建材秒知道
登录
建材号 > 生物质能 > 正文

我国生物质能的开发利用有哪些

纯真的夕阳
贤惠的滑板
2022-12-22 00:39:43

我国生物质能的开发利用有哪些?

最佳答案
碧蓝的小蜜蜂
魁梧的板凳
2025-07-19 19:23:50

1.我国的生物质能资源情况

我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50×108t左右,是我国目前总能耗的4倍。生物质能资源按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:(1)农业生产废弃物,主要为作物秸秆。(2)薪柴、枝丫柴和柴草。(3)农林加工废弃物,木屑、谷壳和果壳。(4)人畜粪便和生活有机垃圾等。(5)工业有机废弃物、有机废水和废渣等。(6)能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等。其中来源最广、储量最大、利用前景最可观的是农业生物质和林业生物质这两大类。

1)农业生物质

农业生物质资源包括农产品加工废弃物和农作物秸秆,如图7.13所示。农产品加工废弃物有花生壳、玉米芯、稻壳和甘蔗渣等;农作物秸秆包括水稻秸秆、小麦秸秆和玉米秸秆等。据统计,我国各地区主要农业生物质的可利用总量约为5.6×108t,排名前三的地区分别是山东、河南、河北,而秸秆类农业生物质资源利用的主要方向为24%用于饲用,15%用于还田,2.3%用于工业,剩余的约60%用于露地燃烧或薪柴。因此,我国的农业生物质资源的应用潜力非常大。

图7.13 农业生物质

2)林业生物质

我国现有森林面积约1.95×108hm2,林业生物质总量超过180×108t,其中可利用的林业生物质资源有以下三类:一类是木本淀粉类资源,如栎类、果实、橡子等;二类是木本油料资源,如油桐、油茶、黄连木、文冠果、麻疯树等;三类是木质燃料资源,如灌木林、薪炭林、林业“三剩物”等。而且,我国还有近4000×104hm2的宜林荒山、荒地可用于种植能源林,还有近600×104hm2疏林地和5000×104hm2郁闭度(指森林中乔木树冠遮蔽地面的程度)低于0.4的低产林地可用于改造。

目前世界上已有20多个国家在种植“柴油树”。我国河北省武安市马家庄乡连绵起伏的青山上,满山遍野生长着枝繁叶茂的黄连木树,这种树木的果实可以提炼柴油,当地群众将它称为“柴油树”。现在武安市共有这样的“柴油树”10万亩,年提炼柴油产量可达1000×104kg。据介绍,到2012年,武安市计划将“柴油树”发展到20万亩,年产柴油量达到2000×104kg。

2.生物质能资源的利用

主要应用在生物乙醇、生物柴油、生物质固体成型燃料和生物质能发电行业。

1)生物乙醇的应用

生物乙醇是指通过微生物的发酵将各种生物质转化为燃料酒精。它可以单独或与汽油混配制成乙醇汽油作为汽车燃料。我国生产生物乙醇的原料有甘蔗、甜高粱、木薯等高能品种,并建立了年产能力达5000t的甜高粱茎秆生产乙醇的工业示范装置。因传统粮食生产乙醇价格昂贵,为降低生产成本,我国已转向对微生物混合发酵法的研发。国家发展和改革委员会称,到2020年,我国15%生物质燃料将应用在汽车、轮船等行业。

2)生物柴油的应用

可从动植物油,如大豆、油菜、动物油脂以及餐饮垃圾中提炼生物柴油,因其环保性、润滑性、安全性能良好,可与石化柴油混合作为燃料。2005年6月,我国使用自主研发的生物酶法生产生物柴油,技术指标达到欧美生物柴油标准,标志着我国生物柴油研究取得了突破性进展。2010年生物柴油产能达300×104t/年,主要用于交通运输行业。我国提出了在2020年,生物柴油产能达200×104t的目标,已在海南建立了6×104t/年装置,产量居我国首位。

