建材秒知道
登录
建材号 > 能源科技 > 正文

光伏 氢能源 风电龙头企业

文艺的菠萝
默默的鸭子
2023-01-01 02:15:09

光伏 氢能源 风电龙头企业

最佳答案
幽默的鱼
曾经的皮带
2025-05-29 12:25:51

光伏 氢能源 风电龙头企业有以下

1、隆基股份 隆基早在2018年就开始关注和布局可再生能源电解制氢,近三年来,与国内、海外知名科研机构、权威专家进行了深入的研发课题合作,在电解制氢装备、光伏制氢等领域形成了技术积累。2021年3月末,隆基股份通过全资子公司隆基绿能创投与上海朱雀投资合资成立西安隆基氢能科技有限公司,进行氢能产业化布局。

2、阳光电源 逆变器龙头阳光电源是国内开展光伏制氢研究最早的光伏上市公司之一。公司表示已经成立了专门的氢能事业部,并与中国科学院大连化学物理研究所在先进PEM电解制氢技术、可再生能源与电解制氢融合、制氢系统优化等方面展开深入合作。 在具体光伏制氢项目方面:2019年7月,阳光电源在山西晋中榆社县签订了一个300MW光伏和50MW制氢综合示范项目;2019年9月,山西省屯留区200MW光伏发电项目(一期)开工暨二期500MW光伏制氢项目签约仪式。

3、宝丰能源 2019年起,高端煤基新材料领军企业宝丰能源开始启动制氢项目。2020年4月,该公司的“太阳能电解水制氢储能及综合应用示范项目”在宁夏宁东基地开工建设。该项目将涉及太阳能电解水制氢、氢气储运、加氢站、氢能交通示范应用、与现代煤化工耦合制高端化工新材料等多个领域。 该项目总投资14亿元,合计年产氢气1.6亿标方/年,副产氧气0.8亿标方/年。预计将实现年销售收入6亿元,每年可减少煤炭资源消耗25.4万吨、减少二氧化碳排放约44.5万吨。当前一期项目正在推进中,是宁夏首个氢能产业项目,也是国内最大的一体化可再生能源制氢储能项目。

4、晶科科技 2019年,晶科科技就表示:“到2025年,“光伏+储能”制氢系统技术的极大进步,将具备大规模应用的经济可行性”。为此,公司国内国外两手布局:在国外,2020年与空气产品公司(AirProducts)签署了战略合作协议,双方在光伏新能源领域展开合作,将“制氢”与“绿电”结合;在国内,公司努力推进可再生能源制氢项目落地实施。

5、大唐集团 2020年8月,为完善中国大唐集团新能源发电就地制氢产业发展布局,由云冈热电公司作为项目具体承担单位开展的6MW光伏就地制氢科技示范项目落户山西省大同市。作为大唐集团重大科技创新的重要依托与可再生能源大规模制氢方面的重要研究平台,该项目正在有序推进中。

6、亿利洁能 2021年2月份,亿利洁能母公司亿利资源集团与京能集团签订战略合作协议,双方将在光伏制氢等新产业开展深度合作。

7、长城汽车 2021年3月,长城汽车举办了一场氢能战略发布会,表示将采用光伏制氢,再投入30亿元用于氢能领域研发,以达到万套产能规模,并于2025年剑指全球氢能市场占有率前三。

8、新疆库车光伏制氢项目 根据中国石化新闻网2021年3月初的报道,广州(洛阳)工程公司启动了新疆库车光伏制氢项目拿总统筹及可研编制工作。该制氢项目规划建设1000MW光伏发电,辅以当地弃风、弃光等绿电资源,配套建设2万吨/年绿电制氢厂,项目建成后将成为全球最大的绿氢生产项目。项目由广州(洛阳)工程公司作为项目总体院,负责项目拿总,开展输配电系统、电解水制氢、氢气输储及系统配套单元设计,信息产业电子第十一设计研究院负责光伏发电单元设计,中网联合能源服务有限公司负责新疆当地绿电资源整合及交易事项办理。

拓展资料:

1.国际巨头强强联合,制氢项目不断刷新纪录 在国际市场上,光伏制氢已经开始得到落地,比较有名的如日本的福岛氢能源研究基地。该基地为世界上规模最大的可再生能源制氢工厂,占地总面积为22万平方米。其中,18万平方米为光伏发电区域,4万平方米为制氢车间,系统装置具备1万千瓦制氢能力。此外,全球最大的绿氢项目也在刷新纪录。2020年7月,空气产品公司(AirProducts)与ACWAPower(沙特国际电力和水务公司)和NEOM宣布签署协议,将共同投资50亿美元,在沙特阿拉伯建造一个使用可再生能源的世界级绿色氢基氨工厂。该项目定于2025年投产,包括超过4GW太阳能和风能可再生能源电力的创新集成;采用蒂森克虏伯(thyssenkrupp)技术通过电解法日产650吨氢气;利用空气产品公司的技术通过空气分离法生产氮气;采用托普索公司(HaldorTopsoe)的技_年产120万吨绿色氨。据不完全统计:截止2020年底,全球范围内正在开发的13个最大的绿色制氢项目,规模均在吉瓦级别以上,总计达61GW。这些重大项目主要分布在西欧、南美洲、中东、澳大利亚等地。

2.光伏成本大幅降低,国内企业积极布局 目前,煤制氢是中国最成熟、最便宜的制氢方式,其成本约为天然气制氢的70%~80%。可再生能源发电在电解水制氢的成本主要依赖于发电效率及成本,随着风电、光伏发电等产业规模扩大和技术进步,可再生能源制氢成本还有大幅下降的空间。

