能源区块链与双碳战略研究|拒绝浪费:将食物残渣转化为可再生能源
拒绝浪费:将食物残渣转化为可再生能源
我们可以思考一件事:如果把浪费的食物视为一个国家,那么它将是世界上仅次于美国和中国的第三大温室气体排放国。
食物浪费已经成为日益严重的全球性问题。仅澳大利亚每年就扔掉760万吨食物。这足以填满1万3千个奥林匹克游泳池。
将食物废料运到垃圾填埋场后,它会释放甲烷等沼气。甲烷是一种温室气体,其威力是二氧化碳的28到100倍。
联合国估计,全球8%-10%的温室气体排放来自于食物浪费。在澳大利亚,这个比例约为3%。
对气候来说,食物浪费不是好事——但,凡事也有例外。
分解食物残渣
西澳大利亚州如何处理食物浪费呢?默多克大学的博士生Chris Bühlmann发布了一项研究,研究关于如何利用食物残渣生产可再生能源。
Chris Bühlmann表示,厌氧消化这种生物过程蕴含大量机遇(注:厌氧消化指有机质在无氧条件下,由兼性菌和厌氧细菌将可生物降解的有机物分解为CH4、CO2、H2O和H2S的消化技术)。
他还说,厌氧消化可以将食物残渣分解成沼气,也就是甲烷和二氧化碳的混合物,进而产生可再生能源。这听起来是个双赢的方案,但如何实现呢?
这个方案很简单,就是从分解的食物中捕获甲烷并将其燃烧。和燃烧其他碳氢化合物一样,化学反应会释放热能(也就是能量)和二氧化碳(CO2)。
释放二氧化碳固然不是好事,再加上向大气中释放的二氧化碳比提取利用的要多,就更糟糕了。而值得庆幸的是,燃烧甲烷产生的二氧化碳,在光合作用下可以被下一代农作物吸收。这就意味着多余的二氧化碳不会释放到大气中。
除此之外,还有其他好处。
Chris Bühlmann表示,随着燃煤发电逐渐被可再生能源取代,厌氧消化所产生的多余二氧化碳也会由此抵消。并且,二氧化碳的抵消量要比人们想象的还要多。
近期,一项针对家庭食品垃圾厌氧消化的环境可持续性研究结果显示,在垃圾填埋场,一吨食物废料会产生193kg的二氧化碳当量。而通过厌氧消化产生可再生能源,可以抵消每吨食物垃圾产生的 39 千克二氧化碳当量。
这将为澳大利亚每年节省近3亿公斤的二氧化碳排放量。
发展厌氧消化行业
厌氧消化不仅能够产生沼气,还可以产生乳酸一类的天然副产品,这也是Chris研究的重点。
Chris说,全球范围内的乳酸市场一直在快速增长,最近预计2021年至2028年的复合年增长率为8%。
乳酸可用于清洁产品、药品、食品和化妆品。在碳中和的过程中生产这种化学物质让厌氧消化更具可行性。
向食品垃圾宣战
在理想世界,不会存在食物浪费。多余的食物可以提供给饱受饥饿的人。
但在现实世界,食物浪费这个问题不会立刻消失。因此,Chris认为厌氧消化是一种利用食物垃圾的方法。
他说,目前,大多数食物垃圾都会被填埋,这不仅会导致气候变化,且几乎没有从食物垃圾中回收经济价值。
生物提炼工艺能够回收这些食物垃圾,生产出有价值的工业生化产品、现代生物材料和生物燃料,从而取代那些从化石资源中生产的产品。
与此同时,有了像Chris这样的研究人员,我们有理由期待,在未来,食物废料可以转化为更多可再生能量。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
1999年由美国麻省理工学院教授克鲁格曼提出的不可能三角(Impossible trinity)理论是指:经济 社会 和财政金融政策目标难以同时获得三个方面的目标,比如:在金融政策方面,资本自由流动、固定汇率和货币政策独立性三者不可能兼得。
在能源生产与供应领域,现阶段同样存在这样的“不可能”,即能源的生产与供应无法同时达到“稳定”、“清洁”以及“廉价”这三方面的目标。
