁荣,2025年可能达到峰值(取决于购置税减免政策和限行政策),但纯电动仍是新能源汽车主力。

2025年左右,纯电动乘用车综合成本可能小于燃油车(有的企业会提前)。2030年,500公里纯电动乘用车综合成本可能小于100公里纯电里程插电混合动力。2035年,纯电动乘用车将成为新销售乘用车主流。

《新能源汽车产业发展规划(2021-2035年)》(征求意见稿)提出,2035年纯电动汽车将成为主体。大众汽车集团预计,2040年欧洲70%汽车将是纯电动车,而中国这个数字可能超过85%。未来燃油汽车仍有一定影响力,大众汽车集团到2040年才彻底结束燃油车生产和销售。燃油车比例会逐步降低,而不是一蹴而就。

04.

氢能燃料出路在于创新

关于氢能燃料电池。2019年被认为是中国氢能元年。这半年来,国外一些大能源公司如BP、壳牌、西门子、法国EDF、美国AP等都来找我们谈氢能。面向低碳转型,欧洲出台了全方位技术一揽子规划。新能源汽车包括氢能和燃料电池专项,一些中国能源企业更积极地介入氢能。

我个人认为,氢能是新能源技术体系重要组成部分。如果把氢能跟化石能源相连,这个意义不大,重要的是把可再生能源发的不稳定的电,通过电解水制氢转换成氢能。所以,氢能的合理性取决于它在可再生能源转型中的大规模能量储存。

小规模、短周期储存,电池非常优秀,但是大规模、长周期储存需要氢能,尤其是中国西北部集中式的一望无际的光伏和风电。另外,氢能有多元化利用需求,不仅车要用,将来发电、航空、供热、工业原料、农业化肥,甚至医学、炼钢等都要用。

从固定式储能角度看,氢能有几个优点。第一,储氢比电池储电便宜。车下储能大概差一个数量级,也就是10倍的关系。1公斤氢是34度电,再便宜的储能电池也需要800元,长寿命是9000次循环,因此一般要1元/瓦时以上。氢能储能装置储1千瓦时能量约需100元(视车载情况而异,由于体积限制,加之氢燃料电池发电效率比电力电池储电效率低,会下降3至5倍)。

第二,与储电互补。电池是高频双向调节,氢能是低频调节,两者互补。

第三,?商品属性更好。

第四,储运方式灵活多样。有特别不合理的,也有合理的,目前这方面争议较多。

比如长管拖车不经济,要做管道运氢,建设成本又太高,需要创新。再比如可以长途输电,当地制氢,西部2000公里先把电输到北京附近再制氢。无论哪里制氢对电网负荷调节作用都类似,国家电投已经在做示范。

储能为什么这么重要?将来可再生能源发电电价会极其便宜,储能成本反倒会占很高比例,看一种储能方式好不好,要看全链条,也就是可再生能源生产、运输、储存等全链条成本。

由于氢能热和纯电动汽车补贴退坡,几个因素叠加,氢能燃料电池汽车成为热点。但也有很多人严重质疑,其中一些观点也有道理。所以它既受吹捧,也受质疑;它既不是那么好,也不是那么差,关键是找到平衡点。

为什么要做新能源汽车?只有在向可再生能源低碳转型时,新能源汽车优势才会凸显。不仅要用新能源,反过来还会推动新能源转型,没有这个反作用,其意义就没这么大。基于可再生能源、动力蓄电池和氢能成为储能的优先选择,纯电动汽车、燃料电池汽车成为智能低碳能源系统互动终端,新能源汽车优势才会凸显。

从长期看,一是当可再生能源发电量比例足够高,比如超过50%,2035年就可能达到;二是可再生能源发电成本足够低,低到多少?比如0.1元,现在目标是0.2元;三是储能成本在可再生能源制、运、储、运全链条综合成本中占比足够高,假如占到50%~70%;四是燃料电池效率也足够高,这样技术经济性就很优异。