最新回答
积极的大炮
热情的柚子
2025-05-29 12:25:51

美国

新能源成果突出,生态安全备受重视

2018年,美政府在大力推动传统能源产业发展的同时,持续加大对太阳能、核能、地热能、生物能等新能源领域的研发投入。

众多新能源领域中,新型电池研发成果引人注目。750次充电/放电循环后仍能正常工作的新型锂空气电池、容量大且寿命长的可充电水基锌电池、靠细菌发电的低成本纸基生物电池等成为电池中的新星。而在提高现有电池性能方面,科学家也取得不少成果。他们将有机太阳能电池的光电转化效率提高至15%,将锂离子电池的容量提高了40%。布朗大学开发的新型燃料电池反应合金催化剂,在活性和耐久性方面更是超过了能源部2020年车用电催化剂技术指标。

在维护生态环境安全方面,尽管政府最新气候评估报告称,气候变化将给美国带来多重伤害,但并没有说服特朗普总统。科学家依然不遗余力游说,不仅发文称美墨边境墙会严重危害地区生物多样性,还对欧洲将木材作为低碳燃料的政策提出质疑。在具体研究方面,甲烷温室效应的证实、金属铋“催化可塑性”的发现、可再生可降解乳蛋白包装材料的开发等成果,都成为保护全球生态环境安全的助推剂。

日本

锂电池负极大容量化,制氢系统投建

大容量不劣化的锂电负极研发成功。日本产业技术综合研究所新开发出了一种锂离子电池使用的负极,容量约为目前主流的石墨负极(372mAh/g)的5倍,与一氧化硅的理论容量基本一致。新开发的电极在反复充放电200多次后,容量依然没有变化,确认具备大容量、长寿命的特性。利用此次开发的电极有望提高负极的能量密度,推动锂离子二次电池实现大容量化和小型化。

世界最大规模利用可再生能源的制氢系统在福岛投建。2018年8月,日本新能源产业技术综合开发机构(NEDO)、东芝能源系统、东北电力及岩谷产业合作,开始在福岛县浪江町建设利用可再生能源制氢的氢能源系统“福岛氢能源研究站”,系统装置具备世界最大规模的1万千瓦制氢能力。利用该系统制造的氢预定用于燃料电池发电用途及燃料电池车和燃料电池巴士等交通用途,或者作为工厂的燃料使用。

氢燃料发动机实现大功率、高热效率、低排放。产综研与日本冈山大学、东京都市大学、早稻田大学组成的研究小组,在小型发动机的基础实验中,利用氢燃料优异的燃烧特性确立了新的燃烧方式,开发出全球首款能实现高热效率和低氮氧化物(NOx)的火花点火氢燃料发动机。

东海核燃料再处理设施报废计划获批。日本“原子力规制委员会”2018年6月批准了由日本原子力研究开发机构提交的东海核燃料再处理设施报废计划,耗资1万亿日元,报废时长预计将持续70年。

俄罗斯

大气治理取得进展,核废料和水处理有新法

大气污染防治方面,俄罗斯国立秋明大学的科研人员研发出液滴悬浮约束方法,并可进行定量液滴有序成团,此项工作可用于大气中污染物扩散机理的研究,制定生态灾难预防性措施托木斯克理工大学研究人员使用含有3%—10%有机杂质的工业用水和废水,获取了燃料气溶胶,这种气溶胶可用于快速点燃火力发电厂和锅炉房的锅炉,还可用于柴油发电机燃烧室以及汽车内燃机。

核废料处理方面,俄科学院远东分院化学研究所联合俄远东联邦大学,正在研制新型纳米结构吸附反应剂,该吸附剂可用于净化俄远东红星造船厂内的放射性液体废物俄西伯利亚联邦大学的科学家采用空化技术,让位于乏核燃料储罐底部密实的不溶性沉积层不断受到空化—活化水酸性溶液侵蚀而被破坏,新技术将溶解速率和沉积物回收量提高至原来的1.5倍,制备出的含放射性化学废物的水泥混合物强度是常规方法的2—3倍。

水处理方面,俄圣彼得堡理工大学的科学家使用高铁酸钠替代传统的氯气对自来水进行消毒,新试剂用量小,不会形成毒性分解物,还能将一些危险化学品分解成低毒化合物,同时杀死水中微生物俄托木斯克工业大学能源工程学院研发出液滴爆炸粉碎式污水处理方法,可高效去除污水中的化学侵蚀性、毒性及燃料杂质,具有高效、低能耗的特点,适用于化工、石化、冶金、纸浆造纸等行业的污水处理。

德国

致力解决气候和雾霾问题,开发储存制取氢的新工艺

2018年德国大规模启动了碳转化学项目以解决气候和雾霾问题,这个由赢创公司和西门子合作的项目,拟利用人工光合作用,将二氧化碳和水转化为有用化学物质。按照计划,到2021年将在鲁尔区的马尔化学工业园建成一个巨大的化学试验装置,预计每年可利用二氧化碳生产20000吨有用的化学品和燃料。该项目最终获益的不仅是钢铁行业,还有化学和能源等行业。

德国尤利希研究中心和埃朗根—纽伦堡大学的研究人员合作,开发出了利用有机载体液和特殊催化剂,储存和制取氢燃料的新工艺,可使原先装卸氢燃料所需的两个装置简化成一个装置。这一新工艺将来应用于工业化储氢和生产,将大大降低成本和能源消耗,对能源转型具有重要意义。

不莱梅大学库尔策教授领导的研究小组找到了一种解决地下水硝酸盐污染的新方法,发现一种合成的多金属氧酸盐对于减少硝酸盐水污染有特殊作用,这种纳米结构物质在水中对硝酸盐还原起电催化效果。

韩国

建成应对核泄露系统,提高锂电池性能

2018年,韩国建成了迅速应对核泄露的“核辐射状况信息共享系统”,在核能设施周边29个地点探测放射能量泄露数据并迅速应对。

韩国大学成功开发出一种利用太阳光谱中红光捕捉二氧化碳的技术,能够将二氧化碳转换成一氧化碳中间物质,从而生产燃料此外,韩国还研发出了符合更高环保要求的氢气制备技术。

