抽水蓄能电站最小规模
抽水蓄能电站最小规模是水库总库容1亿立方米以下且装机容量30万千瓦以下。中小型抽水蓄能电站是中型抽水蓄能电站和小型抽水蓄能电站的统称,即水库总库容1亿立方米以下且装机容量30万千瓦以下的抽水蓄能电站。
随着我国新兴能源的大规模开发利用,抽水蓄能电站的配置由过去单一的侧重于用电负荷中心逐步向用电负荷中心、能源基地、送出端和落地端等多方面发展。
新能源的迅速发展需要加速抽水蓄能电站建设
风电作为清洁的可再生资源是国家鼓励发展的产业,核电是国家大力发展的新型能源,风电和核电的大力发展,对实现我国能源结构优化、可持续发展有着不可替代的作用。
风能是一种随机性、间歇性的能源,风电场不能提供持续稳定的功率,发电稳定性和连续性较差,这就给风电并网后电力系统实时平衡、保持电网安全稳定运行带来巨大挑战,同时风电的运行方式必将受到电力系统负荷需求的诸多限制。抽水蓄能电站具有启动灵活、爬坡速度快等常规水电站所具有的优点和低谷储能的特点,可以很好地缓解风电给电力系统带来的不利影响。
核电机组运行费用低,环境污染小,但核电机组所用燃料具有高危险性,一旦发生核燃料泄漏事故,将对周边地区造成严重的后果;同时,由于核电机组单机容量较大,一旦停机,将对其所在电网造成很大的冲击,严重时可能会造成整个电网的崩溃。在电网中必须要有强大调节能力的电源与之配合,因此建设一定规模的抽水蓄能电站配合核电机组运行,可辅助核电在核燃料使用期内尽可能的用尽燃料,多发电,不但有利于燃料的后期处理,降低了危险性,而且有效降低了核电发电成本。
抽水蓄能电站是电力系统中最可靠、最经济、寿命周期长、容量大、技术最成熟的储能装置,是新能源发展的重要组成部分。通过配套建设抽水蓄能电站,可降低核电机组运行维护费用、延长机组寿命;有效减少风电场并网运行对电网的冲击,提高风电场和电网运行的协调性以及电网运行的安全稳定性。
特高压、智能电网的发展需要加速抽水蓄能电站建设
国家电网公司正在推进“一特四大”的电网发展战略,即以大型能源基地为依托,建设由1000千伏交流和±800千伏直流构成的特高压电网,形成电力“高速公路”,促进大煤电、大水电、大核电、大型可再生能源基地的集约化开发,在全国范围内实现资源优化配置。同时,将以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,发展以信息化、数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网。特高压交流输电系统的无功平衡和电压控制问题比超高压交流输电系统更为突出。利用大型抽水蓄能电站的有功功率、无功功率双向、平稳、快捷的调节特性,承担特高压电力网的无功平衡和改善无功调节特性,对电力系统可起到非常重要的无功/电压动态支撑作用,是一项比较安全又经济的技术措施,建设一定规模的抽水蓄能电站,对电力系统特别是坚强智能电网的稳定安全运行具有重要意义。
储能产业正处起步阶段抽水蓄能建设加速
“储能肯定已到了呼之欲出的时候。保守估计,到2020年,国内整个储能产业的市场规模至少可以达到6000亿元,乐观的话甚至有可能到两万亿。预计未来国家对储能的支持力度会不断加大。”中科院工程热物理研究所所长助理、鄂尔多斯大规模储能技术研究所所长谭春青在上月召开的“储能国际峰会2012”上表示。这昭示着储能的巨大魅力与潜力。
对新能源和可再生能源的研究和开发,寻求提高能源利用率的先进方法,已成为全球共同关注的首要问题。对中国这样一个能源生产和消费大国来说,既有节能减排的需求,也有能源增长以支撑经济发展的需要,这就需要大力发展储能产业。
日益增长的能源消费,特别是煤炭、石油等化石燃料的大量使用对环境和全球气候所带来的影响使得人类可持续发展的目标面临严峻威胁。据预测,如按现有开采不可再生能源的技术和连续不断地日夜消耗这些化石燃料的速率来推算,煤、天然气和石油的可使用有效年限分别为100-120年、30-50年和18-30年。显然,21世纪所面临的最大难题及困境可能不是战争及食品,而是能源。
我国电力系统建设正处于快速发展阶段,用电高峰时的供电紧张、有功无功储备不足、输配电容量利用率不高和输电效率低等问题都有不同程度的存在。同时,越来越多的大型工业企业和涉及信息、安全领域的用户对负荷侧电能质量问题提出更高的要求。这些特点为分散电力储能系统的发展提供了广泛的空间,而储能系统在电力系统中应用可以达到调峰、提高系统运行稳定性及提高电能质量等目的。
