建材秒知道
登录
建材号 > 太阳能光伏 > 正文

有机光伏电池的分类原理

笨笨的小蚂蚁
勤劳的黑裤
2023-01-01 04:40:51

有机光伏电池的分类原理

最佳答案
整齐的服饰
结实的西装
2025-07-28 11:37:14

有机太阳能电池是以有机半导体材料作为光电转换材料直接或间接将太阳能转变为电能的器件。有机半导体材料主要包括有机高分子材料、有机小分子材料,从广义的角度来说,凡是涉及有机半导体材料的太阳能电池都可称为有机太阳能电池。各类有机太阳能电池的激子分离和电荷传输的机理具有很大的不同,因而有机材料在该类电池中的作用也有很大差别。

按照结构和光伏机理,有机太阳能电池可分为肖特基有机电池、异质结有机电池和染料敏化电池;按照使用材料的物理状态,有机太阳能电池也可分为染料敏化电池和全固态有机太阳能电池,全固态有机太阳能电池又可以分为有机小分子太阳能电池和有机聚合物太阳能电池。

肖特基电池

肖特基电池是最早期的有机太阳能电池,即在真空条件下把有机半导体染料如酞菁等蒸镀在基板上形成夹心式单层结构。对于肖特基型电池而言光激发形成的激子,在肖特基结的扩散层内被节区的电场驱使下实现正负电荷分离;在器件中其它位置上形成的激子,必须先移动到扩散层内才可能形成对光电流的贡献,而有机染料内激子的迁移距离相当有限,通常<10nm,因此大多数激子在分离成电子和空穴之前就发生了复合,导致该类器件的光电转换效率较低

异质结有机太阳能

异质结有机太阳能电池分为双层异质结电池、体异质结太阳能电池和扩散双层异质结电池等几种较常见的结构,其中体异质结太阳能电池是目前有机聚合物太阳能电池研究中最主要的器件结构。体异质结结构简单说就是将施主材料和受主材料混合分布在同一层中,从而大大增加了施主/受主界面的面积,使得激子能够运动非常短的距离就可以得到有效分离。另一方面,将两种材料混合在一起之后,若其中一种材料具有良好的成膜性,则可通过旋涂、喷墨打印等方式制备活性层,不需真空过程,可很大程度上简化器件的制备过程,大幅降低器件成本。

染料敏化太阳能电池

染料敏化太阳能电池主要是模仿光合作用原理,以TiO2,ZnO,SnO2等宽禁带的氧化物型纳米级半导体为电极,使用染料敏化、无机窄禁带半导体敏化、过渡金属离子掺杂敏化、有机染料/无机半导体复合敏化以及TiO2表面沉积贵金属等方法制成的太阳能电池。目前染料敏化太阳能电池的效率已经>11%,这种电池的突出优点是原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。但是由于其有源层呈液态,易泄漏、易结晶,故人们的研究方向逐步转向全固态有机太阳能电池,即以酞菁、卟琳、芘、叶绿素等为基体材料的有机小分子太阳能电池和以有机聚合物为基体材料的有机聚合物太阳能电池。而按照有机半导体层材料的差别,全固态有机太阳能电池又可分单层(单一有机或聚合物材料)结构、双层(给体,受体)异质结结构和本体(给体/受体共混)异质结结构。最初的全固态有机太阳能电池都是单层结构,即肖特基电池;双层和本体(给体/受体共混)异质结结构即上面所提到的异质结太阳能电池。

最新回答
粗心的蜻蜓
诚心的摩托
2025-07-28 11:37:14

日本开发出肉眼几乎看不见的透明光伏电池,研发的光伏电池改进了各层的重叠方式和配置,在1平方厘米的面积内可产生约420皮瓦的电能。这种光伏电池的发电层使用了一种叫做“过渡金属硫族化物的金属化合物,具有将光能转化为电能的半导体特性。