但这需要科学技术的新突破,战略思维的新理念和商业化的新模式,不能一蹴而就,需要时间。目前发展燃料电池汽车的现实挑战,仍然是氢能燃料电池全链条的技术经济性。

多大挑战?举个例子,日本氢能燃料电池乘用车技术路线图是,2025年轿车燃料电池+储氢瓶+电池等于5万元,而500公里纯电动的动力电池约4万元,也就是说,按照乐观估计,2025年500公里车还是没法跟纯电动相比。

此外,不仅要储氢,还有燃料电池,氢能燃料电池总体积比扁平化电池体积大,这会挤占乘员空间。再加上氢燃料电池轿车使用能耗和维保费用大大高于纯电动,除非换电池,每度两三元,一般家用纯电动车不这么做,都是在家里慢充。

如果给氢能燃料电池汽车定位,什么情境下有优势?前面讲过储电比储氢贵,所以里程越长,收益就越大。但纯电动汽车除电池就是电机,氢燃料电池汽车除储氢瓶,还有燃料电池发动机,燃料电池是固定成本,储氢成本随里程增长可以累计收益,来抵销燃料电池成本,这是平衡点。

对乘用车而言,这个平衡点中长期看是500公里左右。商用车需要能量多,其平衡点里程会短一些,比如两三百公里就能达到平衡点。所以相对而言,氢燃料电池动力系统更适合于长途、大型、高速重载,应用于柴油重型车,而锂离子电池最适合汽油乘用车。

虽然柴油车数量比汽油车小很多,但车用柴油消耗总量与汽油消耗总量差不多。一辆柴油车至少顶10辆乘用车油耗,加上排放总量也差不多,所以这个意义很大。此外,轮船、飞机、潜艇、火车和作业机械等也用柴油。

中国燃料电池商用车已经居世界首位,目前是4000辆,我们要继续朝这个方向努力。燃料电池发动机成本在快速下降,跟5年前相比已经下降一半,今后5年还要下降一半以上。很多材料和部件由于进口成本高,比如质子交换膜,进口一平方米2500元,变成国产后就在1000元以内,所以大家要有信心。

从商用车角度,当前面临的挑战是氢运输、车载储氢和加氢站。虽然储氢比储电成本低,但它体积大,而且建加氢站比较贵,对安全要求很高。尽管面临这些瓶颈,但创新非常活跃。

所以,氢能战略必要性没有问题,现实技术和经济性是全球面对的共同挑战,出路在于创新。

市场突破口在哪里?首先,在弃风弃电弃水和副产氢富余的地方。尽量在当地使用,别运,一运就贵。尽量在低成本、高安全储氢瓶能够覆盖的里程范围里。最好在温度较低的北方地区,燃料电池有40%~50%是废热,北方可以用来取暖,如果是纯电动,可用电来供暖。

还有就是地方政府愿意支持并且大型能源企业愿意建加氢站,满足这些条件就是市场突破口。但现在还不是大范围全面铺开的时候,而是要重点突破,示范带动,以点带面,行稳至远,避免大起大落。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

俊逸的自行车
无情的香水
2025-08-05 02:49:49

“新基建”大潮涌动,电动汽车充电难题正在加速化解。

中国是全球最大的电动汽车市场,国家发改委今年4月宣布,将在2020年全年完成投资约100亿元,新增公共桩约20万个、私人桩超40万个和公共充电站4.8万座。电动汽车充电负荷带来的电力需求有可能给电力系统造成较大的负担,这就需要更便捷、更智能的新一代充电技术保驾护航,V2G车桩双向充电技术便是促进能源转型的技术创新之一。

无论是日产、雷诺等老牌电动汽车领军车企,或是特斯拉、威马这样的创新公司都已实现了V2G技术的落地应用,而国家电网今年也首次将V2G项目纳入电力调峰辅助服务市场正式结算,显然,V2G技术发展已成为降低充电成本的新商机。

V2G是什么?