为了实现双碳目标,需要我国现行的能源结构作出调整,大幅增加风力、太阳能等具有间歇性特点的可再生能源以替代传统的化石燃料以达到大幅减排的效果。但上述可再生能源的“间歇性”对我国能源供应的稳定性造成一定挑战;同时,上述可再生能源虽然可以脱碳具有一定的“清洁性”,但其经济性目前仍与传统化石能源相比不具有优势,因此形成了一个能源的不可能三角形。
五种常见的可再生能源
如今,得益于科学技术和生产技术的不断进步,为了努力摆脱对化石燃料的依赖,人类开发了越来越多样的绿色能源。下面是五种常见的可再生能源介绍。
太阳能发电
太阳能是一种可再生能源,5000多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。
太阳能电池板的工作方式非常简单,它是由数百万个太阳能电池组成的面板。当太阳照射到这些电池板时,通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能。这些电能可以为家庭供电,并且价格十分低廉。
风力发电
人们看向大海时,会发现海平面上有很多风力涡轮机。虽然它们可能不是最吸引人的,但它们效率非常高。因为欧洲和一些地区有绵延不绝的海岸线,所以风力发电在这些地方比较普遍,
风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。
水力发电
水力发电系(Hydroelectric power)利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。
地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。
生物质能
生物质能的应用在日常生活中越来越普遍。生物柴油可以为 汽车 、公共 汽车 和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。
地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
双碳是指碳达峰和碳中和。碳达峰,就是指在某一个时点,二氧化碳的排放不再增长达到峰值,之后逐步回落。
介绍:
碳中和,就是指某个地区在一定时间内人为活动直接和间接排放的二氧化碳,与其通过植树造林等吸收的二氧化碳相互抵消,实现二氧化碳“净零排放”。
双碳是中国提出的两个阶段碳减排奋斗目标(简称“双碳”战略目标)。二氧化碳排放力争于2030年达到峰值,努力争取2060年实现碳中和。
简称“双碳”目标是指:实现2030年前碳达峰、2060年前碳中和。
双炭目标的表现:双炭目标表现为二氧化碳排放(广义的碳排放包括所有温室气体)水平由快到慢不断攀升、在年增长率为零的拐点处波动后持续下降,直到人为排放源和吸收汇相抵。
双炭目标的意义:
1.双碳”目标是我国基于推动构建人类命运共同体的责任担当和实现可持续发展的内在要求而作出的重大战略决策,展示了我国为应对全球气候变化作出的新努力和新贡献,体现了对多边主义的坚定支持,为国际社会全面有效落实《巴黎协定》注入强大动力,重振全球气候行动的信心与希望,彰显了中国积极应对气候变化、走绿色低碳发展道路、推动全人类共同发展的坚定决心。这向全世界展示了应对气候变化的中国雄心和大国担当,使我国从应对气候变化的积极参与者、努力贡献者,逐步成为关键引领者。
2.有利于促进经济结构、能源结构、产业结构转型升级,有利于推进生态文明建设和生态环境保护、持续改善生态环境质量,对于加快形成以国内大循环为主体、国内国际双循环相互促进的新发展格局,推动高质量发展,建设美丽中国,具有重要促进作用。
以上内容参考:人民论坛网-时间紧任务重!我们如何实现“双碳”目标? 澎湃网-中国提出“双碳”目标的历史背景、重大意义和变革路径
“双碳”背景下煤炭行业高质量发展探讨
欧凯 张宁 吴立新 索婷
(煤炭工业规划设计研究院有限公司)
