海水可以变成氢燃料了!未来要从海上获取能源了。
海洋可能很快成为可再生能源的宝贵来源。
斯坦福大学的一个科学家小组已经找到了一种用盐水制造氢燃料的方法。这一发现可以打开世界海洋作为潜在的能源。研究人员将电解或将水分解为氢气和气体的行为,作为一种有前景的可再生能源新来源。但它带来了许多障碍 一个主要的问题是只有纯净水才能用于电解。海水往往会腐蚀水分解系统。
不幸的是,纯净水本身就是一种稀缺资源。这就是为什么斯坦福大学化学教授戴红杰和她的团队试图找到一种方法来防止盐水分解用于分解水的装置。“在加利福尼亚州,我们目前的需求几乎没有足够的水,” 戴在一份新闻稿中表示。
斯坦福大学的团队将镍 - 铁氢氧化物和硫化镍层叠在镍泡沫核心之上,基本上形成了一个屏障,可以减缓底层金属的腐烂。通过充当导体,镍泡沫从电源传输能量,并且镍 - 铁氢氧化物激发电解。没有镍涂层会发生什么?水分解装置持续约12小时,不能承受海水腐蚀。但是使用镍层,该设备可以持续运行超过一千小时。
我们仍然远离利用海水作为新的可再生能源。这一新发现并未在斯坦福大学的研究实验室之外进行。但科学家们希望它能为增加氢燃料的使用铺平道路。
3月2日,粤港澳大湾区首个大容量海上风电场项目——珠海金湾海上风电场项目全容量并网发电,为大湾区“碳达峰”按下了加速键。项目建成后,每年可提供清洁电能近8亿千瓦时,满足30万户家庭一年的用电量。
近年来,全球环境污染问题日益严重,人们的环保意识也逐步提高,由于传统能源有限且对环境污染严重,优先发展清洁能源成了全球各国重要的命题。清洁能源也叫绿色能源,顾名思义清洁能源不会对环境产生污染,也是取之不尽用之不竭的可再生能源,常见的清洁能源有风力发电、水力发电、太阳能、生物能等能源。3月2日,粤港澳大湾区启动首个大容量海上风电场项目,建成后该项目每年可提供清洁电近8亿千瓦时,能够满足30万户家庭一年的用电量。
风力发电是把风的动能转为电能。风能蕴量巨大,比地球上可开发利用的水能总量还要大10倍。较之传统的燃煤和燃油火电,风力发电具有其不可比拟的优点。一、风能是一种清洁能源,可以直接转化为可利用的能源,不会对环境产生污染。二、风能是一种可持续使用的可再生资源,取之不尽用之不竭。三、风电站建设周期短,且不管是陆地还是海面上都能建设,地域影响小。四、风电站的运行和维护成本低廉,经济效益高。
近年来由于温室效应,地球的温度一直处于不断上升的状态。因此,风力发电作为主要的清洁能源之一,在全世界得到了大力发展。风力发电不仅能保护环境,其发电效率也很高,但近年来也有报告指出,风力发电对鸟类的负面影响,因此,风电站的选址也应避开候鸟的迁徙路线,这样才能让风力发电更好的为人类服务。
能够形成一种固体的一氧化碳
我国东南沿海 美国东海岸 澳大利亚的东南海岸的深处储量很大
但大规模开采的技术不成熟
现在无法大量开采
2 海洋能包括温度差能、波浪能、潮汐与潮流能、海流能、盐度差能、岸外风能、海洋生物能和海洋地热能等8种.这些能量是蕴藏于海上、海中、海底的可再生能源,属新能源范畴.所谓“可再生”是指它们可以不断得到补充,永不会枯竭,不像煤、石油等非再生能源,储量有限,开采一点就少一点.人们可以把这些海洋能以各种手段转换成电能、机械能或其他形式的能,供人类使用.海洋能绝大部分来源于太阳辐射能,较小部分来源于天体(主要是月球、太阳)与地球相对运动中的万有引力.蕴藏于海水中的海洋能是十分巨大的,其理论储量是目前全世界各国每年耗能量的几百倍甚至几千倍.
海洋能具有一些特点.第一,它在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小.这就是说,要想得到大能量,就得从大量的海水中获得.第二,它具有可再生性.海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭.第三,海洋能有较稳定与不稳定能源之分.较稳定的为温度差能、盐度差能和海流能.不稳定能源分为变化有规律与变化无规律两种.属于不稳定但变化有规律的有潮汐能与潮流能.人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱.潮汐电站与潮流电站可根据预报表安排发电运行.既不稳定又无规律的是波浪能.第四,海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小.