V2G是Vehicle-to-grid的缩写,意为车辆到电网。纯电动车(BEV)和插电式混合动力汽车(PHEV)都可以实现V2G。

购买电动汽车的人越来越多,电动汽车数量不断增加,电网也将随之承受较大调峰压力,V2G技术可以让电动汽车演变成一个小型“快闪调峰电厂”,当电动汽车不使用时,车载电池的电能销售给电网系统。当电动汽车需要充电,电流则由电网流向车辆,这是一种有序的车网互动。电动汽车作为高度灵活的移动储能单元,在调整用电负荷、改善电能质量、消纳可再生能源方面发挥作用。

夜晚和波谷时段电价低,电动车主可以在此时间段充满电,在白天或高峰时段将车载电池储存的电能以高价售给电网,从中获取成本差价利润。

中国占全球电动汽车市场份额最大,截至2019年,中国新能源汽车保有量达381万辆,其中纯电占比超80%,约310万辆。假设平均每辆新能源汽车的电池容量50千瓦时,310万辆纯电动汽车充满电需要1.55亿千瓦时,按每辆车传输70%的电量给电网计算,则每天可贡献1.085亿千瓦时,每年可贡献约396亿千瓦时,相当于可供北、上、广三地1个月的城市用电总量。(以北上广等一线城市2019年平均每月全社会用电量约130亿千瓦时为参考)

曾几何时,保值率较低是电动汽车在消费者心中的普遍印象,尽管在电池技术与智能科技的助攻下,保值率较低的标签已撕下。但如果汽车不再沦为消耗品,它还能躺着挣钱,这将成为电动汽车与燃油车正面PK的“独门秘技”。

基于电动汽车的V2G技术不仅可以通过与电网互动缓解配电网压力,而且为电动汽车用户开启了全新“卖电”体验,激发了新型绿色电能交易商业模式,实现车网一体,成为我国能源转型的支点之一。

新基建助力

V2G技术有着广泛的应用空间,是“新基建”下充电桩行业的发展趋势。

2018年,发改委出台《关于创新和完善促进绿色发展价格机制的意见》提出,鼓励电动汽车提供储能服务,通过峰谷价差获得收益。

2019年,工信部发布《新能源汽车产业发展规划(2021-2035年)》征求意见稿指出,加强V2G互动的同时,采取措施促进新能源汽车与可再生能源高效协同、鼓励地方开展V2G示范应用。

如今,越来越多的地区开始加快V2G技术落地的脚步。

福州市首批集储充检一体化智能充电站陆续建成投用,采用交直流混网技术实现V2G功能;天津市北辰产城融合示范区智慧充电站项目建设具备V2G功能的充放电系统,实现电网和新能源汽车的双向互动;国网北京市电力公司将在丰台区刘孟家园等居民小区建设288个智慧有序充电桩。

乘势“新基建”, 国家电网华北分部4月在国内首次将V2G充电桩资源正式纳入华北电力调峰辅助服务市场并正式结算, 此举在国内尚属首次。

根据统计和测算,京津唐电网供区内约有40万辆电动汽车,若通过V2G方式实现有序车网互动,可提供180万千瓦可移动的优质调节资源。参与电网实时调控和调峰辅助服务后,电动汽车日平均调峰收益约占其充电费用的60%,可大幅度降低充电成本。V2G可以提高充电桩50%的利用率,这一平台将电动车作为储能平台使用,既平衡了电网用电负荷,也提高了充电企业的盈利空间。

V2G应用目前还处于早期阶段,部分项目在商业化方面取得了良好效果,未来发展还面临一些挑战,包括电网的大规模改造、电网云控平台的投入,智慧城市建设和智能汽车的发展,相关法规标准的健全,明确的盈利模式和资本驱动,V2G实现产业规模化发展还有很长的路要走。

