光伏有什么作用呢?应用在哪些方面呢?
光伏被定义为射线能量的直接转换。在实际应用中通常指太阳能向电能的转换,即太阳能光伏。它的实现方式主要是通过利用硅等半导体材料所制成的太阳能电板,利用光照产生直流电,比如我们日常生活中随处可见的太阳能电池。
光伏技术具备很多优势:比如没有任何机械运转部件;除了日照外,不需其它任何"燃料",在太阳光直射和斜射情况下都可以工作;而且从站址的选择来说,也十分方便灵活,城市中的楼顶、空地都可以被应用。自1958年起,太阳能光伏效应以太阳能电池的形式在空间卫星的供能领域首次得到应用。时至今日,小至自动停车计费器的供能、屋顶太阳能板,大至面积广阔的太阳能发电中心,其在发电领域的应用已经遍及全球。
太阳能是一种快速增长的能源形式,太阳能市场在过去十年中也取得了长足发展。据资料,按年均太阳能系统装机容量计算,全球太阳能市场复合年均增长率达47.4%,从 2003 年的598MW 增长至2007年的2826MW。预测到2012年,年均太阳能系统装机容量可能进一步增至9917MW,而整个太阳能行业的销售额可能从2007年的 172亿美元增长至2012年的395亿美元。这种增长势头在很大程度上要归功于全球快速增加的市场需求、日益提高的上网电价和各种政府鼓励措施。
1.消费性电子产品,如非晶硅太阳能电池供电的计算器,太阳能钟表,太阳能照明灯具,太阳能收音机,电视机等。这类产品约占世界光伏产品销售量的14%。2.远离电网居民供电系统包括家庭分散供电和独立太阳能光伏电站的集中供电。占世界光伏产品销售量的35%。3.离网工业供电系统占世界光伏产品销售量的33%。4.并网太阳能光伏发电系统占世界光伏产品销售量的18%。
什么是光伏:
太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
太阳能是取之不尽、用之不竭的清洁能源。太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电系统由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,因而发电设备极为精炼,可靠、稳定、寿命长,安装维护简便。与常用的火力发电系统相比,太阳能发电系统除了无污染排放外,还具有建设周期短和可利用建筑屋面的优势。
太阳能作为世界上最清洁的能源,目前有着广泛的用途。但由于质量、价格的限制,太阳能发电在国内的利用还处在低水平上,与中国的经济发展形成很大的反差。
8月1日,国家发改委公布了全国统一的太阳能光伏发电标杆上网电价,即2011年7月1日及以后核准的太阳能光伏发电项目(除西藏外),均按每千瓦时1元执行。不少业内人士认为,这是我国光伏发电产业发展的重要里程碑,光伏发电也将开始走上商业化的道路。
随着中国光伏发电产业的规模化发展,光伏发电在成本上一定会有所降低,预计在2014年左右会与传统电价持平并在此后低于传统电价。专家预测,随着我国对于光伏发电产业的扶持,在3到5年内,光伏发电有望进入到每家每户。
用途如下:
光热利用
它的基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器、陶瓷太阳能集热器和聚焦集热器(槽式、碟式和塔式)等4种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目 前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳能采暖(太阳房)、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。
发电利用
清立新能源未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。已实用的主要有以下两种。
1、光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。
2、光—电转换。其基本原理是利用光生伏特效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。
太阳能电池
【材料要求】耐紫外光线的辐射,透光率不下降。钢化玻璃作成的组件可以承受直径25毫米的冰球以23米/秒的速度撞击。
【装用的EVA胶膜固化后的性能要求】透光率大于90%;交联度大于65-85%;剥离强度(N/cm),玻璃/胶膜大于30;TPT/胶膜大于15;耐温性:高温85℃、低温-40℃;太阳电池的背面,耐老化、耐腐蚀、耐紫外线辐射、不透气等。
【用途】太阳能发电广泛用于太阳能路灯、太阳能杀虫灯、太阳能便携式系统,太阳能移动电源,太阳能应用产品,通讯电源,太阳能灯具,太阳能建筑等领域。
太阳能在2050年前可能将成为电力的主要来源,受助于发电设备成本大跌。IEA报告表示,2050年前太阳能光伏(PV)系统将最多为全球贡献16%的电力,来自太阳能发电厂的太阳能热力发电(STE)将提供11%的电力。
光化利用
这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。它包括光合作用、光电化学作用、光敏化学作用及光分解反应。
光化转换就是因吸收光辐射导致化学反应而转换为化学能的过程。其基本形式有植物的光合作用和利用物质化学变化贮存太阳能的光化反应。
植物靠叶绿素把光能转化成化学能,实现自身的生长与繁衍,若能揭示光化转换的奥秘,便可实现人造叶绿素发电。太阳能光化转换正在积极探索、研究中。
通过植物的光合作用来实现将太阳能转换成为生物质的过程。巨型海藻。
燃油利用
欧盟从2011年6月开始,利用太阳光线提供的高温能量,以水和二氧化碳作为原材料,致力于“太阳能”燃油的研制生产。截止目前,研发团队已在世界上首次成功实现实验室规模的可再生燃油全过程生产,其产品完全符合欧盟的飞机和汽车燃油标准,无需对飞机和汽车发动机进行任何调整改动。