到目前为止,这项工作的重点主要是发展水力发电、太阳能及陆上风能。但是,由于中国拥有9000英里的漫长海岸线,所以发展海上风能的潜力也非常可观。虽然全球海上风能行业仍然处于早期发展阶段,但我们相信海上风能能够而且应当成为中国可再生能源领域不可或缺的一部分。中国国家气象局初步估计中国的潜在海上风能装机容量为7.5亿千瓦。根据轮毂高度的不同,这一潜力可能还会更大。
海上风能对于从广东到山东的东部沿海地区人口密集省份尤其具有意义。这些省份拥有大量海上风能资源,其中广东和福建最为优越。同时,这些省份的城市也是中国制造业企业集中之地。通过在电力需求量最大的沿海地区附近发展海上风电场,中国避免了建设一系列远距离输电线路从中国西北陆上风电设施输送电力的麻烦。
海上风能的初始投资成本较高,毫无疑问这是阻碍中国发展海上风能的因素之一。但是,海上风能的最小运营成本、更长使用寿命的涡轮机、更高更稳定的发电量等长期优势,完全可以弥补其短期劣势。
中国政府在推动海上风能发展方面发挥了至关重要的作用。要克服海上风能投资成本较高的问题,政府需要制定适当的激励计划。中国政府认识到了这一点,因此采取了相应措施来推动海上风能的商业化。去年,中国在上海附近的东海上成功建成了第一个海上风电场,预计将于投入运行。另外,广东、福建、浙江、江苏和山东的海域上还有许多其他项目提案。
但是,中国在海上风能专业技术方面存在很大差距。虽然该市场的增长速度一直令人印象深刻,但中国公司在先进的海上制造与工程领域仍然处于赶超阶段。为全面实现中国的海上风能潜力,从具有海上风能经验的发达国家获得技术转让是很重要的。
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。
人类利用风能的历史可以追溯到公元前,但数千年来,风能技术发展缓慢,没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视。
================================================================
风力发电
http://www.newenergy.com.cn 2003-11-3 14:56:00 深圳节能
风是由于太阳照射到地球表面各处受热不同,产生温差引起大气运动形成的。尽管达到地球的太阳能仅有2%转化为风能,但其总量十分可观。全球可实际利用风能为2X1O’MW,比地球上可开发利用的水能总量还要大10倍。 目前,风能的利用主要是发电,风力发电在新能源和可再生能源行业中增长最快,年增达35%,美国、意大利和德国年增长更是高达50%以上。
德国风电已占总发电量的3%,丹麦风电己超过总发电量的 10%。全球风电装机容量已达25000MW以上,能满足1500万个家庭,即3800万人的用电需求。虽然欧洲占世界风电总装机容量的70%以上,但其他国家也在积极开辟市场,己有50多个国家正积极促进风能事业的发展。由于风力发电技术相对成熟,许多国家投入较大、发展较快,使风电价格不断下降,目前风力发电成本0.4-0.7/KWH,若考虑环保和地理因素,加上政府税收优惠和相关支持,在有些地区已可与火电等能源展开竞争。在全球范围内,风力发电已形成年产值超过50亿美元的产业。 建设风力发电场的主要投资是风力发电机组设备,占总投资的80%以上。风力发电机从100w-1MW,有许多种规格。中小型风机多离网独立运行,中大型机组多组成风电场或风力田并网发电。目前,并网发电以500KW-750KW为主导机组,也有少量12MW机组在投入使用。最大的试运行机组单机容量已达2.5.3MW,当然,也有人在研制SMW风力发电机。现在,不仅把风电场建在内陆、岛屿和海岸,英国、荷兰等一些欧洲国家经验表明,将风电场建在海上,经济效益、环境效益和社会效益更加明显。
根据世界能源组织1999年制订的《风能100》报告,2002年修订成《风能12则报告,经过科学测算,今后风力发电年增长均在30%以上,并预测到2020年,全世界风电装机总容量将达1260GW,年发电量将达到世界电能总需求量的12%。 我国风能资源丰富,储量32亿千瓦,可开发的装机容量约253亿千瓦,居世界首位,与可开发的水电装机容量3.8亿千瓦为同一量级,具有商业化、规模化发展的潜力。我国政府十分重视风力发电产业,1996年就制订的《乘风计划》,旨在鼓励提高中大型风力发电机制造技术和国产化率,“十五”期间原计划在风力发电产业投资15亿元。由于具有一定的商业机会和市场前景,一些地方政府和民间也积极投入风电事业。目前,全国累计安装小型风力发电机近20万台,用作解决西部无电地区农牧民生产生活用电发挥了重要用用。在广东、福建、浙江、辽宁、内蒙、新疆等地已建成26个风电场,单机容量从200千瓦到1300千瓦多种规格,总装机容量近40万千瓦。
在装备方面,我国已具备了研制从100瓦l 千瓦的10多种小型风力发电机的能力,自主开发的200-300千瓦级风电机组国产化率已超过90%,600千瓦机组样机国产化程度已达80%。我国近期目标是到2005年,并网风力发电装机容量要达到 120万千瓦。尽管我国近几年风力发电增长很快,年增长都在50%左右,但无论是装备制造水平,还是总装机容量与欧美一些发达国相比仍存在较大差距,与邻国印度也存在明显差距。我国风力发电装机容量仅占全国电力装机的0.11%,可见我国风力发电潜力何等巨大!广东风力资源极为丰富,已建起了汕头南澳岛等风电场。深圳有条件也应该在风力发电方面迈出坚实的一步。
=================================================================
风能有望成为中国第三大发电能源
http://www.newenergy.com.cn 2006-3-1 9:01:00 人民网-市场报
近日公布的一份中国风电发展报告指出,如果充分开发,中国有能力在2020年实现4000万千瓦的风电装机容量,风电将超过核电成为中国第三大主力发电电源。
该报告名为《风力12在中国》,由中国资源综合利用协会可再生能源专业委员会与绿色和平、欧洲风能协会共同编写,并于世界可再生能源大会在北京开幕前夕发布。