3)生物质固体成型燃料的应用

生物质固体成型燃料是将城市垃圾或农林废弃物,通过外力作用,压缩成型来增加其密度的可燃物质,具有高效、清洁、无污染等优点。图7.14为生物质捆装压缩示意图。我国的生物质成型燃料生产设备有螺旋挤压式、活塞冲压式、模辊碾压式,燃料形状主要有块状、棒状、颗粒状三种。北京奥科瑞丰公司生物质固体成型燃料年产量为60×104t,居全国首位,主要应用在直接燃烧取暖与工业锅炉等方面。

图7.14 生物质捆装压缩

4)生物质能发电的应用

生物质能发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。为推动生物质能发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东三个秸秆发电示范项目,颁布了《中华人民共和国可再生能源法》,并实施了生物质能发电优惠上网电价等有关配套政策,从而使生物质能发电,特别是秸秆发电迅速发展。

2008年,蒙牛建成全球最大的生物质能沼气发电厂,得到联合国开发计划署环保基金的大力支持。图7.15为蒙牛生物质能沼气发电厂。

图7.15 蒙牛的全球最大生物质能沼气发电厂

3.生物质能开发利用的主要技术

生物质能开发利用在目前阶段的主要技术有三大类:物理转化、化学转化和生物转化。涉及压缩成型、气化、液化、热解、发酵、水解等具体技术,具体情况如图7.16所示。

1)物理转化

生物质的物理转化是将农林废弃物,如秸秆、锯屑、稻壳、蔗渣等,干燥后在一定压力的作用下,压制成棒状、粒状、块状的成型燃料或饲料。农林废弃物主要由纤维素、半纤维素和木质素构成,生物质压缩成型主要是靠木质素的胶结作用。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,是高分子物质,在植物中含量约为15%~30%。当温度达到70~100℃时,木质素开始软化并具有一定的黏度,当温度达到200~300℃时,木质素呈熔融状态,黏度变高,此时施加一定压力就能使木质素与纤维素黏结,使植物体积大量减少,密度显著增加,取消外力后,由于非弹性的纤维分子间的相互缠绕,其仍能保持给定形状,冷却后强度进一步增加,大大降低农林废弃物的体积,便于运输和储存。

图7.16 生物质能开发利用的主要技术

2)化学转化

生物质的化学转化涉及气化、液化和热解等三个方面。

(1)气化:

生物质气化是指在一定的温度条件下,借助氧气或水蒸气的作用,使高聚合的生物质发生热解、氧化、还原等反应,最终转化为CO,H2和低分子烃类等可燃气体的过程。在我国,应用生物质气化技术最广的领域是生物质气化发电(BGPG)。生物质气化发电的成本约为0.2~0.3元/(kW·h),已经接近或优于常规发电,其单位投资约为3500~4000元/kW,仅为煤电的60%~70%,具备进入市场竞争的条件,发展前景非常广阔。

(2)液化:

生物质液化技术是指在高温高压的条件下,进行生物质热化学转化的过程。通过液化,可将生物质转化成高热值的液体产物,即将固态的大分子有机聚合物转化成液态的小分子有机物,生物柴油就是利用生物质液化技术生产出的可再生燃料。油料作物如大豆、油菜、棕榈等在酸性或碱性催化剂和高温的作用下发生酯交换反应,生产相应脂肪酸甲酯或乙酯,再经过洗涤干燥后得到生物柴油。与传统的石化能源相比,其硫和芳烃含量低,十六烷值高,闪点高,具有良好的润滑性,可添加到化石柴油中。

(3)热解:

生物质热解是指利用热能将生物质的大分子打断,从而转化为含碳原子数目较少的低分子化合物的过程,即生物质在完全缺氧条件下,经加热或不完全燃烧后,最终转化成高能量密度的气体、液体和固体产物的过程,而木炭就是利用生物质热解技术生产出的重要产物。木炭产品包括白炭、黑炭、活性炭、机制炭四大类,其中应用范围最广的是活性炭。活性炭是具有发达孔隙结构、强吸附力、比表面积巨大等一系列优点的木炭。在我国,活性炭广泛应用于葡萄糖、味精和医药等产业的生产。

3)生物转化

生物转化技术是指依靠微生物发酵或者酶法水解作用,对生物质进行生物转化,生产出乙醇、氢、甲烷等液体或气体燃料的技术。生物转化的生物质原料包括淀粉和木质纤维素两大类。玉米、木薯、小麦等淀粉类粮食作物是生物转化的主体,但是以农作物为原料转化的产品成本较高,且易受土地和人口的因素限制,产量无法大幅度增加。因此以廉价的农作物废料等木质纤维素为原料的生物转化技术才是解决能源危机的有效途径。然而,木质纤维素的结构和组分与淀粉类原料有很大的不同,解决高效、低成本降解木质纤维素原料的问题是木质纤维素转化产物取代化石燃料的根本途径。

最新回答
平淡的含羞草
直率的月饼
2025-07-19 19:23:50

进入21世纪以来,我国面临的能源安全和环境生态保护问题日趋严峻,可再生能源已经成为能源发展战略的重要组成部分以及能源转型的重要发展方向。根据可再生能源应用的不同领域,电力系统建设正在发生结构性转变,可再生能源发电已开始成为电源建设的主流。生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。

装机容量世界第一

生物质能是重要的可再生能源,开发利用生物质能,是能源生产和消费革命的重要内容,是改善环境质量、发展循环经济的重要任务。为推进生物质能分布式开发利用,扩大市场规模,完善产业体系,加快生物质能专业化多元化产业化发展步伐。截至2020年底,全国已经投产生物质发电项目有1353个。

在国家大力鼓励和支持发展可再生能源,以及生物质能发电投资热情高涨,各类生物质发电项目纷纷建设投产等推动下,我国生物质能发电技术产业呈现出全面加速的发展态势。2020年,生物质发电新增装机543万千瓦,累计装机达2952万千瓦。我国生物质发电装机容量已经是连续三年列世界第一。

生物质发电主要包括农林生物质发电、垃圾焚烧发电和沼气发电。2020在,在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大,达到51.9%其次是农林生物质发电,累计装机容量占比为45.1%沼气发展累计装机容量占比仅为3.0%。

生物质能发电量稳定增长

近年来,我国生物质能发电量保持稳步增长态势。2020年,中国生物质年发电量达到1326亿千瓦时,同比增长19.35%。

从发电量结构来看,垃圾焚烧发电量最大,2020年中国垃圾焚烧发电量为778亿千瓦时,占比为58.6%农林生物质发电量为510亿千瓦时,占比为38.5%2020年沼气发电量为37.8亿千瓦时,占比为2.9%。

随着生物质发电快速发展,生物质发电在我国可再生能源发电中的比重呈逐年稳步上升态势。截至2020年底,我国生物质发电累计装机容量占可再生能源发电装机容量的3.2%总发电量占比上升至6.0%。生物质能发电的地位不断上升,反映生物质能发电正逐渐成为我国可再生能源利用中的新生力量。

垃圾焚烧发电量将持续增长

在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大。国内生活垃圾清运量和无害化处理率保持持续增长,对于垃圾焚烧的需求也在日益增加。为满足垃圾焚烧消纳生活垃圾的需求,随着垃圾焚烧发电市场从东部地区向中西部地区和乡镇转移,垃圾焚烧发电量将持续增长。

农林生物质发电项目利用小时数从2018年开始逐年走低,主要原因是可再生能源补贴拖欠对农林生物质发电项目影响较大。根据统计,2019年农林生物质发电利用小时数超过5000h的项目未188个,总装机为526万千瓦。据此判断约50%的项目在承受电价补贴拖欠的压力下,仍坚持项目运营。2020年农林生物质发电新增装机容量也有所下降,为217万千瓦。