研制设计的“太阳能”燃油原型机,主要由两大技术部分组成:第一部分利用集中式太阳光线聚集产生的高温能量,辅之ETH Zürich 自主知识产权的金属氧化物材料添加剂,在自行设计开发的太阳能高温反应器内将水和二氧化碳转化成合成气(Syngas),合成气的主要成分为氢气和一氧化碳;第二部分根据费-托原理(Fischer-Tropsch Principe),将余热的高温合成气转化成可商业化应用于市场的“太阳能”燃油成品。
太阳能的利用目前还不是很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳能电池在为人造卫星提供能源方面得到了应用。
人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外),虽然太阳能资源总量相当于人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。
太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。
建设太空太阳能发电站的设想早在1968年就有人提出,但直到最近人类才开始真正将之付诸行动。日本可谓此项目的先驱者之一,该项目预计耗资210亿美金,发电量能达到十亿瓦特,能供29.4万个家庭使用。在太空建太阳能发电站,无论气候如何,均可利用太阳能发电,这与在地球上建立太阳能发电站的情况不同。
《光伏发电技术及应用》百度网盘pdf最新全集下载:
链接:https://pan.baidu.com/s/1KsNr2o4jw_tgjBHREHU-ag
?pwd=4atx 提取码:4atx简介:《光伏发电技术及应用/高职光伏发电技术及应用专业系列教材》作为光伏发电专业方向的专业基础课程之一,主要从太阳发光的基本过程出发,详细介绍了太阳光特性与应用、硅半导体与非晶硅材料、太阳能电池性能、太阳能电池技术指标和设计、光伏电池片和组件装配、独立光伏系统的结构设计、光伏系统设计、太阳能光伏发电系统的安装、太阳能光伏发电系统的维护管理、光伏控制器、太阳能光伏发电的应用和风光互补发电系统等内容。
1.1项目简介及选址
本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。
本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。
图1-1 选址地卫星图
图1-2 选址平面图
1.2 项目位置及气象情况
经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。
图1-3湘潭市地理位置
图1-4年均总辐射值
1.3项目设计依据
本项目设计依据如下:
《光伏发电站设计规范》GB50794-2012
《电力工程电缆设计规范》GB50217-1994
《光伏系统并网技术要求》GB/T19939-2005
《建筑太阳能光伏系统设计与安装》10J908-5
《光伏发电站接入电力系统技术规范》GB/T19964-2012
《光伏发电站接入电力系统设计规范》GB/T5086-2013
《光伏(PV)系统电网接口特性》GB/T20046-2006
《电能质量公用电网谐波》GB/T14549-19933
《电能质量三相电压允许不平衡度》GB/T15543-1995
《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000
二、电站系统设计
2.1组件选型
组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。
组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。
单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。
表2-1伏组件对比表
组件品牌及型号
晶科
Swan Bifacial 400 72H
晶科
Swan Bifacial 405 72H
晶澳
JAM72S10 400MR
最大功率(Pmax)
400Wp
405Wp
400Wp
最佳工作电压(Vmp)
41V
41.2V
41.33V
组件转换效率(%)
19.54%
19.78%
19.9%
最佳工作电流(Imp)
9.76A
9.83A
9.68A
开路电压(Voc)
48.8V
49V
49.58V
短路电流(Isc)
10.24A
10.3A
10.33A
工作温度范围(℃)
-40℃~+85℃
-40℃~+85℃
-40℃~+85℃
最大系统电压
1000/1500V DC(IEC/UL)
1000/1500VDC(IEC/UL)
1000/1500VDC (IEC)
最大额定熔丝电流
20A
20A
20A
输出功率公差
0~+5W
0~+5W
0~+3%
最大功率(Pmax)的温度系数
-0.350%/℃
-0.35%/℃
-0.35%/℃
开路电压(Voc)的温度系数
-0.290%/℃
-0.29%/℃
-0.272%/℃
短路电流(Isc)的温度系数
0.048%/℃
0.048%/℃
0.044%/℃
名义电池工作温度(NOCT)
45±2℃
45±2℃
45±2℃
组件尺寸:长*宽*厚(mm)
2031*1008*30mm
2031*1008*30mm
2015*996*40mm
电池片数
72
72
72
第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。
第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。
综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。
图2-1 组件图
2.2最佳倾斜角和方位角设计
本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。
对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。
图2-2 PVsyst最佳方位角、倾斜角模拟图
2.3组件排布方式