韩国使用富锂锰氧化物开发了一种兼具高电压、高容量的黏合剂阳极材料,可大幅提高锂二次电池的能量密度同时,充电速度为现有锂电池5倍、采用石墨烯球正极保护膜和负极材料的锂二次电池也在韩国研发成功。

以色列

注重氢燃料电池研发,助力新能源汽车发展

在第6届国际智能机动峰会上,以色列公司展示出水基氢燃料溶液,利用公司的专利催化剂,可以快速从溶液中获取氢气,供给氢燃料电池产生电能。该溶液具有无毒、化学性质稳定的特点,同时储能密度高,且便于运输和存储。

以色列研究人员还发现在太阳能的作用下,过氧化氢在氧化铁构成的光电极上产生光化学分离的化学机理。该发现有望将水廉价且高效地转化为清洁的氢燃料,促进氢燃料电池驱动的汽车大规模发展。

乌克兰

建立环境研究中心,监测研究自然生态

2018年9月,乌克兰教科部、环境部、国立喀尔巴阡大学,以及喀尔巴阡山国家公园联合建立了喀尔巴阡环境研究中心。喀尔巴阡山是横跨中东欧多个国家的欧洲第二长山脉,目前存在着诸如地表水体污染、工业和生活垃圾污染等环境问题,以及自然生态系统退化、生物多样性丧失、洪水和山体滑坡威胁增大的趋势。该研究中心建立后,通过监测和研究将为解决上述问题提供科学依据和解决方案。

糟糕的夏天
听话的犀牛
2025-05-29 12:25:51

我国可再生能源制氢将会在2030年实现平价,相信大家对于氢能还没有一个具体的了解。随着我国的发展和经济实力的不断提高,科学技术也是变得越来越高级,对于很多资源也是实现了可以再生,因为现在很多资源在使用的过程中会对我们的环境产生破坏,比如煤炭。所以说我们也是在不断的开发出新的洁净能源。氢能就是这些能源当中的一种,在未来,它具有非常好的发展前景,所以在未来的生活当中,氢能可能会作为我们最主要的使用能源出现。

首先我们要对氢能源有一定的了解,氢能源就是可再生的二次能源,它能够通过一些可再生的方式从其他反应那里制出来氢能源,这也是它之所以是清洁能源的主要原因,因为我们知道,很多能源是不可再生的,就比如说煤炭,如果说我们对于煤炭过度开采的话,那么肯定会出现匮乏的现象,因为煤炭作为自然资源,它是长期储藏在地下的并且不会再生。如果我们对它过度使用的话,肯定有一天会出现灭绝的现象,氢能并不会,它属于可再生能源,我们使用完以后可以从其他的反应当中来制取这样就能够达到一个循环的作用,也是出于这个角度亲能才会被作为是清洁能源被开发。

当氢能实现平价以后将会有非同凡响的意义,首先对于我们国家来说就会实现一更高级的能源使用形式。因为氢能是可再生的清洁能源。所以说在未来将会让我们的科学研究变得更加高效,且清洁将不会再对我们的生活环境产生破坏。在近几年因为过于注重国家的发展,而忽略了能源对于环境的破坏,导致我们现在的生态环境已经发生了质的改变,温室效应的影响也是越来越严重。所以氢能能的出现将会在很大程度上改变这样的局面,并且也会被其他国家所效仿,这就是氢能最大的用处。

其次就是在它实现平价之后,将会有更多的人能够使用的起亲能,在之前我们仅有煤炭的时候,很多人就因为经济实力的原因,没有使用煤炭的经济条件。再到现在大家都普遍使用天然气,也仍然有一些贫困地区依然无法享受到这一待遇。那么在未来,如果说氢能能够实现平价的话,我国的大部分居民都会有生活条件来使用如此清洁的可再生能源,这将会对大家的生活和各方面带来很多的便利,并且还会节省大家的金钱,对于提高我们国家的居民水平有很大的帮助。

怕孤独的美女
慈祥的口红
2025-05-29 12:25:51

氢能属于可再生能源,氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等,但这些反应消耗的能量都大于其产生的能量。

可再生能源(英语:RenewableEnergy)为来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。

清脆的汽车
健壮的野狼
2025-05-29 12:25:51

3月23日,国家发改委发布《氢能产业发展中长期规划(2021-2035 年)》。规划明确,氢能是未来国家能源体系的重要组成部分和用能终端实现绿色低碳转型的重要载体,氢能产业是战略性新兴产业和未来产业重点发展方向。

根据规划,到2025年,形成较为完善的氢能产业发展制度政策环境,产业创新能力显著提高,基本掌握核心技术和制造工艺,初步建立较为完整的供应链和产业体系。燃料电池车辆保有量约5万辆,部署建设一批加氢站。可再生能源制氢量达到10-20万吨/年,成为新增氢能消费的重要组成部分, 实现二氧化碳减排100-200万吨/年。

到2030年,形成较为完备的氢能产业技术创新体系、清洁能源制氢及供应体系,产业布局合理有序,可再生能源制氢广泛应用,有力支撑碳达峰目标实现。

到2035年,形成氢能产业体系,构建涵盖交通、储能、工业等领域的多元氢能应用生态。可再生能源制氢在终端能源消费中的比重明显提升,对能源绿色转型发展起到重要支撑作用。

规划提出,立足本地氢能供应能力、产业环境和市场空间等基础条件,结合道路运输行业发展特点,重点推进氢燃料电池中重型车辆应用,有序拓展氢燃料电池等新能源客、货汽车市场应用空间,逐步建立燃料电池电动汽车与锂电池纯电动汽车的互补发展模式。积极探索燃料电池在船舶、航空器等领域的应用,推动大型氢能航空器研发,不断提升交通领域氢能应用市场规模。