山东生物质发电全国领先

总体上来看,生物质发电整体呈现东强西弱的局面。东部和南部沿海地区发展较好。

2020年,全国生物质发电量排名前五位的省份是山东、广东、江苏、浙江和安徽,发电量分别为365.5万千瓦、282.4万千瓦、242.0万千瓦、240.1万千瓦和213.8万千瓦。

2020年,全国生物质发电新增装机容量排名前五位的省份是广东、山东、江苏、浙江和安徽,分别为67.7万千瓦、64.6万千瓦、41.7万千瓦、38.9万千瓦和36.0万千瓦。

—— 更多数据请参考前瞻产业研究院《中国生物质能发电产业市场前瞻与投资战略规划分析报告》

瘦瘦的学姐
傲娇的黑猫
2025-07-19 19:23:50
生物质发电普遍亏损为何能盈利

“发电机组一年运转10个半月,要吃掉秸秆22万吨。我们通过集中管理、免费收割、创新技术等措施解决了生物质发电的原料问题。同时也实现秸秆的零废弃、零污染和高效利用。”江苏生物发电有限公司董事长王介绍说。

生物质发电成本怎么降?

工业化管理秸秆的收、储、运,建筑废木料破碎掺烧,提高热值

“我们利用循环流化床技术,以小麦、水稻、棉花等农作物秸秆和其他生物质为原料发电供热。”走在厂区大道上,王说,目前,通过升压站,将电输送到长湾变电所并入国家电网,年可发电量1.8亿度,供电量1.6亿度,供热35万吨。

据介绍,可年处理秸秆22万吨,相当于节约原煤15万吨,减排二氧化碳12万吨,减排二氧化硫1.8万吨,减排烟尘5200吨。而秸秆燃烧后的灰烬富含钾、磷等成分,可还田作为有机肥。

在生物质发电行业中,原料成本约占总成本的60%~70%,也是盈亏关键所在。目前,收运大多依靠人工,随着劳动力、燃油等成本的提高,以及秸秆收购价格的不断攀升,支出成本不断增加,也导致了生物质发电企业普遍经营亏损。

数据显示,2013年,江苏省13家秸秆发电企业中,9家亏损,4家盈利,是盈利的4家之一。

2010年建厂之初,就购买了多台收割机,免费为农户收割农作物。农户既节省了200元/亩的收割费,又减少了秸秆处置的麻烦,而则解决了秸秆来源的难题。

由于秸秆热值较低,要达到发电能量,通常添加15%~20%的煤。通过技术创新,专门从德国进口了打碎机,对建筑废木料破碎后掺烧,来提高秸秆热值(热值在5000大卡左右)。

虽然采取了一系列措施,但每年秸秆收集的人力成本、燃油成本的上涨等,仍让倍感压力。

原料成本怎么降低?

探索秸秆收集利用新模式,签订近万亩土地集体流转协议

几十台收割机在稻田里作业,扒草机将产生的秸秆收集,打捆机将秸秆打成重约400公斤的包装,夹包机夹到路边卡车上,然后运回发电厂。这是探索的秸秆收集利用新模式在访仙镇农场秋收时展现出的景象。

镇农服中心副主任侯新华介绍说,作为市最大的农场,农场水稻种植面积有7000多亩,占了全镇水稻总面积的1/5。

2013年,投资2.5亿元,上马了30万吨大米加工项目,并与村签订全村近万亩土地的集体流转协议,打造当地最大的稻米种植基地。

为方便收集秸秆,投资4000多万元,统一派发种子、统一播种、统一收割、统一收粮,将流转农田交由31位受聘农户管理,农户管理工资为400元/亩,每亩要上交600斤麦子、1050斤稻子,超产部分由农户和农场分成。这31位种粮大户中最多的管理近千亩,最少的也有200多亩。

如何延伸产业链?