新中国成立以来,在党中央、国务院的正确领导下,煤炭工业在百业待兴的基础上起步,在艰苦奋斗中前进,在改革开放中发展,尤其是进入新时代以来,行业发展不断实现新突破,取得了举世瞩目的成就。近两年,碳达峰碳中和目标背景下煤炭消费减量,煤炭消费比重下降,煤炭行业发展受到一定影响,同时也给煤炭行业带来转型升级的机遇。
一、煤炭工业具备高质量发展基础
在一代代煤炭人的艰苦奋斗下,煤炭行业从无到有,煤炭工业从小到大、由弱到强,实现了从起步、腾飞到跨越的巨变,作为我国重要的能源基础产业,为国民经济和 社会 发展注入了强大动力。
(一)对国家经济 社会 发展的能源供应保障能力增强
我国煤矿“三机一架”的装备制造能力处在世界前列,年产千万吨综采技术和装备达到世界领先水平。行业持续推动化解过剩产能、淘汰落后产能、建设先进产能,全国煤炭供给质量显著提高。“十三五”期间,全国累计退出煤矿5500处左右、退出落后煤炭产能10亿吨/年以上,安置职工100万人左右,超额完成化解过剩产能目标。截至2020年底,全国建成年产120万吨以上的大型现代化煤矿约1200处,产量占全国煤炭产量的80%左右,其中,建成年产千万吨级煤矿52处,产能8.2亿吨/年。全国年产30万吨以下的煤矿1129处,产能1.48亿吨/年左右。
自新中国成立至2020年底,煤炭行业贡献了约924亿吨煤炭。我国煤炭年产量由 1949年的3432万吨,增加到1978年的6.8亿吨,到2013年的最高点为39.7亿吨,2020年产量为39亿吨,支撑了我国GDP由1978年的3645亿元增加到2020年的101万亿元。煤矿安全法律法规标准体系不断完善,煤矿安全生产责任制度体系不断健全,安全 科技 装备水平大幅提升,安全生产投入大幅增加,煤矿职工安全培训不断强化,促进煤矿安全生产形势有了明显好转。煤炭百万吨死亡率由1978年的9.713下降至2020年的0.059。煤炭安全供应保障能力实现跨越式提升。
(二)具备高质量发展的 科技 创新能力
煤炭行业技术创新体系不断健全完善, 科技 创新驱动发展的能力显著增强。特厚煤层综放开采、煤与瓦斯共采、燃煤超低排放发电、高效煤粉型工业锅炉、现代煤化工技术等达到国际领先水平。充填开采、保水开采、煤与瓦斯共采、无煤柱开采等煤炭绿色开采技术得到推广应用,煤炭资源回收率显著提升。煤矿机械化、自动化、智能化、数字化、绿色化转型全面提速。2020年 ,原煤入洗率达到74.1%,比2015年提高8.2个百分点。矿井水综合利用率、煤矸石综合利用处置率、井下瓦斯抽采利用率分别达到78.7%、72.2%、44.8%。建成400多个智能化采掘工作面,实现了地面一键启动,井下有人巡视、无人值守。采煤、钻锚、巡检等10种煤矿机器人在井下实施作业,71处煤矿列入国家首批智能化示范建设煤矿。
煤炭由单一燃料向燃料与原料并重转变取得新进展。2020年,煤制油、煤制烯烃、煤制气、煤制乙二醇产能分别达到931万吨/年、1582万吨/年、51亿立方米/年、489万吨/年。煤炭上下游产业融合发展,煤电、煤焦、煤化、煤钢一体化发展趋势明显。
(三)不断完善的市场化体系为高质量发展提供制度保障
新中国成立以来,煤炭工业生产力水平不断提升,同时,也在不断进行体制改革 探索 ,从最开始的完全计划经济,到计划经济和市场相结合,再到完全市场化,为国家经济体制和市场化改革提供了实践样本。
我国煤炭工业完成从新中国成立初期的计划经济体制,到改革开放时期的政府定价向市场化定价转变。1993年开始,我国确立了以市场形成价格为主的煤炭价格机制。1994年1月,国家取消了统一的煤炭计划价格,除电煤实行政府指导价外,其他煤炭全部放开。2004年,我国建立煤电价格联动机制,形成电煤价格“双轨制”。2013年,煤炭价格实现完全市场化定价,市场在配置资源中的决定性作用越来越突出。2016年以来,煤炭行业作为推动供给侧结构性改革的试点行业,煤炭上下游企业逐渐建立了中长期合同制度和“基础价+浮动价”的定价机制,发挥了煤炭市场平稳运行“压舱石”和“稳定器”的作用。2021年9月26日召开的国务院常务会议决定,对尚未实现市场化交易的燃煤发电电量,从2022年1月1日起,取消煤电价格联动机制,将现行标杆上网电价机制,改为“基准价+上下浮动”的市场化机制。这意味着,我国将告别已经实行了15年的煤电价格联动机制。