拉长的发带
等待的大地
2025-05-29 12:25:51

1、蒸汽甲烷重整

蒸汽甲烷重整(SMR)是一种从主要是甲烷的天然气中生产氢气的方法。它是目前最便宜的工业氢气来源。世界上近50%的氢气是通过这种方法生产的。该过程包括在蒸汽和镍催化剂存在下将气体加热到700–1100°C之间。

产生的吸热反应分解甲烷分子并形成一氧化碳CO和氢气H2。然后一氧化碳气体可以与蒸汽一起通过氧化铁或其他氧化物并进行水煤气变换反应以获得更多量的H2.这个过程的缺点是它的副产品是CO2、CO和其他温室气体的主要大气释放。

根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。

根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。

2、甲烷热解

说明甲烷热解的输入和输出,这是一种生产氢气且无温室气体的高效一步法

甲烷的热解是从天然气中生产氢气的过程。通过流过“气泡塔”中的熔融金属催化剂,氢气分离在一个步骤中进行。这是一种“无温室气体”方法,用于测量潜在的低成本氢气生产,以衡量其扩大规模和大规模运营的能力。 该过程在更高的温度(1065°C或1950°F)下进行。

3、电解

电解包括使用电将水分解成氢气和氧气。水的电解效率为70-80%(转化损失为20-30%) ,而天然气的蒸汽重整的热效率在70-85%之间。 电解的电效率预计将在2030年之前达到82-86% ,同时随着该领域的进展继续加快,同时也保持耐用性。

水电解可以在50–80°C之间运行,而蒸汽甲烷重整需要700–1100°C之间的温度。 两种方法的区别在于使用的一次能源;电力(用于电解)或天然气(用于蒸汽甲烷重整)。

环境影响

截至2020年,大部分氢气由化石燃料生产,导致二氧化碳排放。当排放物释放到大气中时,这通常被称为灰氢,当通过碳捕获和储存(CCS)捕获排放物时,这通常被称为蓝氢。

假设美国上游和中游的甲烷泄漏率和生产通过蒸汽甲烷重整器(SMR)改装了二氧化碳捕获装置。使用具有二氧化碳捕获功能的自热重整器(ATR)可以在令人满意的能源效率下实现更高的捕获率,并且生命周期评估表明,与具有二氧化碳捕获功能的SMR相比,此类工厂的温室气体排放量更低。

经评估,在欧洲应用ATR技术与二氧化碳的综合捕获相比,其温室气体排放量低于燃烧天然气,例如,H21项目报告称,由于二氧化碳强度降低了68%,因此温室气体排放量减少了68%。天然气与更适合捕获二氧化碳的反应器类型相结合。

使用较新的无污染技术甲烷热解生产的氢气通常被称为绿松石氢气。高质量的氢气直接由天然气生产,相关的无污染固体碳不会释放到大气中,然后可以出售用于工业用途或储存在垃圾填埋场。

由可再生能源生产的氢气通常被称为绿色氢气。有两种从可再生能源生产氢气的实用方法。一种是电制气,其中电力用于电解水制氢,另一种是利用垃圾填埋气在蒸汽重整器中制氢。当由风能或太阳能等可再生能源生产时,氢燃料是一种可再生燃料。

通过电解由核能产生的氢有时被视为绿色氢的一个子集,但也可以称为粉红色氢。奥斯卡港核电站于2022年1月达成协议,以每天公斤的数量级供应商业粉红色氢气。

野性的大雁
听话的蜻蜓
2025-05-29 12:25:51
1.宝丰能源(600989):2020年4月20日公司在互动平台称:公司此次开工建设的一体化太阳能电解水制氢项目是目前国内最大的一体化可再生能源制氢储能项目。项目主要包括新建20,000标方/小时电解水制氢装置及配套公辅设施和200MWp复合型光伏电站、宁东能源中心示范站(含2000公斤/日加氢、10000标立/日加气、10000吨/年加油、8个充电桩)1座,1000公斤/日加氢站1座(银川),并将企业现有的两座油气共建站改造成油、气、氢共建示范站。

2.福田汽车(600166):2020年6月10日互动平台回复:公司重视氢能源发展,包括技术开发、市场开拓、人才培养,氢能源重卡、轻卡等车型均列入计划,目前公司的氢燃料重卡产品处于产品开发阶段,正在自主研发长续驶里程、高承载和高速的燃料电池重卡。

3.东方电气(600875):2019年公司的西部首条氢能及燃料电池批量生产线成功投产,氢能城际客车、物流车样车开发完成,成功举办了成都首届国际氢能及燃料电池产业大会,行业影响力不断提升。

拓展资料:

1.制氢

全球:天然气(48%)、醇类(30%)、煤制氢(18%)、电解水制氢(4%)。

日本:电解水占比高达 63%

中国:煤制氢(62%)、天然气(19%)、工业副产(18%)、电解水制(1%)。

制氢成本:焦炉煤气制氢电解制氢:工艺简单,无污染,纯度高,适用质子膜燃料电池。缺点是成本高、耗电量大、暂不具备大规模推广应用的可能。

电解制氢电来源:低谷电、大工业用电、可再生能源弃电。

2.氢能的储运

储氢:高压储氢(主流)、液态储氢(航天领域)、金属氧化物储氢(实验室阶段)、碳基材料储氢以及化学储氢等

运输:主要输送方式有高压气态输送、液氢输送,有机液体氢气运输、固态氢气运输。

满意的小丸子
无奈的帅哥
2025-05-29 12:25:51

在上篇《终极能源来了!氢能的政策风口吹完了吗?》中,我们主要梳理了主要国家的氢能政策和战略重点发展方向。比如,德国等欧盟国家侧重于发展绿氢,沙特等中东国家同时发展蓝氢和绿氢,美国强调氢燃料电池的应用,重点发展氢燃料重卡。接下来我们先来了解一下基本的氢能的分类和氢能产业链。