构建循环农业产业链,打造集发电、稻麦生产、加工、销售于一体的企业

“机械、种子、农药等农资都由公司承担,我们出人工、拿报酬,种得好还能拿超产分成,去年收入有10多万元。”一名受聘农户坦言,在家种田有这样的收入,真是做梦也没想到。

据悉,农场的主导产品是优质无公害稻米,生产过程中采用稻、鸭共养模式,使用无公害的有机肥料,收获的稻谷运往公司稻米加工厂加工,稻麦秸秆则作为生物发电厂的原料,发电后剩下的草木灰返还到基地作为有机肥料,循环利用,形成生态、环保、绿色、可持续发展的循环农业产业链。

据测算,每亩粮田稻麦两季可回收秸秆近一吨,每吨秸秆可发电800度,每年农场及周边农户回收的秸秆可达两万吨,可生产1600万度电。回收的秸秆经过能源化处理产生草木灰,再回归农田作为农场的生态肥料,形成颇具特色的清洁环保、生态循环的可持续发展农业产业链。

目前,该公司已是一家集生物质发电、优质稻麦生产、优质大米加工销售等涉农项目于一体的农业龙头企业。

跳跃的镜子
乐观的飞机
2025-07-19 19:23:50
一、对农林生物质发电项目实行标杆上网电价政策。未采用招标确定投资人的新建农林生物质发电项目,统一执行标杆上网电价每千瓦时0.75元(含税,下同)。通过招标确定投资人的,上网电价按中标确定的价格执行,但不得高于全国农林生物质发电标杆上网电价。

二、已核准的农林生物质发电项目(招标项目除外),上网电价低于上述标准的,上调至每千瓦时0.75元;高于上述标准的国家核准的生物质发电项目仍执行原电价标准。

三、农林生物质发电上网电价在当地脱硫燃煤机组标杆上网电价以内的部分,由当地省级电网企业负担;高出部分,通过全国征收的可再生能源电价附加分摊解决。脱硫燃煤机组标杆上网电价调整后,农林生物质发电价格中由当地电网企业负担的部分要相应调整。

四、农林生物质发电企业和电网企业要真实、完整地记载和保存项目上网交易电量、价格和补贴金额等资料,接受有关部门监督检查。各级价格主管部门要加强对农林生物质上网电价执行情况和电价附加补贴结算情况的监管,确保电价政策执行到位。

具体价格看各地的政府支持以及扶持力度了。

开放的小蝴蝶
生动的冰淇淋
2025-07-19 19:23:50
1生物质混燃发电与直燃发电、气化发电的对比

常见的生物质发电技术有直燃发电、沼气发电、甲醇发电、生物质燃气发电技术等。目前,国内研究较多的是生物质直燃发电和生物质气化发电技术,对生物质混燃发电技术的应用研究有限。基于我国小火电数量多而污染重的特点,以及农村生物质本身来源广且数量大的特殊国情,本文先从技术和政策角度对生物质混燃发电技术进行讨论,然后分析生物质混燃发电的经济效益、环保效益和社会效益,后者更为重要。

1.1生物质直燃发电现状

生物质发电主要是利用农业、林业废弃物为原料,也可以将城市垃圾作为原料,采取直接燃烧的发电方式。如英国ELY秸秆直燃电站是目前世界上较大的秸秆直燃电厂,装机容量为3.8万kW,年耗秸秆约20万t。古巴政府与联合国发展组织等机构合作,预计投资1亿美元兴建以甘蔗渣为原料的环保电厂。我国直燃发电方面在南方地区有一定的规模。两广省份共有小型发电机组300余台,总装机容量800MW。生物质直接燃烧发电技术已比较成熟,由于生物质能源需要在大规模利用下才具有明显的经济效益,因而要求生物质资源集中、数量巨大、具有生产经济性。