本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。
图2-3 组件排列方式
2.4组件间距设计
太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。
图2-4间距图
在公式2-1中:
L是阵列倾斜面长度(4050mm)
D是阵列之间间距
β是阵列倾斜角(18°)
为当地纬度(27.96°)
把以上数值代入公式后计算得:
2-5组件计算图
根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。
图2-6方阵间距图
2.5逆变器选型
逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。
表2-2 逆变器参数对比表
逆变器品牌及型号
华为
SUN2000-100KTL-C1
华为
SUN2000-110KTL-C1
固德威
HT 100K
最大输入功率
100Kw
110Kw
150Kw
中国效率
98.1%
98.1%
98.1%
最大直流输入电压(V)
1100V
1100V
1100V
各MPPT最大输入电流(A)
26A
26A
28.5A
MPPT电压范围(V)
200 V ~ 1000 V
200 V ~ 1000 V
200V ~ 1000V
额定输入电压(V)
600V
600V
600V
MPPT数量/输入路数
10/20
10/20
10/2
额定输出功率(KW)
100K W
110K W
100K W
最大视在功率
110000 VA
121000 VA
110000 VA
最大有功功率 (cosφ=1)
110KW
121K W
110KW
额定输出电压
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
380, 3L/N/PE 或 3L/PE
输出电压频率
50 Hz,60Hz
50 Hz,60Hz
50 Hz
最大输出电流(A)
168.8A
185.7 A
167A
功率因数
0.8 超前—0.8 滞后
0.8超前—0.8滞后
0.99 (0.8超前—0.8滞后)
最大总谐波失真
<3%
<3%
<3%
输入直流开关
支持
支持
支持
防孤岛保护
支持
支持
支持
输出过流保护
支持
支持
支持
输入反接保护
支持
支持
支持
组串故障检测
支持
支持
支持
直流浪涌保护
Type II
Class II
具备
交流浪涌保护
Type II
Class II
具备
绝缘阻抗检测
支持
支持
支持
残余电流监测
支持
支持
支持
尺寸(宽 x 高 x 厚)
1,035 x 700 x 365 mm
1,035 x 700 x 365 mm
1005*676*340
重量(kg)
85kg
85kg
93.5kg
工作温度(°C)
-25°C~60°C
-25°C~60°C
-25~60℃
3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。
第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。
第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。
本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。
2.6光伏阵列布置设计
2.6.1串并联设计
图2-7串并联计算
公式2-3、2-4中:
Kv——光伏组件的开路电压温度系数-0.00272
K——光伏组件的工作电压系数-0.0035
t/——光伏组件工作环境极限高温(℃)60
Vpm——光伏组件的工作电压(V)41.33
VMPPTmax——逆变器MPPT电压最大值(V)1000
VMPPTmin——逆变器MPPT电压最小值(V)200
Voc——光伏组件开路电压(V)49.58
N——光伏组件串联数(取整)
t——光伏组件工作环境极端低温(℃)-12.7
——逆变器允许的最大直流输入电压(V)1100
把以上数值代入公式中计算可得:
5.5≤N≤21
经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。
图2-8组件串并联设计图
2.6.2项目方阵排布
据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。
图2-9项目方阵排布图
2.7基础与支架设计
2.7.1水泥墩设计
本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。
考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。
图2-10水泥墩设计
图2-11电站整体水泥墩设计图
2.7.2支架设计
都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。
图2-12支架设计图
2.8配电箱选型
配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。
配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。
表2-3配电箱参数
项目名称
昌松100kw光伏交流配电箱
项目型号
100kw交流配电箱
额定功率
100KW
额定电流
780A
额定频率
50Hz
海拔高度
2500m
环境温度
-25~55℃
环境湿度
2%~95%,无凝霜
2.9电缆选配
电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。
直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆
交流电缆:
P:逆变器功率100KW
U:交流电电压380V
COSΦ:功率因数0.8
=
=190A