根据生产过程中碳排放量的强度,可将氢气分为化石能源直接制取的“灰氢”、化石能源+二氧化碳捕集与封存制取的“蓝氢”和通过可再生能源、核能电解水制取而成的“绿氢”。

根据中国煤炭工业协会公开数据显示,2020年中国氢气产量超过2500万吨,其中煤制氢所产氢气占62%、天然气制氢占19%,工业副产气制氢占18%,电解水制氢占1%左右。从全球来看,目前使用最多的制氢方法是天然气制氢,占比达到48%,其次为石油制氢,占比30%,煤制氢占18%,电解水制氢占比4%,同样占比很低。

不管是我国3060碳达峰、碳中和的目标,还是欧盟等国促进绿氢发展的战略,绿氢的发展才是长期发展的战略方向。预计到2060年,我们国家以可再生能源制取的绿氢将达到80%。但是,绿氢生产成本的下降需要一个过程,不仅需要光伏、风电等可再生能源的成本进一步下降,也需要制氢的电解槽的成本大幅下降。因此,由灰氢到绿氢的转换过程不可能快速、直接的迭代。而蓝氢作为灰氢向绿氢的过渡阶段,其发展主要取决于碳捕捉和碳封存技术的发展和成本的下降。但是,现在有一些科学家发现蓝氢在降低二氧化碳排放方面,并没有比灰氢好多少,排放量大约只低于灰氢9%-12%。世界主要氢能发展国家对于蓝氢的态度差异较大,鉴于我们国家目前的氢能来源占比和发展阶段,蓝氢应该会作为一个重点。

氢能产业链包含从上游制氢、中游的储氢、运氢到下游的用氢等环节。制氢环节中,电解水制氢获得的是绿氢,化石燃料制氢和工业副产氢如果加入了碳捕捉和封存(CCS)装置,则是蓝氢,如果未经此环节,则产出的是灰氢。

除了煤制氢和天然气制氢,工业副产氢是我国第三大氢气来源,也是我国本身的产业基础具备条件,适合发展的制氢方式。工业副产氢包含焦炉煤气副产氢、氯碱工业副产氢、合成氨副产氢和丙烷脱氢副产氢。

比如氢能概念股的龙头 美锦能源 就是以焦炉煤气制氢为基础,然后在产业链上打造加氢站和氢燃料电池的全线产业链。

滨化股份具有1.6万吨氯碱工业副产氢的产能,同时还在建设PDH项目,将会有2.3万吨丙烷脱氢副产氢。此外,金能 科技 、万华化学和金发 科技 等都有一定的工业副产氢作为副产品。

从碳中和的长期要求来看,要达到零排放,电解水制氢是未来发展的主要方向。目前,在可再生能源电解水制氢路线上布局的主要有隆基股份、阳光电源和宝丰能源。

和其他能源和燃料相比,氢气的储运难度较大、成本占比明显偏大,这也是制约氢气成本难以大幅下降的主要因素。在上中下游各环节,上游制氢和下游用氢相对来说都比较成熟,而中游储运是制约氢能大规模发展的重要原因。

氢气的储运方式分为气态、液态和固态三种。从技术成熟度来看,高压气态储氢最为常用。与之对应的运输方式,包括长管拖车和管道两种。高压储氢的安全性高,技术相对简单,但由于氢气能量密度小,其储氢量非常低,长管拖车更适用于用氢量不大、近距离运输的时候。管道储运在长距离运输中会形成成本优势,但管道建设成本大,初始投资高。

为解决能量密度小的问题,全球都在研发低温液态储氢,其具有储氢密度高等特点,储存方式和储存石油类似,运输液氢可减少车辆运输频次、提高加氢站单站供应能量,适用于用氢量大、远距离运输的情况。但液态储运氢也有短板,比如氢气液化成本高,长时间存放会出现氢气逃逸现象。在我国,低温液态储运氢主要运用于军事和航天领域,民用领域由于受到法规限制,目前无法应用。

固态储氢是以金属氢化物、化学氢化物或纳米材料等作为储氢载体, 通过化学吸附和物理吸附的方式实现氢的存储。固态储氢密度更高,但是成本也更高,技术更复杂,目前还比较难商业化。

根据中国氢能联盟发布的《中国氢能源及燃料电池产业白皮书(2019年版)》(下称《白皮书》),长管拖车、固体储运成本可观,经济距离却不超过150公里;液态储运经济距离大于200公里,成本在所有方式中最高;管道运输成本最低,经济距离超过500公里。

气态储氢方式中储氢瓶是重要的一环,国内公司 中材 科技 率先研发完成国内最大容积320L氢气瓶,并已投入市场。除了320L瓶,其他氢气瓶产品规格种类齐全,从1.5L到385L全覆盖。此外,目前中材 科技 的70MPa Ⅳ型瓶产线正在建设,年产能1万只,预计2021年底完成,2022年上半年取得证书,主要针对海外市场销售。

氢气液化方面,国内发展比较滞后,根据氢气液化的概念股中泰股份上周在投资者提问时的回答:目前公司已具备氢液化核心设备板翅式换热器的设计及制造技术,整套氢液化工艺流程仍在积极研发中。另一深冷概念股深冷股份早几日也公开提示公司还没有氢能方面的营收。

加氢站是氢产业链的重要一环,然而,由于氢燃料电池 汽车 还没有实现大规模商用,而且加氢站的投资巨大,目前建设成本和运营成本远远高于传统加油站、加气站。在产业发展初期,建独立加氢站不具有经济性,从投资者的角度,可以回避这种重资产、高投资并将长期亏损的产业链环节。