100皮瓦左右可以驱动耗电量较少的传感器,光伏电池的发电能力已达到实用水平。这种光伏电池最具创新性的方面是电极使用透明金属,用铟和锡代替镍和钯,使其能够传输约 80% 的可见光。虽然之前也有开发出透明光伏电池的例子,但这些透明光伏电池的可见光透过率只有60%左右。近红外光敏聚合物可吸收更多的近红外光,对可见光却不太敏感,能够在可见光波长区域内兼顾太阳能电池的透明度和性能。由银纳米线与二氧化钛纳米粒子的混合物制成的透明导体取代,不透明金属电极有效降低了成本。

这种电池还可以在家中的窗户上发电,应用范围很广。我们将对这款产品进行性能测试等工作,力争在5年内实现实用化。以硅基为代表的无机光伏技术已经高度成熟,凭借高效、低成本等诸多优势,几乎垄断了整个光伏市场。有机光伏材料不仅具有高度可调的光学特性,而且可以很容易地制成半透明的有机薄膜,因此在半透明光伏领域具有更大的应用潜力。有机光伏还具有质地柔软、常温溶液加工等独特优势。近年来,出现了许多由中国科学家主导的重要技术突破。如果能进一步提高效率,改进大面积组件器件的制造工艺,提高寿命和稳定性,有机光伏有望在10年内在国内率先实现商业化。                                             

懦弱的雪碧
现实的小鸽子
2025-07-28 11:37:14
P掺杂和N掺杂的单晶硅或多晶硅作为活性层,光伏效应发生在PN结,这是硅基太阳能电池的核心成分,另外还有一薄层重掺杂区作为隔离层,防止电极上的载流子回传复合损失,然后就是正负电极材料了。

野性的帅哥
尊敬的花卷
2025-07-28 11:37:14
有机场效应晶体管简称(OFET),基本原理为在栅压存在的情况下,活性层感应出电荷,并在水平方向的电场下定向运动,形成电流。

工作模式:根据电荷传输的电荷种类分为电子和空穴传输。

执着的向日葵
贪玩的项链
2025-07-28 11:37:14
美国国家可再生能源实验室(NREL)在制造太阳能电池方面有着悠久的 历史 ,这些太阳能电池以创纪录的效率捕获来自太阳的光。但太阳并不是光伏可以捕获能量的唯一光源。热物体也会发光 - 通常在更长,更低的能量波长下 - 而热光伏(TPV)是经过优化以捕获该光的光伏电池。

NREL开发的新型光伏电池远远超过了之前32%的世界纪录TPV效率。这种新设备是为与麻省理工学院(MIT)联合演示电储能概念而开发的,在 《自然》杂志 的一篇文章中进行了描述。

由NREL / MIT团队开发的设备由两个光吸收层组成,由高反射率的金镜层和散热器支撑。散热器可防止电池变得过热,从而导致效率损失。 经麻省理工学院Alina LaPotin许可改编的人物

该创纪录效率装置旨在从加热到2,400 C的物体收集能量,最高效率达到41.1%( 1%),在相关温度范围内平均效率为36.2%。

“高效率对于TPV系统的工程和经济可行性至关重要,而这个新的41%创纪录的效率是使这种热能电网存储概念成为现实的一大步,”该论文的NREL作者Dan Friedman说。

值得注意的是,效率为40%的TPV设备可以比传统蒸汽轮机(例如煤炭或核电厂中使用的蒸汽轮机)更有效地将热量转化为电能。TPV具有降低成本,响应时间更快,与各种系统尺寸(从瓦特到千兆瓦)兼容的潜力,并且由于移动部件更少,维护成本更低。

TPV电池还经过优化,可在高于2,000 C的热源下运行,这对于传统蒸汽轮机来说太热了。天然气和氢气可以在这些温度下燃烧,但也许最重要的是,已经设想了低成本,大规模的热能存储系统在这些温度下运行。