先行者

现在,一些车企都在整车上配置或测试成功了双向逆变充放电技术,主流车企开始认真对待V2G。

威马汽车已率先进入V2G技术落地应用的第一梯队,成为首家落地应用该技术的造车新势力。威马与国网联合推进V2G技术的落地应用,目前已顺利通过全项V2G技术的车、桩实测及道路测试。以威马EX5-Z Nex探索版(NEDC续航里程520公里,电池容量约69千瓦时)为例计算,北京用户通过V2G技术向电网发电,用户在夜间波谷充电,白天波峰时使用V2G充电桩出售70%电量,减去波谷时充电成本,每天约可获得37.4元收益,一年累计收入可达13651元(假设在同一时间段,放电收益与充电付费相同)。

就连特斯拉CEO马斯克也曾向媒体表示:“可以反哺电网的V2G技术正在重新回到各家车企的视野中,所以特斯拉正在考虑将其重新推出。” 据了解,特斯拉正在为Model 3和Model Y 做好V2G双向充电准备。

自日本“311大地震”发生以来,日本能源供应商和车企一直试图寻找降低日本能源风险的解决方案。日产汽车一直在依靠聆风(Leaf)电动汽车测试“Leaf-to-Home”V2G双向充电系统,2019年,日产聆风成为第一款获得监管部门批准、作为德国电网能源保障的电动汽车,提供技术服务,并与法国电力公司EDF达成合作协议,加快在英国,法国,比利时和意大利电动汽车和智能充电技术应用。

同属日产联盟的雷诺汽车集团去年开启了V2G技术大规模试验。在欧洲推出一支由15辆ZOE组成的车队实现车辆给电网充电,并与合作伙伴就未来可逆充电业务和标准开展基础调研。该试点计划将始于荷兰和葡萄牙,随后陆续在法国、德国、瑞士、瑞典和丹麦开展更多试点计划。

菲亚特克莱斯勒汽车公司(FCA)是最近一家涉足V2G的汽车制造商。FCA与ENGIE合作开发V2G基础设施,可将64辆电动汽车连接到电网,到2021年底,这一数字将增至700辆。

大众汽车集团也认为V2G能为其提供新的增长点,正在探索与电动汽车储能有关的新商机。

未来,宝马与国网电动汽车公司也将在绿电交易等方面加强合作,推动实现“车-桩-电网-用户-社会”多赢互惠的共同目标。

在EV视界看来,对于车企、消费者、能源服务商而言,V2G技术似乎可以带来潜在的三赢效果。消费者获得收益,车企可以借此推动电动汽车销售,同时成为一家“电力公司”,而能源服务商可以通过这些移动的“储能电站”,解决用电峰谷问题,维稳电力供应。

结语

试想一下,在未来的某一天,V2G技术让电动汽车购买之后化身为“躺着赚钱的工具”,把动力电池储存的电能卖回电网,帮你省钱,抑或是家里突然停电,电动汽车又可以为家里供电,这样的场景是不是值得期许?

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

炙热的万宝路
粗心的仙人掌
2025-08-05 02:49:49
EDF、施耐德、道达尔、雪铁龙、阿尔斯通、空Bus、标致、家乐福、达索、雷诺。法国电力公司成立于1999年,是世界上最大的电力制造商之一。该企业相关业务发展非常快,在欧洲、亚洲等地区的表现尤为显著。公司员工超过10万人,年营业额达到784亿美元,整体发展也很好。公司的投资,相关配电领域的发展等业务也非常完善。法国十大能源巨头分别为:EDF、施耐德、道达尔、雪铁龙、阿尔斯通、空Bus、标致、家乐福、达索、雷诺,是法国能源发展的主要企业,也是法国能源的带头企业。