燃料电池系统是个复杂的系统,其中以电堆系统最为重要。除了电池电堆以外,还有供氢系统、供气系统、水热管理系统。从价值量来看,电堆系统占比最大,达45-50%,其次是空压机,占比25%左右。而在电堆中又以催化剂、双极板和质子交换膜的价值量占比大,这些核心材料和技术仍然与欧美存在一定差距。

催化剂在整个燃料电池系统成本中占到大约18%,而且这个核心材料仍然依靠进口,目前还没有一家企业能做到催化剂的国产化。 贵研铂业 属于前瞻性布局燃料电池铂极催化剂的企业,而且被列入工信部第二批专精特新“小巨人”企业。但即便是作为铂极催化剂的领头企业,贵研铂业近日在投资者互动平台表示:截至目前,公司氢燃料电池铂极催化剂尚在实验室阶段,目前没有商品化产品。

和催化剂的情况类似,在双极板、质子交换膜等领域,国内的材料与技术目前与国际先进水平还存在一定差距,国产化的进程刚刚开始,从技术突破和降低成本的角度还有很长的路要走。

电池电堆和燃料电池整体系统方面,亿华通、潍柴动力、新源动力和美锦能源持股的国鸿氢能占据市场主导地位。此前我们专门写过燃料电池系统,此处不多说。

欢迎回顾亿华通的个股报告:【被外资买爆的氢燃料电池企业!同样有雷?】

欢迎回顾潍柴动力的个股报告:【勇敢外卷,中国高端制造之光】

稳重的柚子
鲤鱼缘分
2025-05-29 12:25:51

文/熊华文 符冠云,国家发改委能源研究所,环境保护

当前,世界各国都在加快推进氢能产业发展,初步形成了四种典型模式,即以德国为代表的“深度减碳重要工具”模式,以日本为代表的“新兴产业制高点”模式,以美国为代表的“中长期战略技术储备”模式和以澳大利亚为代表的“资源出口创汇新增长点”模式。我国在推动氢能产业高质量发展的过程中,应充分参考借鉴国际经验,进一步明确“初心”与“使命”、目标与路径,以推进能源革命为出发点,构建“大氢能”应用场景,统筹推进氢能产业技术与市场、供应与需求的协调发展。

氢能作为二次能源, 具有来源广泛、适应大范围储能、用途广泛、能量密度大等多种优势。随着氢能产业的兴起, 全球迎来“氢能 社会 ” 发展热潮,欧盟、日本、美国、澳大利亚、韩国等经济体和国家均出台相关政策,将发展氢能产业提升到国家(地区)战略高度,一批重大项目陆续启动,全球氢能产业市场格局进一步扩大。对我国而言,加快发展氢能产业,也有现实而迫切的意义。具体来看, 发展氢能产业是优化能源结构、推动能源转型、保障国家能源安全的战略选择,是促进节能减排、应对全球气候变化、实现绿色发展的重要途径,是超前布局先导产业、带动传统产业转型升级、培育经济发展新动能、推动经济高质量发展的关键举措。

2019年是我国氢能发展的创新之年,“理想照进现实”特点明显— 战略共识基本成形, 探索 的步伐正在加快, 先进理念、技术、模式层出不穷。超过30个地方政府发布了氢能产业发展规划/ 实施方案/ 行动计划,相关的“氢能产业园”“氢能小镇”“氢谷”项目涉及总投资额多达数千亿元,氢燃料电池 汽车 规划推广数量超过10万辆,加氢站建设规划超过500座。我国在加快发展氢能产业的过程中,需要广泛参考借鉴国际经验。我们认为,对于国际经验的研究不应只停留在政策、措施和行动的简单总结及归纳层面,而应该深入分析各国发展氢能背后的初衷、动机、利益格局等内容。在充分了解各国资源禀赋、产业基础、现实需要等各方面因素的基础上,找到发展的方向、目标、路径、模式与政策措施之间的逻辑关系。换言之,不止要看“做了什么”,更要研究“为什么做”“做了有什么好处”等深层次问题。

从不同国家发展氢能产业的出发点、侧重点、着力点等方面看, 全球各国实践大致可总结为四大类型,本文称之为四种典型模式,即把氢能作为深度脱碳的重要工具的德国模式(法国、英国、荷兰等国做法类似);把氢能作为新兴产业制高点的日本模式(韩国做法类似);把氢能作为中长期战略技术储备的美国模式( 加拿大做法类似) 以及把氢能作为资源出口创汇新增长点的澳大利亚模式( 新西兰、俄罗斯等国做法类似)。

德国模式:推动深度脱碳,促进能源转型

德国能源转型近年来暴露出越来越多的问题。首先,随着可再生能源装机容量和发电量的稳步提升,维护电力系统稳定性成为其头等挑战。2019年德国部分地区出现了电力供应中断事故,暴露出其储能和调度能力不足的短板。其次,为提升电力系统供应能力,德国增加了天然气发电,但由此需要从俄罗斯等国家进口更多天然气,导致能源对外依存度提升。最后, 能源转型使带来能源价格走高,能源转型面临越来越多的争议。与能源转型陷入困境一脉相承的问题是碳减排进展不如预期。德国政府已经提出了2030年比1990年减排55%的中期目标和2050年实现碳中和的长期目标,然而自2015年以来碳排放量不降反升,2018年在暖冬的帮助下才实现了“转跌”。传统减排路径边际效益递减,急需开辟新途径,挖掘更多减碳潜力。

发展氢能可助力大规模消纳可再生能源,并实现“难以减排领域”的深度脱碳。电解水制氢技术发展迅速,规模提高、响应能力增强、成本下降,使其有望成为大规模消纳可再生能源的重要手段。在区域电力冗余时,通过电解水制氢将多余电力转化为氢气并储存起来,从而减少“弃风能”“弃光能”“弃水能”等现象,降低可再生能源波动性对于电力系统的冲击。与此同时,氢能具有高能量密度(质量密度)、电化学活性和还原剂属性, 能够在各种应用领域扮演“万金油”角色,对“难以减排领域”的化石能源进行规模化替代,实现深度脱碳目标。