抽水蓄能是电力系统最可靠、最经济、寿命周期最长、容量最大的储能装置。为了保障电源端大型火电或核电机组能够长期稳定的在最优状态运行,需要配套建设抽水蓄能电站承担调峰调荷等任务。截至2008年,我国已建成抽水蓄能电站20座,在建的11座,装机容量达到1091万千瓦,占全国总装机容量的1.35%。
而一般工业国家抽水蓄能装机占比约在5%-10%水平,其中日本2006年抽水蓄能装机占比即已经超过10%。我国抽水蓄能电站的占比明显偏低,随着国内核电及大型火电机组的投建,国内抽水蓄能电站建设明显加速。在建规模达到约1400万千瓦,拟建和可行性研究阶段的抽水蓄能电站规划规模分别达到1500万千瓦和2000万千瓦,如果以上项目顺利投产,2020年我国抽水蓄能电站总装机容量将达到约6000万千瓦。
储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。中国没有达到类似美国、日本将储能当作一个独立产业加以看待并出台专门扶持政策的程度,尤其在缺乏为储能付费机制的前提下,储能产业的商业化模式尚未成形。
我国首座700米级高差抽水蓄能电站建成投运,每年可节约标准煤45万吨。 近日,国内首座700米水位差抽水蓄能电站——吉林敦化抽水蓄能电站1号机组正式投运发电。
吉林省敦化抽水蓄能电站由上水库、下水库、水路系统和地下发电厂组成。 总装机容量140万千瓦,年设计发电量超过23亿千瓦时。 今年将投产两台机组。
抽水蓄能电站是在山上和山下建设两个水库。 当电力不足时,剩余的电力用于将水从山上抽到山上储存。 在用电高峰期放水发电,相当于一个大型清洁能源电池。 可作为电网的调节器和清洁能源的储存器。
吉林敦化抽水蓄能电站的投产,将进一步优化吉林乃至东北电网的供电结构,提高吉林电网吸收新能源的能力。 每年可推动风、光等清洁能源消费超过50亿度,节约标煤45万吨,减少二氧化碳排放87万吨。
抽水蓄能是以新能源为主体的新型电力系统的重要组成部分。 今年,国家电网还将陆续投运山东沂蒙、黑龙江黄沟、河北丰宁抽水蓄能电站。
据了解,该项目自开工以来,每年平均增加地方财政收入约1.7亿元,提供各类就业岗位约2000个,改善了交通等基础设施条件,更好地促进了地方经济社会发展。 2022年电站4台机组全面投运后,可有效缓解东北地区电网调节能力不足的问题,充分发挥供电调峰填谷作用, 推动风能、光能等清洁能源年消耗量超过50亿千瓦时。
抽水蓄能电站是电力系统中最可靠、最经济、寿命周期长、容量大、技术最成熟的储能装置。 是新能源发展的重要组成部分。 新能源和可再生能源的研发,以及寻求提高能源效率的先进方法,已成为世界各国共同关注的首要问题。
优点
1、水力发电效率高,发电成本低,机组启动快,调节容易。由于利用自然水流,受自然条件的影响较大。水力发电往往是综合利用水资源的一个重要组成部分,与航运、养殖、灌溉、防洪和旅游组成水资源综合利用体系。
2、水力发电是再生能源,对环境冲击较小。除可提供廉价电力外, 还有下列之优点:控制洪水泛滥、提供灌溉用水、改善河流航运,有关工程同时改善该地区的交通、电力供应和经济,特别可以发展旅游业及水产养殖。
缺点
1、 因地形上之限制无法建造太大之容量。单机容量为300MW左右。
2. 建厂期间长,建造费用高。
3、因设于天然河川或湖沼地带易受风水之灾害,影响其他水利事业。电力输出易受天候旱雨之影响。
4、建厂后不易增加容量。
5、生态破坏:大坝以下水流侵蚀加剧,河流的变化及对动植物的影响等。
扩展资料:
水力发电的分类
1、按照水源的性质,可分为:常规水电站,即利用天然河流、湖泊等水源发电。抽水蓄能电站,利用电网负荷低谷时多余的电力,将低处下水库的水抽到高处上存蓄,待电网负荷高峰时放水发电,尾水收集于下水库。
2、按水电站的开发水头手段,可分为:坝式水电站、引水式水电站和混合式水电站三种基本类型。
3、按水电站利用水头的大小,可分为:高水头(70米以上)﹑中水头( 15-70米)和低水头(低于15米)水电站。
4、按水电站装机容量的大小,可分为:大型﹑中型和小型水电站。一般装机容量5 000kW以下的为小水电站,5 000至10万kW为中型水电站,10万kW或以上为大型水电站,或巨型水电站。
参考资料来源:百度百科-水力发电
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。
它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。