=0.035Ω
=976W
线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。
据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。
图2-13 电缆参数图
2.10防雷接地设计
防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。
本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。
图2-14防雷接地设计图
2.11电气系统设计及图纸
本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。
图2-15电气系统设计图
三、电站成本与收益
3.1电站项目设备清单
根据当地市场的物价,预估出了一个本电站预计投资表。
表3-1设备清单表
序号
设备
型号
单位
数量
单价
(元)
价格
(万元)
1
组件
晶澳JAM72S10 400MR
块
260
1.77
18.4
2
逆变器
固德威HT 100K
台
1
3.3w
3.3
3
直流电缆
PV1-F-1*4mm²
米
1500
5.2
0.78
4
交流电缆
ZRC-YJV22 70mm2
米
100
72
0.72
5
支架
\
套
39
556
2.17
6
水泥墩
500*500*500mm
个
78
250
1.95
7
配电箱
昌松100kw光伏交流配电箱
台
1
1.3w
1.3
8
运输费
\
总
18
1000
1.8
9
其他
\
\
\
\
4.15
10
人工费
\
\
\
\
7
合计:41.57万元
3.2电站年发电量计算
本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。
(式3-1)
Q=100*1116.6*0.8=89328度
Q——电站首年发电量
W——本项目电站总容量(85KW)
T——许昌市年日照小时数(1258.2H)
——系统综合效率(0.8)
任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。
表3-2电站发电量
发电年数
功率衰减
年末功率
年发电量(kWh)
累计发电量(kWh)
第1年
2.5%
97.50%
89328.000
89328.000
第2年
0.7%
96.80%
87094.800
176422.800
第3年
0.7%
96.10%
86469.504
262892.304
第4年
0.7%
95.40%
85844.208
348736.512
第5年
0.7%
94.70%
85218.912
433955.424
第6年
0.7%
94.00%
84593.616
518549.040
第7年
0.7%
93.30%
83968.320
602517.360
第8年
0.7%
92.60%
83343.024
685860.384
第9年
0.7%
91.90%
82717.728
768578.112
第10年
0.7%
91.20%
82092.432
850670.544
第11年
0.7%
90.50%
81467.136
932137.680
第12年
0.7%
89.80%
80841.840
1012979.520
第13年
0.7%
89.10%
80216.544
1093196.064
第14年
0.7%
88.40%
79591.248
1172787.312
第15年
0.7%
87.70%
78965.952
1251753.264
第16年
0.7%
87.00%
78340.656
1330093.920
第17年
0.7%
86.30%
77715.360
1407809.280
第18年
0.7%
85.60%
77090.064
1484899.344
第19年
0.7%
84.90%
76464.768
1561364.112
第20年
0.7%
84.20%
75839.472
1637203.584
第21年
0.7%
83.50%
75214.176
1712417.760
第22年
0.7%
82.80%
74588.880
1787006.640
第23年
0.7%
82.10%
73963.584
1860970.224
第24年
0.7%
81.40%
73338.288
1934308.512
第25年
0.7%
80.70%
72712.992
2007021.504
3.3电站预估收益计算
根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入
参考文献
[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.
[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.
[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.
[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.
[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.
[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.
[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.
[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.
[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.
[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.