冷静的菠萝
痴情的项链
2025-08-05 02:49:49
太阳能发电站用什么取代锅炉:1、地源热泵: 地源热泵使用埋在花园中的管道从地下提取热量。

然后,这些热量可用于加热散热器、地板下或暖气供暖系统以及热水。

2、空气源热泵:空气源热泵从外面的空气中吸收热量来加热你的家和热水。当空气温度低至-15°C时,它们仍可吸收热量。

根据 EDF 的数据,这些泵可以在 10 年内减少多达 23.36 吨的碳排放量——相当于希思罗机场和马德里之间的 30 趟返程航班,

通过使用该系统而不是传统的锅炉,可以在 10 年内节省 2,755 英镑。

3、太阳能工程:太阳能光伏板通过将太阳能转化为电能来产生可再生电力。它们是一种有效的措施,可以减少电费和您的碳足迹。

有多种选择,从可以安装在朝南或平屋顶上的面板,到落地面板或太阳能瓦片。

4、太阳能热水工程: 太阳能热水系统工程,或太阳能热工程系统,利用太阳的自由热量来加热生活热水。

传统的锅炉或浸入式加热器可用于使水更热,或在太阳能不可用时提供热水。

它的工作原理是通过屋顶上的面板或墙壁或某种地面安装系统使液体循环。

细心的西装
沉静的水池
2025-08-05 02:49:49
近期国外几起大停电事故分析及启示

1、近期国外几起大停电事故

1.1. 美加8. 14 大面积停电事件

(1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。这是北美有史以来最大规模的停电事故。停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。

1.2.伦敦大停电事件

(1)2003年8 月28 日下午英国伦敦经历了16 年来第1 次大停电。英国国家电网公司所属的伦敦南部电力传输系统出现故障,导致该系统从18:20 至18:57 电力供应中断。停电影响了EDF 能源公司的410000 个用户,事故主要发生在伦敦南部地区,东至Bexley,西至Kingston,北至Bankside,南至Beckenham,停电共损失负荷724MW,约为当时整个伦敦负荷的20%。(2)英国国家电网公司在事故后迅速进行了调查,故障出现的原因是在2001年更换老设备时安装了一个不正确的保护继电器,致使自动保护设备被误启动,而切除Hurst变电所的变压器不是造成本次事件的直接原因,它使伦敦电力供应量瞬间减少了五分之一。由于电力缺额过大造成了这次大停电。

1.3.北欧大停电事件

(1)2003 年9月23 日北欧电网中的瑞典中部和南部电网及丹麦的东部电网发生大面积停电,停电区包括瑞典首都斯德哥尔摩,重要城市马尔及丹麦首都哥本哈根。瑞典东部奥斯卡斯汉姆核电厂3号机(1 135 MW)及西部林哈尔斯核电厂3 号机(920 MW)及4 号机(885 MW)停运。

(2)瑞典方面报道,停电的主要原因是被暴风雪压倒刮断的树木破坏了供电线路,随之进一步引起跳闸停电事件的发生。

1.4.意大利全国大停电事件

(1)2003 年9 月28 日凌晨3∶30 意大利发生全国大停电,受停电影响的居民达5 400 万人(约占全国人口的93%)。停电数小时后北部城市米兰等首先恢复供电,继之首都罗马在当天中午开始有电。南部地区到29 日才恢复供电。(2)这次事故的直接原因是从法国通往意大利的两条400kv高压电线因暴雨中断。但是在短暂的电力中断之后,意大利方面未能及时连通法、意之间的电力电缆法国,引起这2条400 kV 线路相继跳闸,导致意大利有功出力不足,引起一连串的停电事件。

1.5. 莫斯科大停电事件

(1)2005年5月23 13晚19:57起,俄罗斯莫斯科地区电网发生一系列故障,到5月25 13 11:00左右,莫斯科市大部分地区及附近25个城市发生大面积停电事故,莫斯科电网共断开了321座变电站,除最先停电的500 kV恰吉诺变电站外,还包括16座220 kV变电站,201座110 kV变电站,104座35 kV变电站。直接损失负荷达3 539.5 MW,近400万人的生活受到影响,造成了15~20亿美元的直接经济损失。

(2)事故的直接原因是气温高,用电负荷大幅增长,线路过负荷跳闸引起连锁反应,线路相继跳闸,导致大面积停电。前一天运行40多年的变电站电流互感器爆炸起火,造成220 kV线路停运,负荷改110 kV线路带是过载的直接原因。而设备运行维护不当造成电流互感器爆炸是事故发生的导火索。引起事故的恰吉诺变电站建于1963年,设备均已老化。且电网处于超负荷运行状态,运行人员也未引起注意,缺乏严格的操作规程约束及协调手段。