报告指出,如果这一目标能够实现,中国风电年发电量将达到800亿千瓦时,可满足8000万人的用电需求,同时每年减少4800万吨二氧化碳排放量。
报告说,到2020年中国市场将需要超过2.5万台大容量风机,风电业销售额将超过3000亿元,并创造至少15万个就业机会。报告还指出,在过去5年里,风电成本下降约20%,是可再生能源技术中成本降低最快的技术之一。
截至2004年底,中国有43家风电场,安装1291台风力发电机组,并网风力发电装机容量为76万千瓦,名列世界第十,亚洲第三。过去三年中,中国风电装机容量增长速率逐年递增,分别为16.4%、21.1%和34.7%。
报告预测,2050年前后,中国风电装机容量可以达到甚至超过4亿千瓦,相当于2004年全国的电力装机容量,风电将成为第二大主力发电电源。
据悉,2006年1月1日起,中国将实施《可再生能源法》。绿色和平可再生能源项目主任喻捷说,这个法的实施必将推动中国风电事业的发展
===================================================================
1、风能以及人类对风能的利用
古代就利用风能作为动力,用风带动简易的传动装置,用以磨米,灌溉和排涝。在古埃及,古希腊的历史上也都有使用风车的记载。唐·吉诃德把风车当作魔鬼,与之奋战一场,也说明在人类历史上早就利用过风的力量。
为了寻找无污染的能源,人们也就仿效祖先,利用风力。风是空气流动而产生的,不需要勘探,采掘,加工和运输。只要空气一流动,就会产生动力。据估计,内陆每年可吸收风能1014兆瓦,相当于全世界目前发电量的十分之一。在接近地而二百米高度以内的风能只占总能量的百分之二十。但是风能变化莫测,转向无常。科学家们正在探索利用风能的奥秘。
到二十一世纪,无论在广阔的草原,还是在高高的山岭,我们都会看到 座座能抗风暴袭击而稳定运行的风力发电站。每当大风来临,收集机就会自动调转方向,迎接风的洗礼,任凭风力有多大,来势有多猛,它一概取之,转成电能储存起来,为人类提供永久的电力。这样,即使在远离城市的乡村和牧场都可以用上家用电器,为您的生活增添现代化的色彩。
在“能源危机”的冲击下,人们对风能的研究空前活跃起来。美国研究风力的费用从1973年的二十万美元,猛增到1975年的七百万美元,1976年又上升到一千二百万美元。英国、荷兰、丹麦、日木等国也为风力的研究报入大量的资金和人力。瑞典政府计划到1990年全国用电量将有百分之二十依靠风力发电获得。在能源的舞台上,空气具有最大的普遍性,从获得无污染的能源角度出发,风能的利用必将有一个较大的发展。 <<返回>>
2、世界各国对风能的利用
英国以伦敦为核心的城市群,英国风力发电支持家庭供电。英国贸工部2003年宣布了一项发展近海风力发电事业的大型计划,拟在近海新建数千座风力发电机,力争2010年前达到向六分之一家庭供电的能力。
德国风力发电冠欧洲,在欧洲国家中,德国的风力发电最为发达,到2003年年底,装机容量已达到875.4万千瓦,占全欧总装机容量的一半以上。就前景而言,欧洲风力发电的发展势头仍将继续下去。在德国,风力发电目前占其电力生产的3.5%,政府的目标是在2025年之前将这一比重提高到至少25%。
日本是一个岛国,有丰富的风能可利用。日本风能利用有两大基础优势。首先,风车的规模已达到单台1000千瓦以上,而且防噪音技术也有很大改进。其次,为了防止地球温室效应,针对大型企业动力系统向可再生能源转移的“绿色电力制度”,对风力发电也是很大的推动。据预测,到2010年日本全国风力发电的总功率将达到目前的10倍,达300万千瓦。
美国风力发电飞速发展,美国风力资源十分丰富。由于环境保护和对未来能源的需要,美国十分重视风能的开发和利用。目前美国是世界上风力机安装容量最大的国家,约230万千瓦。到2006年,计划安装420万千瓦。
我国目前已建成的风电厂达27个,到2005年,全国风力发电总装机容量将达150万千瓦左右。有关专家认为,上海的南汇、崇明、奉贤以及长兴岛、横沙岛都具有海风利用价值。具体到这一项目,折算下来年满载运行时间将达2000小时以上,发电总量可达4000多万千瓦时。由于整个发电过程不需任何能源投入,因而相当于每年从海风中“淘”到3200万元人民币。
中国目前风电场总装机容量为50万千瓦。风力发电目前在全球进入快速发展期,中国将继续通过特许权等方式促进风电建设快速发展,到2010年,拟建成总装机容量400万千瓦的风电场。
中国风能资源丰富,储量32亿千瓦,可开发的装机容量约2.53亿千瓦,居世界首位,具有商业化、规模化发展的潜力。目前中国风力发电装机容量仅占全国电力装机的0.11%,风力发电潜力巨大。 <<返回>>
3、风能发电的原理
制造风能机械,利用风力发电是风能利用的两项主要内容。风力发动机是一种把风能变成机械能的能量转化装置。风力发动机由5部分组成:
(1)风轮。风轮由二个或多个叶片组成,安装在机头上,是把风能转化为机械能的主要部件。
(2)机头。机头是支承风轮轴和上部构件(如发电机和齿轮变速器等)的支座,它能绕塔架中的竖直轴自由转动。
(3)机尾。机尾装于机头之后,它的作用是保证在风向变化时,使风轮正对风向。
(4)回转体。回转体位于机头底盘和塔架之间,在机尾力矩的作用下转动。
(5)塔架。塔架是支撑风力发动机本体的构架,它把风力发动机架设在不受周围障碍物影响的高空中。
根据风轮叶片的数目,风力发动机分为少叶式和多叶式两种。少叶式有2~4个叶片,具有转速高,单位功率的平均质量小,结构紧凑的优点;常用在年平均风速较高的地区。是目前主要用作风力发电机的原动机。其缺点是启动较为困难。多叶式一般有4~24个叶片,常用于年平均风速低于3~4米/秒的地区;具有易启动的优点,因此利用率较高。由于转速低,多用于直接驱动农牧业机械。