热能网格存储系统作为电池运行,吸收电力并将其转换为高温热量进行存储(想想一个巨大的烤面包机)。然后,TPV在需要时将热量转换回电力,提供低成本,按需清洁能源。该团队创建的TPV设备 - 曾经在与麻省理工学院的大型联合项目中展示 - 可能代表了使清洁能源存储低成本和可扩展性的关键里程碑。

效率为41%的TPV器件是一种串联电池,这是一种光伏器件,由两个相互堆叠的光吸收层组成,每个层都经过优化以吸收略微不同波长的光。与过去的TPV设计相比,该团队通过使用经过优化以吸收更高能量红外光的高性能电池实现了这一创纪录的效率。此设计建立在NREL团队先前的工作之上。

导致高效率的另一个关键设计特征是电池背面的高反射金镜。大部分发射的红外光具有比细胞活性层可以吸收的波长更长(能量较低)的波长。该背面反射器将93%的未吸收光反射回发射器,在那里重新吸收和重新发射,从而提高系统的整体效率。进一步提高背向反射器的反射率可以推动未来的TPV效率接近或超过50%。

从容的绿茶
眯眯眼的红酒
2025-07-28 11:37:14
有机阳离子以及卤素阴离子空位缺陷是制约钙钛矿太阳能电池高效率以及长期稳定性的主要因素,如何同时消除这两种缺陷是当下的难题。基于此,北京大学工学院周欢萍研究员课题组提出一种新的消除机制,即在钙钛矿活性层中引入氟化物,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。研究从而有效消除了有机阳离子以及卤素阴离子的空位缺陷,大大提升了电池的光电转换效率和长期稳定性。相关研究于2019年5月13日在国际顶级学术期刊《自然能源》( Nature Energy )上发表,题为“Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells”(doi:10.1038/s41560-019-0382-6)。

太阳能作为一种取之不尽用之不竭的清洁能源备受研究人员关注,而将太阳能转换为电能的太阳能电池也是世界上众多课题组青睐的材料。近年来,有机无机杂化钙钛矿太阳能电池以其高效率、低成本的优势获得了学术界和产业界的众多关注,而其光电转换效率也在短短几年内迅速提升至24.2%,是单节电池中当下效率最高的薄膜太阳能电池。

然而,这类电池稳定性不佳是严重阻碍其商业化应用的主要因素。相比于传统无机光伏材料,有机-无机杂化钙钛矿材料晶格较软,且是一种离子晶体,易在外界环境的干扰下发生离子迁移,形成大量的空位缺陷,从而诱导晶格塌缩以及组分分解,从而使其不再具备优异的光电转换能力。

在众多的空位缺陷中,卤素阴离子和有机阳离子空位由于其较低的缺陷形成能而普遍存在于钙钛矿表面以及晶界,该两种空位缺陷不仅会影响太阳能电池的工作效率,且会诱导钙钛矿晶体的进一步退化,形成更多的体相缺陷。针对这两种缺陷之前报道的工作主要集中在钝化单一缺陷,即有机阳离子或卤化物空位,无法做到“鱼与熊掌兼得”。如何同时消除这两种缺陷,实现钙钛矿太阳能电池的更高效率和高稳定性是钙钛矿材料目前最为棘手的问题。

针对上述重要问题,周欢萍课题组提出了一种全新的消除机制,即通过在钙钛矿活性层中引入氟化钠,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。基于此离子键和氢键的化学键调制,可以固定钙钛矿组分中的有机阳离子和卤素阴离子,从而消除了相应的空位缺陷,电池效率和稳定性都得到了明显提升。氟化钠引入的电池器件最高效率达到了21.92%(认证值为21.7%),且没有明显的迟滞现象。同时,引入氟化钠的器件表现出优异的热稳定性和光稳定性,在一个太阳的连续光照射或85°C加热1000小时后,器件仍可分别保持原有效率的95%和90%,在最大功率点处连续工作1000小时后可以保持原有效率的90%。该方法解决了钛矿太阳能电池中限制其稳定性的两个重要因素——有机阳离子和卤素阴离子空位,并可推广至其他的钙钛矿光电器件;且化学键调制的方法对于其他面临类似问题的无机半导体器件也具有重要参考意义。