1.6.印尼大停电事件

(1)2005 年8 月18 日上午,印尼发生了包括首都雅加达在内的大面积停电事故印度尼西亚境内8 月18 日发生大面积停电,首都雅加达也彻底断电,总共波及近1 亿人口,接近总人口的一半。城市交通、铁路及航班也受到严重影响。(2)造成大停电的原因,主要是爪哇岛和巴厘岛的电力输电网发生故障,连带影响到雅加达等地区的供电,导致供电系统出现问题。

1.7.中国海南大停电事件

(1)2005年9月26日清晨1时左右,第18号台风“达维”对海南电力设施造成了严重破坏,引发了部分电厂连续跳机解列,最终系统全部瓦解,导致了罕见的全省范围大停电。海南“9. 26”大停电“有两个明显的特点,一是停电波及面广,电厂全部解列,停电范围涉及全岛;二是从正常状态到全同崩溃时间较短,仅4min左右电网全黑。

(2)分析认为,电网设计水平偏低、孤立运行、设备老化严重、大机小网和弱联系的电网结构是海南“9. 26”大停电的主要原因。

1.8.西欧大停电事件

(1)欧洲当地时间2006 年11 月4 日22:10(北京时间2006 年11 月5 日5:10),欧洲电网发生一起大面积停电事故,事故中欧洲UCTE 电网解列为3 个区域,各个区域发供电严重不平衡,相继出现频率低周或高周情况。事故影响范围广泛,波及法国和德国人口最密集的地区以及比利时、意大利、西班牙、奥地利的多个重要城市,大多数地区在半小时内恢复供电,最严重的地区停电达1.5 h。整个事故损失负荷高达16.72 GW,约1500万用户受到影响。

(2)事件的起因是: 德国最大的能源公司———E. ON电网公司为了让迈尔(Meyerwerft ) 造船厂新的“挪威珍珠”号轮船通过埃姆斯( Ems) 河驶入北海,

断开了河上从Conneforde 到Diele 的380 kV 双回线路。经协商,于11 月4 日21 : 38 进行开断操作,22 :10 :13 ,Landesbergen 到Wehrendorf 的线路由于过负荷保护跳闸。随之发生的一系列连锁跳闸,导致欧洲输电协调联盟(UCTE) 电网解列为3 块,并大量切机切负荷。

1.9.中国南方冰冻灾害大停电

(1)2008 年1 月10 日至2 月2 日,我国南方地区先后出现4 次大范围低温雨雪冰冻天气,遭遇了50年一遇的冰雪灾害,使电网安全运行经历前所未有的严峻考验。由于暴雪、冻雨导致河南、湖南、湖北、江西、安徽、浙江、福建等地输变电线路出现大范围的断线倒塔事故,造成大范围大面积停电限电,包括重要交通枢纽及设施等的供电中断,严重影响了电网安全运行。甚至部分地区电网瓦解,江西赣州电网进入了孤网运行、湖南郴州断电断水十多天。随即引发交通运输、物资调运、市场供应等方面的连锁反应,人民生活一度陷入了困境。据报道,全国范围电网此次因灾停运电力线路共37 606 条,因灾停运的变电站共2 027 座,110~500 kV 线路因灾倒塔共8 165 基。

(2)电力设施对极端气候灾害防范的设计标准不够,在冰冻严重灾害到来的时候,重电源、轻电网的弊端暴露是造成这次南方冰冻灾害大停电的主要原因。

2.10.巴西大停电事件

(1)2009-11-10T22:13,巴西全国范围内发生大面积停电,损失负荷24.436GW,约占巴西全部负荷的40%,受影响人口约5000 万,约占巴西总人口的26%,是近年来世界上影响较大的大停电事故之一。