风力发动机的风轮与纸风车转动原理一样,但是,风轮叶片具有比较合理的形状。为了减小阻力,其断面呈流线型。前缘有很好的圆角,尾部有相当尖锐的后缘,表面光滑,风吹来时能产生向上的合力,驱动风轮很快地转动。对于功率较大的风力发动机,风轮的转速是很低的,而与之联合工作的机械,转速要求较高,因此必须设置变速箱,把风轮转速提高到工作机械的工作转速。风力发动机只有当风垂直地吹向风轮转动面时,才能发出最大功率来,由于风向多变,因此还要有一种装置,使之在风向变化时,保证风轮跟着转动,自动对淮风向,这就是机尾的作用。风力发动机是多种工作机械的原动机。利用它带动水泵和水车,就是风力提水机;带动碾米机,就是风力碾米机;此类机械统称为风能的直接利用装置。带动发电机的就叫风力发电机。它们均由两大部分组成,一部分是风力发动机本体和附件,是把风能转化为机械能的装置;另一部分是电气部分,包括发电机及电气装置,把机械能转化为电能,并可靠地提供给用户。小风力发电机的容量不大,功率一般从几瓦到几千瓦,大都具有结构简单,搬运方便的优点。按风力发动机与发电机的连接方式分,有变速连接的和直接连接的两种。
在风能的利用中,蓄能是一个重要的问题。特别是对于风力发电,在很大程度上,其生命力由蓄能装置(如蓄电池)的可靠程度来决定。有了蓄能装置,在有风的时候,把多余的能量储存起来;在无风时,输出应用。各种蓄能方式的研究是风能利用的一个急待解决的重要任务。
============================================================
风能及其利用
风能是空气流动产生的功能,实际上是太阳能的一种转化形式。风能资源的总储量非常巨大,一年中所产生的能量约相当20世纪90年代初全世界每年所消耗的燃料的3000倍。
风能是一种可再生的清洁能源,储量大、分布广,但它的能量密度低(只有水能的1/800),并且不稳定。风能的利用主要是将风的动能转换成机械能、电能和热能等。
人类利用风能已有数千年历史。在蒸汽机发明之前,就已作为重要动力长期用于船舶航行、提水饮用和灌溉、排水造田、磨面和锯木等。目前我国风力提水机的拥有量约有1600多台,总功率2100 kW。
自20世纪70年代以来,在寻找替代能源中,美国和西欧等发达国家投入了大量资金和人力,研制现代风力发电机。目前全世界大型并网风机容量已达到5×106 kW,主导机型为300~600 kW,并还在向更大容量发展。有人预测,虽然目前全球总发电量中,风力发电量所占比例不足1%,但是在今后50年内,这个比例将上升到20%或者更高。
我国有丰富的风能资源,资源总量为16×108 kW。全国可开发利用的风能资源为2.53×108kW。主要分布在两大风带:沿海风带,有效风能密度在200 W/m2以上,4~20 m/s有效风力出现百分率达80%~90%;北部风带,在新疆、甘肃到内蒙一带,有效风能密度一般大于200 W/m2,有效风力出现的时间百分率均在70%左右。
自20世纪80年代以来,我国为解决电网难以达到的边远地区用电问题,重点推广了户用微型风力机,已商品化生产的有100 W,200 W,300 W,500 W,1 kW,5 kW等不同功率等级的机组。1996年,全国有15.9万台小型风力机在运行,总装机容量2.34×104 kW。
风力发电场建设是使风能成为补足能源和发挥规模效益的主要方式。已在新疆、内蒙、广东、福建、浙江、海南、辽宁等地区建设了14座风电场,安装并网风力机260台,总装机容量超过5.7×104 kW,最大单机容量为600 kW。
风能发电存在的主要问题,一是目前我国还不具备大型风力发电机组关键部件制造技术和能力;二是在风电场的选择、风电场建设上还缺乏科学的手段和标准规范。
我国已把风力发电作为新能源发电的重点,并制定了长期发展计划,在十几个省(区)规划建设风电场。其中包括内蒙古辉腾锡勒风场装机10×104 kW,河北省张北风场装机5×104 kW,上海崇明岛和南汇风场分别装机1.4×104 kW和0.6×104 kW,福建省平潭风场装机2×104 kW。
1月14日本报记者从中国农机协会风力设备分会获知该消息。共有26家企业参与本期4个项目的竞标。该分会秘书长祁广生告诉记者:“参与此期竞标者主要还是国有发电企业,民营企业与外资企业都没有独立参与竞标。”
令外界颇为关注的是,此次招标一改以往“低价者胜”的招标方案,而采用“中间价”的模式。“与前四次最大的不同是谁出价更接近平均价,谁得分就更高。”中国水电工程顾问集团新能源项目教授级高工施鹏飞说。
风电特许权项目招标始于2003年,由于竞标企业争先压价以获取风电资源,导致特许权项目价格低于一般项目的审核价格。各发电集团争夺特许权项目是为完成国家规定的可再生能源发电配额做准备。
施鹏飞表示,此次采用中间价竞标对改善风电上网价格形成机制是个利好。多位风电专家均认为,非理性出价不利于风电上网价格形成,也导致风电产业发展过热。
目前,国内风电电价采用招标和核准两种模式。而值得注意的是,广东省已于近期率先采用风电标杆价,开启了国家风电“固定电价”的先河。
招标新政
第五期风电特许权招标项目包括内蒙古北清河风电场、内蒙古乌兰伊力更风电场、河北围场御道口风电场和甘肃玉门昌马风电场4个项目,总装机容量95万千瓦。本期招标是去年11月30日正式开标的。
记者获悉,此次招标在电价权重上依然保持25%比例,但在评分体系上,根据所有通过初评的投标人的投标上网价格,去掉一个最高价和一个最低价,然后算出平均投标电价,谁越接近平均投标定价,得分越高。
祁广生表示:“采取这个方式招标,避免了恶性低价的竞争局面。虽然还不是最合理的价格,但是比往届价格都有所提高。”施鹏飞也认为,此次中标价格虽然还是相对偏低,但已开始向合理理性回归。
“竞标价是国家为未来制订风电上网电价的重要依据,但竞标者往往是以取得项目抢占优质资源为出发点,而不是以项目投资收益为出发点,这种非理性出价导致竞标价格与合理水平相差甚远。这不仅不利于风电未来合理定价,也不利于整个风电产业的发展。”施鹏飞指出。
迄今开展的五期风电特许权招标共15个项目,总装机容量330万千瓦。但前四期由于“价格战”导致特许权项目价格明显低于一般项目的审核价格。