该论文的第一作者是周欢萍课题组的2017级博士生李能旭,周欢萍特聘研究员为通讯作者。合作者还包括埃因霍温理工大学Shuxia Tao课题组和北京理工大学陈棋课题组、北京理工大学洪家旺课题组、香港大学杨世和课题组、中南大学谢海鹏老师、特温特大学Geert Brocks教授等。该工作得到了国家自然科学基金委、 科技 部、北京市自然科学基金、北京市科委、先进电池材料理论与技术北京市重点实验室等联合资助。

周欢萍课题组近期致力于提高钙钛矿太阳能电池的效率和稳定性,取得的一系列重要进展相继在 Science (DOI: 10.1126/science.aau5701), Nature Energy (DOI: 10.1038/s41560-019-0382-6), Nature Communications (DOI: 10.1038/s41467-019-09093-1DOI: 10.1038/s41467-019-08507-4 和 DOI: 10.1038/s41467-018-05076-w), Advanced Materials (DOI: 10.1002/adma.201900390), Journal of the American Chemical Society (DOI: 10.1021/jacs.7b11157) 上发表。

结实的菠萝
隐形的万宝路
2025-07-28 11:37:14
高效太阳能电池中钙钛矿的缺陷钝化

金属卤化物钙钛矿太阳能电池(PSCs)作为下一代光伏技术具有巨大的潜力。在相对较低的温度下进行固溶处理,不可避免地会产生大量的晶体缺陷。这些缺陷可能会造成非辐射复合的不良能量损失,从而限制PSCs的性能。更重要的是,很明显,缺陷活动是阻碍PSCs商业化准备就绪的操作不稳定问题的根本原因。因此,有必要制定策略来减少缺陷的形成和钝化形成的缺陷。

在短短十多年的时间里,基于有机—无机金属卤化物钙钛矿的太阳能电池的能量转换效率已经超过25%。由于其显著的物理和光电子特性,包括高光学吸收系数(>105 cm−1),低激子结合能(~ 10 meV),长距离载流子扩散长度(>1 μm)和双极性电荷传输,使得研究进展迅速。

APbI3三碘化铅钙钛矿(A:甲铵(MA)或甲酰胺(FA))可形成12种本征点缺陷,即3种间隙缺陷(Ai、Pbi、Ii)、3种空位缺陷(VA、VPb、VI)和6种反位缺陷(APb、Ai、PbA、Pbi、IA、IPb)。理论研究表明,低形成能的主要缺陷的跃迁能级在传导带或价带边缘的0.05 eV以内,使其本质上较浅。

尽管在理解缺陷在PSCs中的作用方面取得了重大进展,但仍然难以确定具体的缺陷种类,确定其位置和分布,或阐明其能量学和形成。尽管对这些课题进行了先进的计算研究,但直接的实验证据可能仍然缺乏。为了理性地解释某些策略如何以及为何有效的基本机制,这些都是非常必要的。此外,这种知识将有助于设计更有效的有针对性的缓解战略,例如,通过筛选更理想的化学结构来最大限度地发挥有益的影响。

内在缺陷一直是大多数研究的主要焦点,但外在缺陷也可能对PSC降解起主要作用。例如,观察到电极中的银和金穿透钙钛矿活性层,导致不可逆降解。在这方面,应用于钙钛矿本身的钝化策略不一定能解决这个问题。此外,在运行过程中,缺陷在PSC退化过程中不断产生和重新分布,但对这种演变的实时监控仍然是一个挑战和难以捉摸的。