二、“双碳”目标下煤炭高质量发展对能源低碳转型将发挥重要支撑作用
以煤为主的能源资源禀赋,决定了未来相当长一段时间我国经济 社会 发展仍将离不开煤炭。在碳达峰碳中和过程中,仍需要煤炭发挥基础能源作用,为经济 社会 发展提供能源兜底保障。
(一)煤炭是新能源发展的有力支撑
“双碳”目标下,风、光等可再生能源发电成为增量电力供应的主要来源。近年来,我国大力发展新能源技术,非化石能源发电在我国电力结构中的占比显著上升。然而,受气候、天气、光照等人为不可控的自然条件影响,可再生能源供给能力不确定性大,提供的主要是能源量,能源供应和调节能力有限。可再生能源大比例接入电网,给电网的安全稳定运行带来严峻挑战,需要清洁高效的燃煤发电等灵活性电源作为调峰电源平抑电力波动。我国在大力发展风能、太阳能等可再生能源发电技术,逐步提高非化石能源发电占比,持续优化电力结构的过程中,仍需要煤炭煤电的有力支撑。预计到2060年实现碳中和后,燃煤发电装机规模仍需保持3亿至4亿千瓦,年耗煤量3.9 亿吨 6.4亿吨。
(二)煤炭是能源安全的“压舱石”
能源安全稳定供应是一个国家安全的保障和强盛的基石。在国际能源博弈和地缘政治冲突不断加剧的背景下,煤炭依然是国家能源安全的“压舱石”,短期内没有资源能替代煤炭的兜底保障作用。应当深刻认识我国能源资源禀赋、经济 社会 发展要求和能源发展规律。2020年12月21日,国务院新闻办公室发布《新时代的中国能源发展》白皮书,明确提出推进煤炭安全智能绿色开发利用,努力建设集约、安全、高效、清洁的煤炭工业体系,煤炭仍然是我国最经济安全的能源资源。
煤炭具备适应我国能源需求变化的开发能力,具有开发利用的成本优势,煤炭清洁高效转化技术经过“技术示范”“升级示范”已趋于成熟,具备短期内形成大规模油气接续能力的基础,应当充分发挥煤炭在平衡能源品种中的作用,保障我国能源安全。
三、“双碳”目标下煤炭行业迎来高质量发展机遇
“双碳”目标对于煤炭行业既是巨大挑战,也是空前机遇。在挑战与机遇并存下,煤炭行业势必迎来新一轮技术升级和产业转型。煤炭行业由自动化向智能化、无人化迈进,由超低排放向近零排放、零排放迈进。可以预见的是,自2021年到2060年,煤炭在能源消费中的占比将逐步下降,由主体能源转变为基础能源,再由基础能源转变为保障能源,最后转变为支撑能源,也代表着我国煤炭行业将向着绿色智能的方向快速迈进。
(一)依托技术革新,向高质量高技术产业发展
当前煤炭行业正处于第四次煤炭技术革命时期,应当以此次技术革命为契机,推动煤炭产业向着数字化、智能化的新产业和新业态转型。“双碳”目标下,煤炭产量将回归合理规模,走高质量发展、高端发展之路,迈向更加重视生产、加工、储运、消费全过程安全、绿色、低碳、经济的存量时代,走优质、高效、洁净、低耗的能源可持续发展道路。
未来将有更多煤矿采用高效节能的技术和设备,着力建设碳中和示范矿区引领工程,开展余热、余压、节水、节材等综合利用节能项目,持续优化煤炭开发利用工艺、技术和系统性管理,提高煤炭资源开发利用效率。
逐步将煤矿开采由机械化、自动化向数字化升级,打造采掘智能化、井下无人化、地面无煤化,最大限度地减少采煤过程对生态环境的破坏。聚焦“绿色开采、清洁利用、生态治理”的产业方向,构建实时透明的煤矿采运、洗选、治理等数据链条,不断优化智慧决策模型,建设现代化煤炭经济体系,将数字技术融入到煤炭资源的开发、加工、利用全产业链,全面提升煤炭的管理治理水平和综合利用效率。最终步入井下无人、地上无煤的煤炭工业5.0时代,实现深地原位利用,煤、电、气、热、水、油实现一体化供应,以及太阳能、风能、抽水蓄能与煤炭协同开发,基本实现近零排放。