据施鹏飞介绍,第一、二期风电特许权项目明确规定承诺上网电价最低的投标商中标,结果实际中标的上网电价远低于合理范围,甚至出现了像0.382元/千瓦时(含税,下同)夺标的低价。2004年第二期特许权项目招标,北京国际新能源竞标联合体以此低价中标内蒙古辉腾锡勒风电场项目。
祁广生认为:“这种恶性竞争导致中标价格明显低于成本价格。”各竞标体都不以风能评估数据为出价标准,出价偏离理性水平。最明显的案例是如东项目连续两年招标,风能资源和其他条件几乎完全相同,而华睿公司2003年和2004年的投标上网价格却相差0.16元/千瓦时,飙升40%。
“低价为王”使得发改委不得不改变竞标方案。第三、四期的招标降低了价格的评选权重,但效果并不明显。第三期电价占项目评选权重调整为40%,第五期再减少至25%。据公开资料显示,除第四期巴音项目是出价第二低的竞标人夺标外,其它四个项目仍然是上网电价最低的投标商。
据介绍,第五期特许权招标方案另外一个重要的调整是对风电机组制造商参与投标的具体规定方面。对于其生产的同一种机型,在同一项目上可以与不超过三家的投标人签署供货协议。而在以前几期招标中,供货协议都必须是一对一、排他性的。
风电过热
为何企业宁愿亏本也想夺得特许权招标项目?施鹏飞告诉记者:“这是进入风电领域和扩大风电装机容量最简单的方法,看重的是风电未来的前景。”
据了解,采用特许权招标的项目装机规模比一般项目都要大,且国家在立项前已完成项目的前期工作。祁广生指出:“对于企业来说,这样可以少走很多弯路,国家把前期工作弄好了,所以通过这种方式取得项目可以避免许多麻烦。”
同时,上述两位专家都指出了各能源企业抢“风”更深层次的原因:各电力企业都在为完成新能源发电配额储备装机容量。
早在2006年1月,国家发改委发布的<可再生能源发电有关管理规定>指出:“发电企业应当积极投资建设可再生能源发电项目,并承担国家规定的可再生能源发电配额义务。”但具体配额指标迟迟没有出台。
施鹏飞对记者表示,国家有意要求装机容量超过500万千瓦,发电投资商在2010年除水电外,可再生能源配额达到3%,2020年达到8%。“由于生物质能发电目前发展并不顺利,所以各大发电集团把这部分指标押在风电上。”
专家指出,对于各国有发电集团来说,风电造成的亏损都可以从火电项目里补足。同时,施鹏飞表示:“五大发电集团也面临着做大做强的压力,虽然2002年电改时为打破垄断成立五大发电集团,但由于国资委要求各行业央企要争取做到前三,所以各发电集团积极加码风电装机容量。”
1月9日,华电集团及其下属公司达成协议,由中国华电、华电国际(4.73,-0.05,-1.05%)、华电能源(3.74,-0.05,-1.32%)、贵州水电及华电工程订立增资协议,共同向华电新能源公司注资1.52亿元。增资完成后,华电集团注入华电新能源的资金将达2.54亿元,持有后者51%的股份,并由此做大风电业务。
国家支持风电的发展,但施鹏飞和祁广生都认为目前风电的发展速度是非理性的,“明显过热”。公开资料显示,风电装机容量已经连续两年增长速度超过100%,到2007年年底总装机容量已超过500万千瓦时,提前三年完成国家提出的2010年风电装机容量目标。
施鹏飞指出,风电过热表现之一是盲目立项,有些项目没开展足够的前期工作,跟电网也没充分协调。“上海东海大桥海上风电场立项前就连一座测风塔都没有。”“有些地方政府和企业只管装机容量而不管未来能不能发电,能发多少电。”
其次,对风机设备是个严峻考验。“样机还没经过严格试验就大批量生产,两三年后很多风电场肯定会为此付出代价。”祁广生也指出:“有些产品还没有安装,就已经有定单了,它没有经过一个逐步的完善的过程,这对我国风电设备的发展是不利的。”
定价机制争议
风电价格形成机制是近年来风电产业关注的焦点,关于招标定价与固定定价的争议也已持续多年。祁广生认为:“从行业发展的角度来看,风电采取招标定价的方式不是太好,如果采用固定电价会好一些。”
目前,国内风电电价采用招标和核准两种模式。施鹏飞指出:“国家是想通过招标定价为未来确定风电电价做参考,但目前即使同等条件的风电场,招标电价也相差很大,而且什么项目应该招标也没有明确。”据了解,相关政策只规定高于5万千瓦的项目需要国家发改委批准,其它项目由地方政府批准。
<2007年风电发展报告>也指出:“资源条件差异形成的价格差别正常的,但是价格形成机制的因素造成的价格差异,往往容易成为人们批评的焦点。”例如,在同一时期建设运行的南澳岛的3个风电场,价格各异,高低相差高达0.28元。
施鹏飞对记者表示:“固定电价更有利于产业的发展,但也要有一个形成过程,且各地资源不同,可以根据不同区域的情况实行不同的价格。”祁广生也认为,即使实行固定电价,南方和北方也应该有所区别。
就在各方对风电价格争论之际,广东省在2007年12月1日起率先实行风电标杆价,开启了国家风电“固定电价”的先河。目前暂定为0.689元/千瓦时(含税),原上网电价高于这一标准的维持原有标准不变,其中实行招标的项目按照招标确定的价格执行。
施鹏飞认为:“这个价格相对于广东省内的风电资源情况是比较合理的,基本上就是在当地燃煤机组标杆电价基础上加价0.25元,等同于发改委规定的生物质能发电加价政策。”
平安证券电力行业分析师窦泽云对本报记者表示:“广东风电实现标杆价将使行业合理盈利得到保障,有利于吸引更多的投资者参与投资。”
根据<可再生能源发电价格和费用分摊管理试行办法>,风电电价高出当地脱硫燃煤机组标杆上网电价的部分,由可再生能源电价附加支付,高出部分由全国分摊。可再生能源电价附加按照0.001元/千瓦时的标准在销售电价中征收。
我国位于亚洲大陆东部,濒临太平洋,季风强盛,内陆还有许多山系,地形复杂,加之青藏高原耸立我国西部,改变了海陆影响所引起的气压分布和大气环流,增加了我国季风的复杂性。冬季风来自西伯利亚和蒙古等中高纬度的内陆,那里空气十分严寒干燥冷空气积累到一定程度,在有利高空环流引导下,就会爆发南下俗称寒潮,在此频频南下的强冷空气控制和影响下,形成寒冷干燥的西北风侵袭我国北方各省(直辖市、自治区)。每年冬季总有多次大幅度降温的强冷空气南下,主要影响我国西北、东北和华北,直到次年春夏之交才消失。 夏季风是来自太平洋的东南风、印度洋和南海的西南风,东南季风影响遍及我国东半壁,西南季风则影响西南各省和南部沿海,但风速远不及东南季风大。热带风暴是太平洋西部和南海热带海洋上形成的空气涡漩,是破坏力极大的海洋风暴,每年夏秋两季频繁侵袭我国,登陆我国南海之滨和东南沿海,热带风暴也能在上海以北登陆,但次数很少。