1.2生物质气化发电现状

生物质气化发电是指生物质经热化学转化在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。小型气化发电采用气化-内燃机(或燃气轮机)发电工艺,大规模的气化-燃气轮机联合循环发电系统作为先进的生物质气化发电技术,能耗比常规系统低,总体效率高于40%,但关键技术仍未成熟,尚处在示范和研究阶段。在气化发电技术方面,广州能源研究所在江苏镇江市丹徒经济技术开发区进行了4MW级生物质气化燃气-蒸汽整体联合循环发电示范项目的设计研究,并取得了一定成果。

1.3生物质混燃发电现状

生物质混燃发电技术在挪威、瑞典、芬兰和美国已得到应用。早在2003年美国生物质发电装机容量约达970万kW,占可再生能源发电装机容量的10%,发电量约占全国总发电量的1%。其中生物质混燃发电在美国生物质发电中的比重较大,混烧生物质燃料的份额大多占到3%~12%,预计还有更多的发电厂将可能采用此项技术。英国Fiddlersferry电厂的4台500MW机组,直接混燃压制的废木颗粒燃料、橄榄核等生物质,混燃比例为锅炉总输入热量的20%,每天消耗生物质约1500t,可使SO2排量下降10%,CO2排放量每年减少100万t。在我国生物质混燃发电技术应用不多,与发达国家相比还相距较远。但是该项技术可以减少CO2的净排放量,符合低碳经济的发展要求、符合削减温室气体的需要,具有很大的发展潜力。

在我国农村,农户土地分散导致秸秆收集难度较大,收集运输成本限制着秸秆的收集半径,加上秸秆种类复杂,若建立纯燃烧秸秆的电厂,难以保证原料的经济供应。掺烧生物质不失为一种更现实的解决方案,即把部分生物质和煤混燃,减少一部分耗煤。与生物质直燃发电相比,生物质混燃发电具有投资小、建设周期短、对原料价格易于控制等优势。从技术上看,混烧比纯烧具有更多的优越性:可以用秸秆等生物质替代一部分煤来发电,不必新建单位投资大、发电效率低的纯“秸秆”电厂。何张陈将混燃案例与气化案例作了比较,发现气化案例的发电成本要比混燃案例高,而且对生物质价格变化更敏感。兴化中科估计的单位装机容量投资约为丰县鑫源投资的11.3倍,约为宝应协鑫的1.4倍。混燃还可以提高秸秆等生物质的利用效率、缓解腐蚀问题、减少污染、简化基础设施。

2生物质混燃发电技术解析

由于我国小火电厂数量多并且污染大,与其废弃关闭,不如因地制宜的对一些小型燃煤电厂设备略加改造,利用生物质能发电。典型的生物质能发电厂设备规模小,装机容量<30MW;但是利用生物质混燃发电既可发挥现有煤粉燃烧发电的高效率,实现生物质的大量高效利用,而且对现役小型火电厂改造无需大量资金投资,凸显出生物质混燃发电的优越性,特别是生物质气化混烧发电通用性较强,对原有电站的影响比直接混烧发电对原有电站的影响小些。生物质锅炉按燃烧方式有层燃炉、流化床锅炉、悬浮燃烧锅炉等方案可供选择,对现役火电厂实施混燃技术改造,锅炉本体结构不需大的变化(主要改造锅炉燃烧设备)。改造主要涉及在已有燃料系统中进行生物质掺混,有以下3方式。