(原文:Defect passivation of perovskites in high efficiency solar cells)

闪闪的画笔
迷路的奇迹
2025-07-28 11:37:14
存在于晶体硅光伏组件中的电路与其接地金属边框之间的高电压,会造成组件的光伏性能的持续衰减。

造成此类衰减的机理是多方面的,例如在上述高电压的作用下,组件电池的封装材料和组件上表面层及下表面层的材料中出现的离子迁移现象;电池中出现的热载流子现象;电荷的载分配削减了电池的活性层;相关的电路被腐蚀等等。这些引起衰减的机理被称之为电位诱发衰减(PotentialInducedDegradation,PID)、极性化、电解腐蚀和电化学腐蚀。

上述现象大多数最容易在潮湿的条件下发生,且其活跃程度与潮湿程度相关;同时组件表面被导电性、酸性、碱性以及带有离子的物体的污染程度,也与上述衰减现象发生有关。在实际的应用场合,晶体硅光伏组件的PID现象已经被观察到,基于其电池结构和其他构成组件的材料以及设计形式的不同,PID现象可能是在其电路与金属接地边框成正向电压偏置的条件下发生,也可能是成反向偏置的条件下发生。

忧郁的冬日
健壮的信封
2025-07-28 11:37:14

碳纳米管简史

碳纳米管: 很多人会对这个名字感到陌生。其实,碳纳米管也是碳材料的一种,可以通俗理解为是由石墨化的碳原子,单层或多层卷曲而成的管状结构。碳纳米管的直径可以小的纳米级,但是长度却可以达到数米,宛如“一根细长的头发丝”。

不过,虽然碳纳米管的体积极小,但物理性质却极为硬核。根据中国科学院研究员李清文的说法,碳纳米管是强度,是同体积钢铁的100倍。因此,碳纳米管也被看作是人类目前所能制造出的最强最硬的材料。而在实际应用中,碳纳米管也因为极好的导电、导热特性,而被称为是万能材料。在集成电路、电池、传感器等诸多细分领域,碳纳米管都有着广阔的应用前景。

从1991年日本物理学家开启碳纳米管的研究至今,国际范围内对于这种新材料的 探索 已经有30年之久。而国内的头部企业、科研团队也通过持续的研发和努力,实现了碳纳米管领域的诸多突破,“在部分领域已经处于世界领先水平”。

自碳纳米管被发现30年来,我国研究水平基本上与世界先进水平并驾齐驱,并在部分领域处于世界领先。碳纳米管导电剂一改我国锂电池企业导电剂依赖进口的局面;碳纳米管薄膜成功用于高端户外保暖服以及医疗康复等产业;基于半导体型碳纳米管的集成电路和显示器背板驱动器件也被开发出来;近日,国内最大的碳纳米管生产公司开发的碳纳米管导电剂,一改我国锂电池企业导电剂依赖进口的局面。自被发现以来,碳纳米管就在全球范围内掀起一股研究热潮。近年来,全球加速挖掘碳纳米管技术落地的途径,相关技术突破成果不断。

作为最重要的生命元素,“碳”一直在生命演化和能源提供方面扮演着举足轻重的角色。1985年,“足球”结构的C60一经发现即吸引了全世界的目光。1991年,日本物理学家饭岛澄男在电弧法制备的碳材料中观察到了碳纳米管,从此开启了碳纳米管研究的热潮。碳纳米管就像一根细长的头发丝,它的长度可以达到米级,而直径却可以小到纳米尺度。这么细长的纳米管状结构是怎么制备出来的呢?