(二)依托生态修复,打造绿色经济新的增长点
在淘汰落后产能的过程中,废弃矿区也在逐渐增加。可以通过矿区生态修复来增加生态碳汇。未来亟需开展全生命周期矿山生态修复理论与技术链,重点包括减沉保水协调开采、充填开采、土壤修复与生物多样性恢复关键技术等。选择适应性强、生长良好的树种和草种进行造林绿化,通过“地貌重塑、土壤重构、植被重建、景观重现、生物多样性重组与保护”工程技术对矿区损毁土地进行修复,改善土壤理化性质,创造新的经济效益,提高土壤碳截获能力,增加植物碳储量。
矿井空间包括矿区地面空间和地下空间。数据显示,我国煤矿塌陷区面积超过两万平方公里,井下空间体积超过156亿立方米,空间利用潜力巨大。例如,以发展煤基综合能源基地为目标,矿井地面空间利用包括发展风、光电站;井下空间利用包括开发抽水蓄能电站、化学储能、地热能开发、二氧化碳封存等。当前矿井空间初步开发,仅包括建设地面光伏电站、井下博览馆等,未来可利用矿井空间发展可再生能源、现代农业、现代医疗等。预计到2030年,我国关闭或废弃矿井将达到1.5万处,大量土地资源被闲置。而与此同时,随着我国光伏产业发展迅猛,可利用建设光伏电站的土地愈发紧缺。因而利用采矿沉陷区进行光伏电站建设,把光伏发电和矿山生态治理相结合,既能解决土地资源有效利用问题,又对生态环境治理具有积极意义。
(三)依托多能互补,建设高效、绿色、经济的综合能源基地
煤炭与可再生能源具有良好的互补性。煤炭与可再生能源在燃烧和化学转化方面的耦合,逐步形成模式,突破了一系列技术难点,为煤炭与可再生能源深度耦合提供了良好基础。同时,煤矿区具有发展可再生能源的先天优势,除了丰富的煤炭资源外,还有大量的土地、风、光等其他资源,采煤沉陷区可为燃煤发电和风光发电深度耦合提供土地资源。煤矿井巷和采空区形成的地下空间,可用于抽水蓄能、井下碳吸附和碳储存、地热能等开发利用。
煤炭企业具备主动发展新能源的条件,可以充分发挥煤矿区优势,以煤电为核心,与太阳能发电、风电协同发展,构建多能互补的清洁能源系统,将煤矿区建设成为地面-井下一体化的风、光、电、热、气多元协同的综合能源基地。
四、结语
立足我国能源资源条件和经济 社会 发展需求,对标“双碳”目标实现,依托 科技 创新和系统性变革,通过高效转化和循环利用,煤炭将更多用于生产煤基高端化工品和碳材料等精品;通过与可再生能源等多元互补,煤矿将成为现代能源供应系统基地;通过充分利用煤矿区地面地下空间和资源,煤矿区将成为清洁能源生产基地;煤炭企业将成为新能源开发的参与者、煤基高端材料和高价值产品的引领者。
应用领域正不断扩展
可资源化利用的生物质材料主要包括直接利用光合作用合成有机物的植物,如农作物秸秆、稻壳、玉米芯、废弃木材和城市垃圾等还包括间接利用光合作用产物而形成的有机质,如畜禽粪便、蟹壳、虾皮和贝壳等,以及光能自养型的原核生物藻类。
目前,生物质高效综合利用领域分布在能源、生态农业、环境修复、建材等。以能源领域应用为例,包括生物质制乙醇和生物质发电。前者是生物质高效综合利用最传统的途径,我国2018年生物质燃料乙醇产量约为340万吨,逐渐成为液体燃料的重要组成部分后者在国家财政补贴的大力支持下,发电规模迅速增长,生物质发电量2019年已达1111亿千瓦时。
以生态农业领域为例,秸秆还田是重要一环,重点在于秸秆的收集和就近还田。生物质通过堆肥等发酵方法制备的有机肥,可以有效提高农田有机质含量和土壤肥力,完善农作物根系的生态系统功能,实现农作物优质增产。
生物质材料未来的应用领域正向高值化利用方向拓展,如模块化建材、生物质碳纤维、生物质储能材料、生物质环境修复材料等。