围绕深度脱碳和促进能源转型,德国创新提出了电力多元化转换(Power-to-X)理念,致力于 探索 氢能的综合应用。具体而言,在氢气生产端,利用可再生电力能源电解水制取低碳氢燃料,从而构建规模化绿色氢气供应体系。在氢气应用端,将绿色氢气用于天然气掺氢、分布式燃料电池发电或供热、氢能炼钢、化工、氢燃料电池 汽车 等多个领域。现阶段,德国政府与荷兰等国正在开展深度合作,重点推广天然气管道掺氢,构建氢气天然气混合燃气(HCNG) 供应网络。其中,依托西门子等公司在燃气轮机方面的技术优势, 已开展了若干天然气掺氢发电、供热等示范项目。截至2019年年底,德国已有在建和运行的“P to G”(可再生能源制氢 天然气管道掺氢)示范项目50个,总装机容量超过55MW。此外,蒂森克虏伯集团已开展氢能炼钢示范项目,预计到2022年进入大规模应用阶段。

日本模式:保障能源安全,巩固产业基础

日本能源安全形势严峻,急需优化能源进口格局和渠道。日本的能源结构高度倚重石油和天然气,二者占能源消费比重高达2/3,因为国内能源资源比较匮乏,95%以上的石油和天然气都需要进口。能源地缘政治局势日趋复杂,断供风险犹如“达摩克利斯之剑”,再加上国际能源市场价格的大起大落,都会给日本能源安全甚至经济安全带来冲击。2011年福岛核事故之后,日本核电发展遇到越来越多的阻力,如果实现本土“弃核”,意味着能源对外依赖程度还要提升。因此,日本迫切需要在当前能源消费格局中开辟新的“阵地”,寻找能源安全的缓冲区和减压阀,摆脱其对于石油和天然气的依赖。

发展氢能可提升能源安全水平、分化能源供应中断及价格波动风险。日本未来消费的氢能虽然仍需要从海外进口, 但主要来自澳大利亚、新西兰、东南亚等国家和地区, 与中东、北非等传统油气来源地区形成了空间分离,进而分化了地缘政治风险。同时,石油和天然气在价格上有较高的关联度,两者仍然属于“一个篮子里的鸡蛋”。而氢能来源广泛,价格与油气的关联度不高,增加氢能进口和消费,能够在一定程度上分化油气价格同向波动对本国经济的影响。此外,氢能还能够提升本国的能源安全水平。日本是地震、海啸、台风等自然灾害多发的地区,能源供应中断情况经常发生。氢燃料电池 汽车 、家用氢燃料电池热电联产组件等设备在充满氢气或其他燃料的情况下,可维持一个家庭1 2天的正常能源供应。氢能终端设备的普及,还可以为日本减灾工作作出贡献。

日本氢能基本战略聚焦于车用和家用领域的应用,是产业和技术发展的必然延伸。日本在技术、材料、设备等方面拥有非常明显的优势, 尤其是已基本打通氢燃料电池产业链。经过多年耕耘,日本已在氢能领域打造出一批“隐形冠军”,如东丽公司的碳纤维、川崎重工的液氢储运技术和装备等。据统计,日本在氢能和燃料电池领域拥有的优先权专利占全球的50%以上,并在多个关键技术方面处于绝对领先地位。专利技术既是日本的“保护网”,也是其他国家的“天花板”。推广氢燃料电池 汽车 和家用燃料电池设备,一方面,可将过往的投入在市场上变现、获取现金流,另一方面,还能及时获取信息反馈,完善技术和设备,由此形成了“技术促产业、产业促市场、市场促技术”的良性循环和正向反馈。

美国模式:储备战略技术,缓推实际应用

美国氢能发展经历“ 两起两落”,但将氢能视为重要战略技术储备的工作思路一直没有改变。早在20世纪70年代,美国政府就将氢能视为实现能源独立的重要技术路线,密集开展了若干行动和项目, 但热度随着石油危机影响的消退而降温。2000年前后氢能迎来了第二个发展浪潮。2002年美国能源部(DOE)发布了《国家氢能路线图》,构建了氢能中长期愿景,启动了一批大型科研和示范项目,但后因页岩气革命和金融危机的冲击,路线图被搁置,不过联邦政府对氢能相关的研发支持延续至今。

在过去的10年中,美国能源部每年为氢能和燃料电池提供的支持资金从约1亿美元到2.8亿美元不等,根据2019年年底参议院、众议院通过的财政拨款法案,2020年支持资金为1.5 亿美元。总体来看,在近50年的时间里,尽管有起伏,但联邦政府将氢能视为重要战略技术储备的工作思路一直没有改变,持续鼓励 科技 研发使得美国能够保持在全球氢能技术的第一梯队。

页岩气革命是美国氢能发展战略被搁置的最主要原因。凭借具有经济、清洁、低碳优势的页岩气,美国已逐步实现能源独立和转型,而页岩气和氢能在应用端存在较多重合,对氢能形成了巨大的挤出效应。加州燃料电池合作伙伴组织(CaFCP)的数据显示,美国的氢燃料电池 汽车 市场已陷入停滞状态,在2019年甚至出现了12%的下滑,发展势头已被日韩、中国赶超。