饭岛澄男首次发现的碳纳米管是通过电弧放电法制得的。现在,碳纳米管已经发展出激光烧蚀法、化学气相沉积法(CVD)、固相热解法等多种制备方法。其中,CVD法因成本低廉、可控性好、易于规模化制备而被广泛采用。作为纳米碳材料家族的重要一员,碳纳米管以其优异的力学、电学和热学特性被誉为“万能基材”,在结构功能一体化复合材料、电池电极、集成电路、传感器件、电加热器件等领域具有巨大的应用前景。1996年诺贝尔化学奖得主、富勒烯的发现者斯莫利认为,碳纳米管是人们所能制造出来的最强、最刚、最硬的材料,同时也是最好的热和电的导体。

实践落地

在碳纳米管基础研究方面,北京大学团队在导电性可控碳纳米管合成、单手性碳纳米管合成与分离等方面做出了重要贡献。而在碳纳米管应用方面,清华大学团队在碳纳米管宏量制备、高强碳纳米管纤维、碳纳米管导电添加剂等方面业绩不菲。2013年,以平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”诞生。近两年,碳纳米管电子器件的性能及尺寸一次次被突破。

被称为“黑金”的碳纳米管,曾被科学家预言,有望成为“彻底改变21世纪”的神奇材料之一。而锂电池导电剂的利用,只是碳纳米管产业化的冰山一角。作为国家战略新兴材料,碳纳米管材料在导电塑料、轻质高强复合材料、宽频段轻质电磁屏蔽、冲击防护、智能材料、电子器件等方面也具有广泛的应用。其中基于碳纳米管的加热膜、导电塑料、复合材料等材料的市场前景也越来越好。

有硬的纳米,就有软的纳米

显示器这东西,我们都不陌生;但你能想象到可以穿到身上的超薄显示器吗? 在显示织物内呈现独特的搭接结构,由发光经线和导电纬线交错而成,在电场的激发下,电极和发光层凭借物理搭接即可实现有效发光。

纳米 科技 是21世纪最重要的前沿 科技 领域之一,对世界各国经济 社会 发展起到引领作用,对信息、生物、医药、能源、环境、航空航天及国家安全等领域都有着重要影响。为全面提升我国纳米 科技 的创新能力,国家重点研发计划设立了“纳米 科技 ”重点专项,目前该项目已取得了一批重要成果。

从模糊到清晰,从单色到彩色,从笨重到轻薄……近几十年来,显示器作为电子设备的重要输出端不断更新迭代,由最初的阴极射线管显示、液晶显示、有机发光二极管显示发展至现在的柔性薄膜显示,取得了长足进步。你曾设想过将显示器穿在身上吗?集器件功能、纺织方法、织物形态于一体,在我们穿的衣服上浏览咨询、收发讯息、进行事件备忘……这是研究者近年来着力探寻的方向。

然而,如何将显示功能有效集成到电子织物中,同时确保织物的柔软、透气导湿、适应复杂形变等特性,是智能电子织物领域面临的一大难题。日前,在国家重点研发计划“纳米 科技 ”重点专项的资助下,复旦大学研究团队自主研发出全柔性织物显示系统:织物显示求索之旅绝不是一条坦途。2009年,团队提出聚丁二炔与取向碳纳米管复合以制备新型电致变色纤维的研究思路,然而,电致变色仅在白天可见,晚上则无法被有效应用,使用时域大打折扣。

2015年,团队在涂覆方法方面取得突破,成功解决了共轭高分子活性层在高曲率纤维电极表面均匀成膜的难题,提出并实现了纤维聚合物发光电化学池,并通过将其编成织物实现了不同的发光图案。但此种方法也有局限,经由发光纤维编织所显示的图案数量非常有限,无法实现平面显示器中基于发光像素点的可控显示。如何在柔软且直径仅为几十至几百微米的纤维上构建可程序化控制的发光点阵列,是困扰团队甚至这个领域的一大难题。

是什么使织物拥有了显示特性?其内在结构如何?在电场的激发下,电极和发光层凭借物理搭接即可实现有效发光,该方法可以将发光器件制备与织物编织过程相统一,利用工业化编织设备,实现了长6米、宽0.25米、含约50万个发光点的发光织物,发光点之间最小的间距为0.8毫米,能初步满足部分实际应用的分辨率需求。通过更换发光材料,还可实现多色发光单元,得到多彩的显示织物。