酒泉市现已建起中国第一个千万千瓦级超大型风电基地,为中国最重要的风电基地。
青藏高原地势高亢开阔,冬季东南部盛行偏南风,东北部多为东北风,其他地区一般为偏西风,夏季大约以唐古拉山为界,以南盛行东南风,以北为东至东北风。 我国幅员辽阔,陆疆总长达2万多公里,还有18000多公里的海岸线,边缘海中有岛屿5000多个,风能资源丰富。我国现有风电场场址的年平均风速均达到 6米/秒以上。一般认为,可将风电场风况分为三类:年平均风速6米/秒以上时为较好;7米/秒以上为好;8米/秒以上为很好。可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。我国相当于 6米/秒以上的地区,在全国范围内仅仅限于较少数几个地带。就内陆而言,大约仅占全国总面积的 1/100,主要分布在长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区,包括山东、辽东半岛、黄海之滨,南澳岛以西的南海沿海、海南岛和南海诸岛,内蒙古从阴山山脉以北到大兴安岭以北, 新疆达板城,阿拉山口,河西走廊,松花江下游,张家口北部等地区以及分布各地的高山山口和山顶。
根据全国气象台部分风能资料的统计和计算,中国风能分区及占全国面积的百分比见下表。 指标 丰富区 较丰富区 可利用区 贫乏区 年有效风能密度(W/㎡) >200 150-200 50-150 <50 年≥3m/s累计小时数(h) >5000 4000-5000 2000-4000 <2000 年≥6m/s累计小时数(h) >2200 1500-2200 350-1500 <350 占全国面积的百分比(%) 8 18 50 24 表 中国风能分区及占全国面积的百分比
太阳辐射的能量到地球表面约有2%转化为风能,风能是地球上自然能源的一部分,我国风能潜力的估算如下: 风能理论可开发总量(R),全国为32.26亿千瓦,实际可开发利用量(R’),按总量的 l/ 10估计,并考虑到风轮实际扫掠面积为计算气流正方形面积的 0.785倍〔1米直径风轮面积为 0.5&sup2×π= 0.785(平方米)〕,故实际可开发量为: R’=0.785R÷10=2.53(亿千瓦)。
中国属于能源进口大国,利用可再生能源是当务之急,特别是在中国风资源丰富的广大的农村地区,中国政府应加大对风电设备的购买补贴,包括太阳能电池板屋顶的补贴,如果全国农村家用电能做到一半自给,能可以节约电能每年20亿度以上 。希望国家加大这方面运作力度。
中国10m高度层的风能资源总储量为32.26亿kW,其中实际可开发利用的风能资源储量为2.53亿kW。
东南沿海及其附近岛屿是风能资源丰富地区,有效风能密度大于或等于200W/㎡的等值线平行于海岸线;沿海岛屿有效风能密度在300W/㎡以上,全年中风速大于或等于3m/s的时数约为7000~8000h,大于或等于6m/s的时数为4000h。
酒泉市、新疆北部、内蒙古也是中国风能资源丰富地区,有效风能密度为200~300W/㎡,全年中风速大于或等于3m/s的时数为5000h以上,全年中风速大于或等于6m/s的时数为3000h以上。
黑龙江、吉林东部、河北北部及辽东半岛的风能资源也较好,有效风能密度在200W/㎡以上,全年中风速大于和等于3m/s的时数为5000h,全年中风速大于和等于6m/s的时数为3000h。
青藏高原北部有效风能密度在150~200W/㎡之间,全年风速大于和等于3m/s的时数为4000~5000h,全年风速大于和等于6m/s的时数为3000h;但青藏高原海拔高、空气密度小,所以有效风能密度也较低。
云南、贵州、四川、甘肃(除酒泉市)、陕西南部、河南、湖南西部、福建、广东、广西的山区及新疆塔里木盆地和西藏的雅鲁藏布江,为风能资源贫乏地区,有效风能密度在50W/㎡以下,全年中风速大于和等于3m/s的时数在2000h以下,全年中风速大于和等于6m/s的时数在150h以下,风能潜力很低。
根据南非对电的依赖的需求,重点在对电的能源利用,天然气是从燃煤发电向可再生能源过渡的绝佳燃料,也是南非资源数量较多的一种,可以选择加大对天然气的利用。
南非启动从煤炭向可再生能源过渡的计划将需要465亿美元,是西方国家在未来三到五年内为该项目承诺的85亿美元的五倍多。
风能 英文名称:wind energy 定义1:近地层风产生的动能。 所属学科:大气科学(一级学科);应用气象学(二级学科) 定义2:空气流动所具有的能量。 所属学科:电力(一级学科);可再生能源(二级学科) 定义3:地球表面空气流动所形成的动能。风能是太阳能的一种转化形式。风速愈大,它具有的能量愈大。 所属学科:资源科技(一级学科);能源资源学(二级学科)
风能(wind energy)地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。据估算,全世界的风能总量约1300亿千瓦,中国的风能总量约16亿千瓦。
风能(wind energy)是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生 风能
电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有 94.1 百万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。 现代利用涡轮叶片将气流的机械能转为电能而成为发电机。在中古与古代则利用风车将搜集到的机械能用来磨碎谷物或抽水。 风力被使用在大规模风农场为全国电子栅格并且在小各自的涡轮为提供电在被隔绝的地点。 风能量是丰富、近乎无尽、广泛分布、干净与缓和温室效应。 我们把地球表面一定范围内。经过长期测量,调查与统计得出的平均风能密度的概况称该范围内能利用的依据,通常以能密度线标示在地图上。 人类利用风能的历史可以追溯到西元前,但数千年来,风能技术发展缓慢,没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视,比如:美国能源部就曾经调查过,单是德克萨斯州和南达科他州两州的风能密度就足以供应全美国的用电量。