(1)在给煤机上游与煤混合,再一起制粉后喷入炉膛燃烧。

(2)采用专门的破碎装置进行生物质的切割或粉碎,然后在燃烧器上游混入煤粉气流中,或通过专设的生物质燃烧器喷入炉膛燃烧。

(3)将生物质在生物质气化炉中气化,产生的燃气直接通到锅炉中与煤混合燃烧。本文主要以第2种和第3种为研究对象。

技术上,生物质和煤混燃关键是生物质燃料的选择和积灰问题。燃料的选择可以通过管理手段并辅以掺混设备加以解决。下面主要讨论积灰问题。

生物质和煤混燃的可行性,在一定程度上受积灰的影响很大。不同燃料的积灰特性与多种因素相关,如灰的含量、飞灰的粒径分布、灰的组成和灰的流动性。积灰是必须考虑的重要因素,因为积灰对锅炉运行、锅炉效率、换热器表面的腐蚀和灰的最终利用都有重要影响。与煤相比,生物质(如秸秆)和煤混燃时,两种原料之间的相互作用会改变积灰的组成、降低颗粒的收集效率和灰的沉降速率。生物质灰中碱性成分(特别是碱金属K)含量也比较高,且主要以活性成分存在,从火焰中易挥发出来凝结在受热面上形成结渣和积灰,实际商业应用中生物质掺混比*高为15%,当掺比较小时,一般不会发生受热面灰污问题。国际和国内的经验均表明,生物质混燃发电在技术上没有大的障碍,技术上是完全可行的。

笨笨的紫菜
激情的小天鹅
2025-07-19 19:23:50
不管是太阳能发电还是水力、风力发电,都需要专门的地理条件,无法大面积使用。同时,就算是找到了适应的地区,这些发电方式也要受限于当日的环境状况,比如太阳能发电处的天气晴朗与否,风力发电处的风力大小。对于一个人们生活中不可缺少的行业来说,大部分的可再生资源发电都属于不可控状态。总的来说,地理以及环境的限制是大部分可再生资源的短板。我国最初的发电行业,火电就是说一不二的霸主似人物。稳定一直都是火力发电身上的标签,不仅是发电稳定,火力发电对于环境的要求也不高,只要技术到位,可以迅速在全国铺开,作为火电行业的扛鼎者,燃煤发电完美继承了这一优点。同时,燃煤发电的成本相对来说较为低廉,这也是许多发电行业选择燃煤发电的一个重要原因。但是,燃煤发电也并非毫无缺点,其最受诟病的缺点就是污染问题,在环境问题越来越受重视的前提之下,陷入尴尬燃煤发电也不得不寻求突破。

本来是发电行业龙头的燃煤发电,因为生产过程中的污染问题而地位大跌,部分燃煤发电厂甚至处于被抛弃的边缘。

梳理完燃煤发电和以太阳能发电为首的可再生资源发电,大家可能会发现,不管是火力发电还是可再生资源发电,都存在这一种发电方式的身影,这种方式就是——生物质发电。

我国是农林大国,这在某种程度上保证了我国生物质发电的燃料来源。在资源的划分上来看,生物质属于可再生能源,生物质发电自然也是可再生能源发电中的一员;而熊发电方式上来看,通过燃烧将生物质能转化为电能的生物质发电,则是妥妥的火力发电。对于生物质发电来说,其糅杂了可再生能源发发电与火力发电的优势。

其一,生物质发电主要包括农林生物质发电、垃圾发电、沼气发电等等,这些燃料来源广泛,由于生物质发电所需的能量是燃料燃烧所散发的能量,对于燃料的质量要求不高,许多被其他行业淘汰下来的劣质燃料也可以投入使用,因此,生物质发电历来就有变废为宝的说法。

其二,生物质发电足够稳定,不需要地区与环境的限制,只要能够保证燃料的充足,生物质发电厂就能够按时按量发电。

但是,生物质发电的处境却也不容乐观。作为一个刚刚起步的行业,生物质发电并没有能力完成自负盈亏。不仅如此,生物质发电在更多意义上属于福利发电,这一属性决定了它很难独自完成资金的回笼,更多时候,生物质发电的资金回流靠的是政府的资金补贴。但是,由于整改原因,政府的补贴迟迟不能到位,巨大的资金缺口使得诸多电厂纷纷倒闭。