(2)巴西电网大停电属于故障连锁反应造成的大面积停电:雷电和暴风雨使依泰普水电站输电系统的圣保罗受端变电站变压器短路接地,使2条输电线同时断开,在几秒钟内第三条输电线跳开,形成故障连锁反应,造成南部—东南部互联电网15条输电线路跳闸断开,引起依泰普水电站全部运行机组与电网解列,造成主要是南部—东南部互联电网大面积停电。依泰普水电站运行机组解列,同时造成巴拉圭电网大停电。

2.11.智利大停电事件

(1)2011年9月25日晚8点30分左右,智利发生2个多小时的大停电,包括首都圣地亚哥在内的大多数地区漆黑一片,全国1600万人口中有近千万人受到2个多小时的影响。由于通讯信号系统中断,在外的人们无法使用手机同家人取得联系。断电期间,首都圣地亚哥一家商场发生骚乱事件,警方为此加强了街头巡逻。

(2)根据已掌握的情况,大面积停电或因一个变电站故障引起,中央电力互联系统出现的问题很可能由“输电线路振动”导致碰线引起的。政府正在就断电事件的确切原因展开调查,以确定出现问题的具体发电或送电环节。

2、事故主要原因总结及应对措施

2.1.造成停电主要原因

电力系统大面积停电的原因有直接的、间接的、表面的、深层的备的、人类等多方面,而且往往是多种因素的重叠所致。

(1)直接原因

①酷暑引起电力急增,如意大利停电;②输电线事故引起并波及、扩大(如美国、加拿大的最大停电);③变压器警报故障引起输电线中断(如英国的停电);

④酷暑季节引起高负荷运行中心火电站停机(如中国上海);⑤核电站停机引发后续事故和电压被破坏(如丹麦、瑞典);⑥国际连线的连锁中断引起国内供电不足(如意大利)。上述原因只是表面上的,深层次地探讨则涉及到电力工业市场化、自由化并导致输电网络趋于公共载流化。由于许多市场参与者相互之间复杂的交易而导致电力流通领域的扭曲和畸变,进而陷入混乱并导致过负荷状态的多发事故。

(2)共性原因在电力市场化的竞争环境下,引起许多停电事故的原因往往带有共性、普遍性,但并未引起人们的重视。

3、几起大停电事故的启示

这几起大停电事故再次为我们敲响了警钟,电力安全生产,事关社会稳定,事关经济发展,事关人民群众生活。通过对事故原因的初步分析,我们以为从以下几方面吸取教训、采取有效措施加以防范:

(一)强化安全治理,加强安全监管

电力安全,责任重大;电力安全,重在治理。要进一步落实电力企业电力安全生产的主体责任,把安全治理落到实处;加大安全生产的资金投进,确保设备技改、大修、反措等安全措施到位。

(二)切实进步抵御突发事件和自然灾难的能力

要继续加强应对自然灾难等突发事件的协调机制和完善电网大面积停电应急处理预案体系。开展有针对性地的反事故演习。积极推进各地电力突发公共事件应急联合演练,达到加大预案宣传、检验预案的目的,切实进步政府、电力企业和社会各界对电网大面积停电时间的组织协调能力和应急处置水平。

(三)依靠科技进步,保证电力安全

随着大容量、超高压、交直流混合、长间隔输电工程的不断投进运行,对电网控制技术提出了更高的要求。因此,要高度重视和利用先进的科学技术,加强电网稳定基础题目的研究,不断进步设备整体水平,进步系统稳定控制能力。通过科技进步,进步电力安全水平。

(四)重视重要用户及场所保安备用电源的建设和治理

我国一些重要用户安装了备用电源,但数目有限,治理也不够规范。因此,要加强重要用户、重要场所等保安备用电源的规划、建设和治理题目。要重视研究发展符合产业政策、节能高效的“分布式电源”建设题目。

5.9

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

近期国外几起大停电事故分析及启示

近期国外几起大停电事故分析及启示

1、近期国外几起大停电事故

1.1. 美加8. 14 大面积停电事件

(1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。这是北美有史以来最大规模的停电事故。停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。