像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
水电
一是在做好布局的基础上,落实电力市场水电消纳和输电方案,包括四川、云南水电外送,以及“十三五”投产的重点水电。
二是落实水电与促进地方经济社会发展和扶贫协调机制,研究建立西藏水电的开发协调机制,促进藏东南水电基地的开发。
三是研究制定龙头水库综合效益共享机制与政策,进行抽水蓄能电站作用、效益机制研究,水电电价市场化改革及电价机制研究,探索和制定常规水电和抽水蓄能电站电价机制,促进水电持续健康发展。
四是做好流域综合监测规划,建立监测、监管体系,编制流域梯级水电站联合调度运行规程,优化水电站运行,提高利用效率。
到“十三五”时期,水电投资不足、开发技术难度较大等问题都会基本得以解决,而难点转向消纳、外送、移民、环保等方面。因此要把水电开发好,除了技术研究和积累之外,还应该加强水电开发机制体制等一系列问题研究,促进水电有序有效开发利用。
利用电网中负荷低谷时的电力,由下水库抽水到上水库蓄能,待电网高峰负荷时,放水回到下水库发电的水电站,又称蓄能式水电站。
国外抽水蓄能电站的出现已有一百多年的历史,我国在上世纪60年代后期才开始研究抽水蓄能电站的开发。
于1968年和1973年先后建成岗南和密云两座小型混合式抽水蓄能电站,装机容量分别为11MW和22MW,与欧美、日本等发达国家和地区相比,我国抽水蓄能电站的建设起步较晚。
上世纪80年代中后期,随着改革开放带来的社会经济快速发展,我国电网规模不断扩大,广东、华北和华东等以火电为主的电网,由于受地区水力资源的限制,可供开发的水电很少。
电网缺少经济的调峰手段,电网调峰矛盾日益突出,缺电局面由电量缺乏转变为调峰容量也缺乏,修建抽水蓄能电站以解决火电为主电网的调峰问题逐步形成共识。
其中主要新能源包括了5大类:
1. 太阳能:太阳能是通过捕获阳光辐射能并将其转化为热能、电能或热水而获得的。光伏(PV)系统可以通过使用太阳能电池将阳光直接转化为电能。使用太阳能的好处之一是,理论上来说阳光是无穷无尽的,一旦有了采集太阳能的技术,太阳能的供应将是无限的,并意味着化石燃料的淘汰。
2. 风力:风力发电场利用涡轮机捕捉风力并将其转化为电能,目前我们已持有多种不同形式的系统用来转换风能。商业级别的风力发电系统可以为许多不同的组织提供动力,而单风力涡轮机用于帮助补充现有的能源组织。
3. 水力发电:水流通过大坝的涡轮发电,这被称为抽水蓄能水力发电。而径流式水力发电利用的是一条渠道,而不是通过水坝来发电。水力发电用途广泛,既可以利用大型项目,也可以利用小型项目,如水下涡轮机和小型河流和小溪上的低坝。
4. 地热能:地热能是45亿年前地球形成和放射性衰变时被困在地壳下的热量。有时,大量的热会自然地逸出,但同时会导致如火山爆发和间歇泉的现象。这些热量可以被收集起来,并通过从地下泵入的热水产生的蒸汽来产生地热能,然后这些蒸汽上升到地球地层来驱动涡轮机。
5. 海洋:海洋可以产生两种能量,热能和机械能。海洋热能依赖于温暖的水面温度,通过各种不同的系统产生能量。海洋机械能利用潮汐的涨落产生能量,这种能量是由地球的自转和月球引力产生的。波浪能产生的能量是可以预测的,而且可以很容易地估算出波浪能产生的能量。与依赖太阳和风能等各种因素不同,波浪能的稳定性要高得多。这种类型的可再生能源也很丰富,人口最多的城市往往靠近海洋和港口,使当地人口更容易利用这种能源。
如果想继续了解新能源产业和在开发和发展中的项目可前往新能源与节能,该平台上拥有丰富、可靠的科研资源包括:项目、企业、政府端等。该平台与石墨烯之父安德烈·海姆建立了合作关系,并是国内在技术转移领域中的中坚力量。
国外抽水蓄能电站的出现已有一百多年的历史,我国在上世纪60年代后期才开始研究抽水蓄能电站的开发,于1968年和1973年先后建成岗南和密云两座小型混合式抽水蓄能电站,装机容量分别为11MW和22MW,与欧美、日本等发达国家和地区相比,我国抽水蓄能电站的建设起步较晚。
新能源( NE):又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
扩展资料
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等。
据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。