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面 风能
,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。风能就是空气的动能,风能的大小决定于风速和空气的密度。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。空气流动所形成的动能及为风能。风能是太阳能的一种转化形式。太阳的辐射造成地球表面受热不均,引起大气层中压力分布不均,空气沿水平方向运动形风。风的形成乃是空气流动的结果。
能源利用
风能利用形式主要是将大气运动时所具有的动能转化为其他形式的能量。风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了中国南北之间的气压梯度,使空气作水平运动。
风吹的方向
理论上风应沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹,但是地球在自转,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球气流向右偏转,南半球向左偏转,所以地球大气运动除受气压梯度力外,还受地转偏向里的影响。大气真实运动是这两力的合力。实际上,地面风不仅受这两个力的支配,而且在很大程度上受海洋、地形的影响,山隘和海峡能改变气流运动的方向,还能使风速增大,而丘陵、山地却磨擦大使风速减少,孤立山峰却因海拔高使风速增大。 因此,风向和风速的时空分布较为复杂。比如海陆差异对气流运动的影响,在冬季,大陆比海洋冷,大陆气压比海洋高,风从大陆吹向海洋;夏季相反,大陆比海洋热,风从海洋吹向内陆。这种随季节转换的风,我们称为季风。
海陆风的形成
所谓的海陆风也是白昼时,大陆上的气流受热膨胀上升至高空流向海洋,到海洋上空冷却下沉,在近地层海洋上的气流吹向大陆,补偿大陆的上升气流,低层风从海洋吹向大陆称为海风 风能
,夜间(冬季)时,情况相反,低层风从大陆吹向海洋,称为陆风。 在山区由于热力原因引起的白天由谷地吹向平原或山坡,夜间由平原或山坡吹向,前者称谷风,后者称为山风。这是由于白天山坡受热快,温度温度高于山谷上方同高度的空气温度,坡地上的暖空气从山坡流向谷地上方,谷地的空气则沿着山坡向上补充流失的空气,这时由山谷吹向山坡的风,称为谷风。夜间,山坡因辐射冷却,其降温速度比同高度的空气较快,冷空气沿坡地向下流入山谷,称为山风。 当太阳幅射能穿越地球大气层时,大气层约吸收2*10^16W的能量,其中一小部分转变成空气的动能。因为热带比亚热吸收较多的太阳辐射能,产生大气压力差导致空气流动而产生风。至于局部地区,例如,在高山和深谷,在白天,高山顶上空气受到阳光加热而上升,深谷中冷空气取而代之,因此,风由深谷吹向高山;夜晚,高山上空气散热较快,于是风由高山吹向深谷。另一例子,如在沿海地区,白天由于陆地与海洋的温度差,而形成海风吹向陆地;反之,晚上由陆地吹向海上。
经济性
利用风来产生电力所需的成本已经降低许多,即使不含其他外在的成本,在许多适当地点使用风力发电的成本已低于燃油的内然机发电了。风力发电年增率在2002 年时约25%,现在则是以38%的比例快速成长。2003年美国的风力发电成长就超过了所有发电机的平均成长率。自2004 年起,风力发电更成为在所有新式能源中已是最便宜的了。在2005 年风力能源的成本已降到1990年代时的五分之一,而且随着大瓦数发电机的使用,下降趋势还会持续。 偏远地区经济与观光发展
西班牙
位于西班牙东北方Aragon的La Muela,总面积为143.5平方公里。1980年起,新任市长看好充沛的东北风资源而极力推动风力发电。近20年来,已陆续建造450座风机(额定容量为237MW),为地方带来丰富的利益。当地政府并借此规划完善的市镇福利,吸引了许多人移居至此,短短5年内,居民已由4,000人增加到12,000人。La Muela已由不知名的荒野小镇变成众所皆知的观光休闲好去处。
法国
另法国西北方的Bouin原本以临海所产之蚵及海盐著名,2004年7月1日起,8座风力发电机组正式运转,这8座风机与蚵、海盐三项,同时成为此镇之观光特色,吸引大批游客从各地涌进参观,带来丰沛的观光收入。
台湾
台湾的苗栗县后龙镇好望角因位处滨海山丘制高点,早年就是眺望台湾海峡的好去 海陆风的形成
处,近几年外商在邻近区域,设置了21座高100米的风力发电机,形成美不胜收的景致。该公司在2003年,看中苗栗沿海冬天强劲东北季风,着手在后龙、竹南等地设立风力发电机,其中后龙成立了大鹏风力发电场,建置21座风机,发电总装置容量达4.2万瓩,是目前全台容量最大的风场,2006年6月竣工启用后,俨然成为观光新景点,吸引不少人前往探访。好望角位在半天寮顶端居高临下,向北可看到4、5座风机,往南也可望见3、4座风机,加上海线铁路从山下行经,面临宽阔的台湾海峡,风景相当引人入胜,也成为欣赏风力发电机最佳景点之一。
风的能量