超前技术,穿在身上的显示器

比起传统的平板发光器件,发光纤维直径可在0.2毫米至0.5毫米之间精确调控,奠定了其超细、超柔的特性。以此为材料一针一线梭织而成的衣物,可紧贴人体不规则轮廓,像普通织物一样轻薄透气,确保良好的穿着舒适度。

随后,现实的应用要求也接踵而至。团队研究发现,具有高曲率表面的纤维相互接触时,在接触区域会形成不均匀的电场分布,这样的电场不利于器件在变形过程中稳定工作。而在现实生活中,穿在身上的衣服难免会有磕磕碰碰,也需日常清洗。如何能使显示织物适应外界环境的改变,乃至抵御住反复摩擦、弯折、拉伸等外在作用力,保证发光的稳定性?

团队在导电纤维纬线的力学性能方面下足了功夫,通过熔融挤出方法制备了一种高弹性的透明高分子导电纤维。在编织过程中,该纤维由于线张力的作用,与发光纤维接触的区域发生弹性形变,并被织物交织的互锁结构所固定。

出良好应用前景

除显示织物外,彭慧胜团队还基于编织方法实现了具有光伏织物、储能织物、触摸传感织物与显示织物的功能集成系统,使融合能量转换与存储、传感与显示等多功能于一身的织物系统成为可能。该系统在物联网和人机交互领域,如实时定位、智能通讯、医疗辅助等方面表现出良好应用前景。

极地科考、地质勘探等野外工作场景中,只需在衣物上轻点几下,即可实时显示位置信息,地图导航由“衣”指引;把显示器穿在身上,语言障碍人群可以此作为高效便捷交流和表达的工具……这些原本存于想象中的场景,或许在不远的将来就能走进人们的生活。

(文章内容来源于网络)

番外篇:关于显示器制造

众做周知~显示器的制造

是离不开一个完全无尘的环境的

而无尘的环境,就会涉及到一款手套箱产品

—百级净化手套箱

百级洁净手套箱是一套高性能、高品质的自动吸收水、氧分子的超级净化手套箱,提供一个洁净工作环境需求的密闭循环工作系统,可以满足您特定洁净要求,O2和H2O 1ppm惰性气体防护环境。该系统是为满足客户科研开发而设计的经济型循环净化系统和FFU的手套箱,风机从FFU顶部,将气体吸入并经初、高效过滤器过滤后的洁净气体送回箱体(闭合回路)。

产品特点

简单: 严格按照德国工艺标准制造,采用西门子7寸触摸屏操作,操作界面简单易于上手。

安全: 模块化设计,专业的无泄漏密封技术,超低泄露率 0.001%,(行业标准 0.050%),严格依据标准《EJ_T1096_1999_密封箱室密封性分级及其检验方法》中的一级密封箱室验收。

高效: 超低水氧 1ppm,可达0.1ppm,进口净化材料,吸附效率高,一年再生一次,重复利用

节能: 整机功率超低,风机和真空泵智能控制

百级: 优异的气体均匀分布性能,过滤效率99.999%

百级净化手套箱可以广泛应用于无水、无氧、无尘的超纯环境,尤其可应用于OLED、MOCVD的制造;

除此之外,在锂离子电池及材料、半导体、超级电容、特种灯、激光焊接、钎焊、材料合成等也能够创造一个完全净化的环境,其中也包括生物方面应用,如厌氧菌培养、细胞低氧培养等实验项目。

良好的OLED产品应用范围十分广泛

如手机屏幕、电脑屏幕、大型显示器

等多种显示产品

因此可以说对于显示器材料的生产环境而言

百级净化手套箱是一款

非常重要的生产保护设备

更多百级净化手套箱产品

认准伊特克斯手套箱~