在模块化建材方面,秸秆复合墙板、重组木、新型纤维板、木塑复合材料和生物钢等涉及生物质建材的几大成型产业,将为建筑行业装配式被动房的模块化、环保化和节能化作出重要贡献。
在生物质材料还田方面,一些新的应用技术正接近实用化,如生物质可降解地膜、生物炭直接还田等正获得小规模推广。
在生物质碳纤维方面,优质的生物质基碳纤维前驱体是重要方向。木质素含碳量比纤维素高,采用干喷湿纺碳化和熔融纺丝的工艺制备木质素碳纤维,提高木质素的热熔性和可纺性是未来的研究趋势。
在生物质储能方面,利用生物质材料制备炭材料,用作电池中石墨的替代品,提升锂离子电池的储能性能。在生物质环境修复方面,生物炭材料在其中的应用前景也最大。
拓展资料:
碳市场
1、2021年7月15日,上海环境能源交易所公告称,根据国家总体安排,全国碳排放权交易将于7月16日(本周五)开市。
2、根据生态环境部测算,首批纳入全国碳市场覆盖范围的企业碳排放量超过40亿吨。全国碳市场推出后,将成为全球覆盖温室气体排放量规模最大的碳市场。
3、全国碳市场目前唯一的交易产品为碳排放配额。在市场启动初期,将只在发电行业重点排放单位之间开展配额现货交易,暂时不允许机构和个人参与。
4、在7月14日举行的国新办吹风会上,生态环境部副部长赵英民称,发电行业作为首个纳入全国碳市场的行业,是考虑到发电行业二氧化碳排放量比较大,同时发电行业的管理制度相对健全,数据基础比较好。在发电行业碳市场健康运行以后,将进一步扩大碳市场覆盖行业范围,充分发挥市场机制在控制温室气体排放、促进绿色低碳技术创新、引导气候投融资等方面的重要作用。
5、中国碳市场地方试点起步于2011年。当年10月,北京、天津、上海、重庆、广东、湖北、深圳七省市启动了碳排放权交易地方试点工作。2013年起,七个地方试点碳市场陆续开始上线交易。
6、生态环境部数据显示,截至2021年6月底,试点省市碳市场累计配额成交量4.8亿吨二氧化碳当量,成交额约114亿元
我国要实施双碳行动原因如下:
1、国内方面,国家通过调整可获取资源的结构,可以有效的摆脱我国经济发展对进口化石能源的依赖;通过新能源、新材料、新技术的革新,可以彻底拜托能源束缚,提高生产效率,降低成本,提高国际能源竞争力。
通过调整产业结构,提高区域经济效益,促进经济再增长,扩大就业,改善人民群众物质生活水平;通过开启碳资产、碳交易等市场机制与金融手段,促进节能减排技术进步,推动清洁能源发展,大力发展低碳经济,获取新的经济增长点,提高国际能源发展地位,与金融话语权。
2、国际方面:随着全球第四次工业革命的到来,德国率先提出工业4.0,美国、英国、法国、日本等经济发达国家都纷纷提出自己的工业回归计划,中国也制定了“中国制造2025”的国家战略,我国以与各国制造技术的竞争与较量愈加激烈。
这场竞赛不仅关系到中国在世界上的经济地位,更是一场科技与工业的全球革命,如前三次工业革命一样将改变人类世界的发展历程,这不仅关系到我国是否能成功从制造业大国升级为制造业强国。
是关系到未来中国是否会因为科技与工业落后于人,再次重历被时代车轮碾压的屈辱历史;与此同时,全球气候问题,又给这场发展竞赛增加了一个新的维度限制,那就是能源排放权,从某种意义上讲排放权就等同于发展权,中国除了要在智能制造领域突破,更需要发展从高碳转向低碳的新工业。
而新工业的崛起,就需要建立大规模的新能源生产与消费网络,同时依靠新技术、新材料的革新,摆脱能耗和重污染的枷锁,通过参与全球市场机制,调整中国在全球的政治、经济与金融地位,提高国际话语权。
“双碳”战略意义
“双碳”战略倡导绿色、环保、低碳的生活方式。加快降低碳排放步伐,有利于引导绿色技术创新,提高产业和经济的全球竞争力。
中国持续推进产业结构和能源结构调整,大力发展可再生能源,在沙漠、戈壁、荒漠地区加快规划建设大型风电光伏基地项目,努力兼顾经济发展和绿色转型同步进行。