地球吸收的太阳能有1%到3%转化为风能,总量相当于地球上所有植物通过光合作用吸收太阳能转化为化学能的50到100倍。 上了高空就会发现风的能量,那儿有时速超过160公里 (100 英哩160 km/h 100 mph)的强风。这些风的能量最后因和地表及大气间的摩擦力而以各种热能方式释放。 风的成因:因太阳照射极地和赤道的不均匀使得地表的不受热;地表温的速度较海面快;大气中同温层如同天花板的效应加速了气体的对流;季节/的变化;科氏效应;月亮的反射比率,形成了风。 风能可以通过风车来提取。当风吹动风轮时,风力带动风轮绕轴旋转,使得风能转化为机械能。而风能转化量直接与空气密度、风轮扫过的面积和风速的平方成正比。空气的质流穿越风轮扫过的面积,随着风速以及空气的密度而变化。举例来说,在15°C (59°F)的凉爽日子里,海平面空气密度为每立方米 1.22 公斤(当湿度增加时空气密度会降低)。当风以秒速8米吹过直径一百米的转轮时,每秒能够使1,000,000,000公斤的空气穿越风轮扫过的面积。 指定质量的动能与其速率之平方成正比。因为质流与风速呈线性增加,对风轮有效用的风能将会与风速的立方成正比;本例子中风吹送风轮的功率,大约为2.5百万瓦特。 因为风涡轮提取能量,空气减速,导致它对传播并且在风涡轮附近在某种程度上牵制它。 德国物理学家,阿尔伯特Betz, 1919年确定风涡轮可能提取至多将否则流经涡轮的横断面的59%能量。 不管涡轮的设计, Betz极限申请。
有风变化,并且平均值为一个被测量的地点单独不表明风涡轮可能导致那里的相当数量能量。 要估计风速风土学在一个特殊地点,概率分布作用经常适合到被观察的数据。 不同的地点将有不同的风速发行。 最频繁用于的发行模型塑造风速风土学是二参量 Weibull distribution 因为它能依照各种各样的发行形状,从高斯到指数。Rayleigh 塑造,例子,其中被密谋在右边反对实际被测量的数据集,是形状参量合计2 Weibull作用的一个具体形式和非常严密反映每小时风速的实际发行在许多地点。由于许多电能是由高风速所产生,可用的能量多来自瞬间大的风速.一大半可用的能量,却只有占运作时间的15%.所以无法像使用燃料的火力发电厂,可以依照用电需求来调整发电量. 由于风速并非常数,风力发电整年的发电量不是标示的发电率乘上所有的运转时间(一年内).实际产生的值与理论值(最大值)称为容量因子.安装良好的风力发电机,其容量因子可达35%.跟一般使用燃料的发电厂的涡轮机相比,标示1000kW的风力发电机,每年可发的电量最多到350kW.短时间的输出功率是难以预测,但每年发电量的变化应该几个百分比之内. 当储藏,如此的关于用唧筒抽水水力电气的储藏, 或其他形式的世代被用来 " 塑造 " 风力量 (借着保证持续的递送可信度),商业的递送代表大约 25% 的费用增加,屈从的有活力的商业表现。
风力的分级
风之强弱程度,通常用风力等级来表示,而风力的等级,可由地面或海面物体被风吹动之情形加以估计之。目前国际通用之风力估计,系以蒲福风级为标准。蒲福氏为英国海军上将,于 1805年首创风力分级标准。先仅用于海上,后亦用于陆上,并屡经修订,乃成今日通用之风级。实际风速与蒲福风级之经验关系式为: V= 0.836 * (B ^ (3/2)) B为蒲福风级数,V为风速(单位:米/秒) 一般而言,风力发电机组起动风速为2.5米/秒,脸上感觉有风且树叶摇动情况下,就已开始运转发电了,而当风速达28~34米/秒时,风机将会自动侦测停止运转,以降低对受体本身之伤害。
风电第一纸媒《风能世界》摘录:我国位于亚洲大陆东部,濒临太平洋,季风强盛,内陆还有许多山系,地形复杂,加之青藏高原耸立我国西部,改变了海陆影响所引起的气压分布和大气环流,增加了我国季风的复杂性。冬季风来自西伯利亚和蒙古等中高纬度的内陆,那里空气十分严寒干燥冷空气积累到一定程度,在有利高空环流引导下,就会爆发南下俗称寒潮,在此频频南下的强冷空气控制和影响下,形成寒冷干燥的西北风侵袭我国北方各省(直辖市、自治区)。每年冬季总有多次大幅度降温的强冷空气南下,主要影响我国西北、东北和华北,直到次年春夏之交才消失。 夏季风是来自太平洋的东南风、印度洋和南海的西南风,东南季风影响遍及我国东半壁,西南季风则影响西南各省和南部沿海,但风速远不及东南季风大。热带风暴是太平洋西部和南海热带海洋上形成的空气涡漩,是破坏力极大的海洋风暴,每年夏秋两季频繁侵袭我国,登陆我国南海之滨和东南沿海,热带风暴也能在上海以北登陆,但次数很少。 青藏高原地势高亢开阔,冬季东南部盛行偏南风,东北部多为东北风,其他地区一般为偏西风,夏季大约以唐古拉山为界,以南盛行东南风,以北为东至东北风。 我国幅员辽阔,陆疆总长达2万多公里,还有1800O多公里的海岸线,边缘海中有岛屿5000多个,风能资源丰富。我国现有风电场场址的年平均风速均达到 6米/秒以上。一般认为,可将风电场风况分为三类:年平均风速6米/秒以上时为较好;7米/秒以上为好;8米/秒以上为很好。可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。我国相当于 6米/秒以上的地区,在全国范围内仅仅限于较少数几个地带。就内陆而言,大约仅占全国总面积的 1/1OO,主要分布在长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区,包括山东、辽东半岛、黄海之滨,南澳岛以西的南海沿海、海南岛和南海诸岛,内蒙古从阴山山脉以北到大兴安岭以北, 新疆达板城,阿拉山口,河西走廊,松花江下游,张家口北部等地区以及分布各地的高山山口和山顶。 根据全国气象台部分风能资料的统计和计算,中国风能分区及占全国面积的百分比见下表。 表 中国风能分区及占全国面积的百分比 指标 丰富区 较丰富区 可利用区 贫乏区 年有效风能密度(W/m2) >200 200~150 <150~50 <50 年≥3m/s累计小时数(h) >5000 5000~4000 <4000~2000 <2000 年≥6m/s累计小时数(h) >2200 2200~1500 <1500~350 <350 占全国面积的百分比(%) 8 18 50 24 太阳辐射的能量到地球表面约有2%转化为风能,风能是地球上自然能源的一部分,我国风能潜力的估算如下: 风能理论可开发总量(R),全国为32.26亿千瓦,实际可开发利用量(R’),按总量的 l/ 10估计,并考虑到风轮实际扫掠面积为计算气流正方形面积的 O.785倍〔1米直径风轮面积为 O.52 Xπ= O.785(平方米)〕,故实际可开发量为: R’=O.785R/10=2.53(亿千瓦)。