澳大利亚模式:拓宽出口渠道,推动氢气贸易

澳大利亚一直是全球最主要的资源出口国,同时资源出口也是其最重要的经济增长引擎。根据澳大利亚联邦矿产资源部发布的数据,2019年资源出口直接贡献了该国GDP增长的1/3 以上。但传统的“三大件”(煤炭、液化天然气、铁矿石)出口已现颓势。在煤炭方面,长期以来澳大利亚在全球煤炭贸易中占比超过1/3, 主要目标市场集中在东北亚地区,然而近几年中、日、韩相继开展减煤控煤行动,煤炭出口前景暗淡。在铁矿石方面,中国买走了60%以上的澳大利亚出口铁矿石,而中国钢铁产量进入峰值平台、电炉钢比重提升,这都将拉低其对铁矿石的需求;在液化天然气(LNG)方面,尽管市场需求增长潜力仍然可观,但由于国际油价暴跌,LNG出口创汇能力也被大幅削弱。据世界天然气网站分析, 未来五年内澳大利亚LNG出口收入将持续收缩。

出于经济可持续发展考虑,澳大利亚政府急需找准新兴市场需求,拓宽出口渠道。2019年11月,澳大利亚政府发布了《国家氢能战略》,确定了15大发展目标、57项联合行动,力争到2030年成为全球氢能产业的主要参与者。打造全球氢气供应基地是澳大利亚发展氢能的重要战略目标。澳大利亚正积极推动与日、韩等国的氢气贸易,签订氢气供应协议,同时与相关企业开展联合技术创新,完善氢能供应链,扩大供应能力、降低成本。

如澳大利亚政府与氢能供应链技术研究协会(HySTRA,由川崎、岩谷、电力开发有限公司和壳牌石油日本分公司组成)合作组成联合技术研究组,开展褐煤制氢、氢气长距离输送、液氢储运等一系列试点项目。2019年年底川崎重工首艘液氢运输船下水,补齐了澳大利亚和日本氢气供应链最后一块拼图。这种“贸易 技术创新”一体化模式调动了各参与方的积极性,澳方可实现本国氢气资源的规模化开发,川崎等企业能够获得成本更低的氢气,技术研发团队获得了宝贵的试验田。

值得一提的是, 澳大利亚提出的低碳氢能,既包括可再生能源电解水制氢,也包括化石能源(尤其是煤炭) 制氢( 碳捕捉) 与储运技术。虽然化石能源制氢备受争议,但正是在煤炭出口增长乏力背景下的现实选择。

对我国的启示:明确氢能“协同互补”定位,构建多元化应用场景

每个国家发展氢能产业都有其“初心”和“使命”。德国模式将氢能视为手段,即发展氢能是为了破解能源转型和深度脱碳过程中出现的诸多问题;日本模式将氢能视为目的, 即发展氢能是关乎国家能源安全和新兴产业竞争力的战略选择,是迎合技术在市场变现中的强烈诉求;美国模式将氢能视为备选,即氢能只是众多能源解决方案中的一种,氢能发展与否,取决于其技术进步、成本下降等因素;澳大利亚模式将氢能视为产品,即乘着全球刮起的“氢风”,积极扩展出口产品结构,获取更多收益。

从上述对全球氢能发展四种典型模式的分析中可以看到,各国发展氢能产业均有其出发点和立足点,均考虑了各自的资源禀赋、产业基础、现实需要等多方面因素,大多遵循了战略上积极、战术上稳健,坚守发展初衷、不盲从、不冒进的推进策略。当前,我国有关部门正在研究制定国家层面的氢能产业发展战略规划,首先应该明确的是我国发展氢能产业的“初心”与“使命”、目标与路径等问题。参考借鉴国际经验,结合我国实际国情,本文提出我国氢能产业战略定位及发展导向等方面的三点建议。

一是明确产业定位,发挥氢能在现代能源系统中的载体和媒介作用。 国家《能源统计报表制度》已将氢气纳入能源统计,明确了氢能的能源属性,氢能即将成为能源系统的新成员,其发展必须服从和服务于能源革命的总体要求。需要认清的是,我国拥有多个与氢能存在替代关系的能源解决方案,因此氢能并非我国的必选项,而是备选项和优选项。因此,应从我国能源系统的核心问题出发,找准切入点,选择融入能源系统的合适路径。应利用氢能的特点和优势,发挥其在可再生能源消纳、增强能源系统灵活性与智能性等方面的作用,更好地与既有的各种能源品种互动,最终促进能源革命战略的深入实施。

二是提升认识视角,逐步构建绿色低碳的多元化应用场景。 2018年以来出现的各地区扎堆造车情况,既源于对氢燃料电池 汽车 发展前景认知过于乐观,又源于对氢能认识的局限。事实上,我国的氢能技术储备不足、产业根基不牢固,地区间差异非常明显,绝大多数地区都不具备将技术装备推向市场变现的能力和条件。而在深入推进生态文明建设和积极应对气候变化的格局之下,我国已经提出2030年前碳达峰和2060年碳中和的目标愿景,“难以减排领域”的深度脱碳将成为未来我国需要面对的重大问题。因此,应统筹经济效益、节能减碳和产业发展等因素,利用氢能具有的“高效清洁的二次能源、灵活智慧的能源载体、绿色低碳的工业原料”三重特点,逐步构建在交通、储能、工业、建筑等领域的多元化应用场景。

三是加强统筹协调,推动技术与市场、供应与需求“齐步走”。 氢能和燃料电池集尖端材料、先进工艺、精密制造于一身,兼具高附加值和高门槛属性。须清醒地看到,我国氢能产业与发达国家差距明显,远未达到大规模商业化的临界点,对价值创造功能不可预期过高。再加上目前产业利润集中在国外企业的事实,我国更应保持战略定力,坚持以“安全至上、技术自主、协调推进”为原则,不盲目追求市场扩张,避免强行通过补贴手段刺激下游需求,进而把大量补贴资金输送至国外公司。各地在谋划氢能产业发展过程中,应遵循“需求导向”原则,“自下而上”布局生产、储运及相关基础设施建设,推动氢能供应链各环节协同发展,避免某环节“单兵突进”。