太阳能光伏发电的发展历史是什么?
1839年,19岁的法国贝克勒尔做物理实验时,发现在导电液中的两种金属电极用光照射时电流会加强,从而发现了“光生伏打效应”。1930年,郞格首次提出用“光伏效应”制造太阳能电池,使太阳能变成电能。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳能电池。1941年奥杜在硅上发现光伏效应。1954年5月美国贝尔实验室恰宾、富勒和皮尔松开发出效率为6%的单晶硅太阳能电池,这是世界上第一个有实用价值的太阳能电池,同年威克首次发现了砷化镍有光伏效应,并在玻璃上沉积硫化镍薄膜,制成了太阳能电池,太阳光转化为电能的实用光伏发电技术由此诞生并发展起来。2014年初我省金寨县为落实省委政府精准扶贫新要求,实施产业扶贫“到村、到户、到人、到产业”,在全省率先开展了光伏发电扶贫项目。
光伏(PVorphotovoltaic),是太阳能光伏发电系统(photovoltaicpowersystem)的简称,是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。同时,太阳能光伏发电系统分类,一种是集中式,如大型西北地面光伏发电系统一种是分布式(以>6MW为分界),如工商企业厂房屋顶光伏发电系统,民居屋顶光伏发电系统。光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算器提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
按时间的发展顺序,太阳电池发展有关的历史事件汇总如下:
1839年法国科学家E.Becquerel发现液体的光生伏特效应(简称光伏现象)。
1877年W.G.Adams和R.E.Day研究了硒(Se)的光伏效应,并制作第一片硒太阳能电池。
1883年美国发明家charlesFritts描述了第一块硒太阳能电池的原理。
1904年Hallwachs发现铜与氧化亚铜(Cu/Cu2O)结合在一起具有光敏特性德国物理学家爱因斯坦(AlbertEinstein)发表关于光电效应的论文。
1918年波兰科学家Czochralski发展生长单晶硅的提拉法工艺。
1921年德国物理学家爱因斯坦由于1904年提出的解释光电效应的理论获得诺贝尔(Nobel)物理奖。
1930年B.Lang研究氧化亚铜/铜太阳能电池,发表“新型光伏电池”论文W.Schottky发表“新型氧化亚铜光电池”论文。
1932年Audobert和Stora发现硫化镉(CdS)的光伏现象。
1933年L.O.Grondahl发表“铜-氧化亚铜整流器和光电池”论文。
1941年奥尔在硅上发现光伏效应。
1951年生长p-n结,实现制备单晶锗电池。
1953年Wayne州立大学DanTrivich博士完成基于太阳光普的具有不同带隙宽度的各类材料光电转换效率的第一个理论计算。
1954年RCA实验室的P.Rappaport等报道硫化镉的光伏现象,(RCA:RadioCorporationofAmerica,美国无线电公司)。
贝尔(Bell)实验室研究人员D.M.Chapin,C.S.Fuller和G.L.Pearson报道4.5%效率的单晶硅太阳能电池的发现,几个月后效率达到6%。(贝尔实验室三位科学家关于单晶硅太阳电池的研制成功)
1955年西部电工(WesternElectric)开始出售硅光伏技术商业专利,在亚利桑那大学召开国际太阳能会议,Hoffman电子推出效率为2%的商业太阳能电池产品,电池为14mW/片,25美元/片,相当于1785USD/W。
1956年P.Pappaport,J.J.Loferski和E.G.Linder发表“锗和硅p-n结电子电流效应”的文章。
1957年Hoffman电子的单晶硅电池效率达到8%D.M.Chapin,C.S.Fuller和G.L.Pearson获得“太阳能转换器件”专利权。
1958年美国信号部队的T.Mandelkorn制成n/p型单晶硅光伏电池,这种电池抗辐射能力强,这对太空电池很重要Hoffman电子的单晶硅电池效率达到9%第一个光伏电池供电的卫星先锋1号发射,光伏电池100c㎡,0.1W,为一备用的5mW话筒供电。
1959年Hoffman电子实现可商业化单晶硅电池效率达到10%,并通过用网栅电极来显著减少光伏电池串联电阻卫星探险家6号发射,共用9600片太阳能电池列阵,每片2c㎡,共20W。
1960年Hoffman电子实现单晶硅电池效率达到14%。
1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。
1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。
1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。
1963年Sharp公司成功生产光伏电池组件日本在一个灯塔安装242W光伏电池阵列,在当时是世界最大的光伏电池阵列。
1964年宇宙飞船“光轮发射”,安装470W的光伏阵列。
1965年PeterGlaser和A.D.Little提出卫星太阳能电站构思。
1966年带有1000W光伏阵列大轨道天文观察站发射。
1972年法国人在尼日尔一乡村学校安装一个硫化镉光伏系统,用于教育电视供电。
1973年美国特拉华大学建成世界第一个光伏住宅。
1974年日本推出光伏发电的“阳光计划”Tyco实验室生长第一块EFG晶体硅带,25mm宽,457mm长(EFG:EdgedefinedFilmFed-Growth,定边喂膜生长)。
1977年世界光伏电池超过500KWD.E.Carlson和C.R.Wronski在W.E.Spear的1975年控制p-n结的工作基础上制成世界上第一个非晶硅(a-Si)太阳能电池。
1979年世界太阳能电池安装总量达到1MW。
1980年ARCO太阳能公司是世界上第一个年产量达到1MW光伏电池生产厂家三洋电气公司利用非晶硅电池率先制成手持式袖珍计算器,接着完成了非晶硅组件批量生产并进行了户外测试。
1981年名为SolarChallenger的光伏动力飞机飞行成功。
1982年世界太阳能电池年产量超过9.3MW。
1983年世界太阳能电池年产量超过21.3MW名为SolarTrek的1KW光伏动力汽车穿越澳大利亚,20天内行程达到4000Km.
1984年面积为929c㎡的商品化非晶硅太阳能电池组件问世。
1985年单晶硅太阳能电池售价10USD/W澳大利亚新南威尔土大学MartinGreen研制单晶硅的太阳能电池效率达到20%。
1986年6月,ARCOSolar发布G-4000———世界首例商用薄膜电池“动力组件”。
1987年11月,在3100Km穿越澳大利亚的PentaxWorldSolarChallengePV-动力汽车竞赛上,GMSunraycer获胜,平均时速约为71km/h。
1990年世界太阳能电池年产量超过46.5MW。
1991年世界太阳能电池年产量超过55.3MW瑞士Gratzel教授研制的纳米TiO2染料敏化太阳能电池效率达到7%。
1992年世界太阳能电池年产量超过57.9MW。
1993年世界太阳能电池年产量超过60.1MW。
1994年世界太阳能电池年产量超过69.4MW。
1995年世界太阳能电池年产量超过77.7MW光伏电池安装总量达到500MW。
1996年世界太阳能电池年产量超过88.6MW。
1997年世界太阳能电池年产量超过125.8MW。
1998年世界太阳能电池年产量超过151.7MW多晶硅太阳能电池产量首次超过单晶硅太阳能电池。
1999年世界太阳能电池年产量超过201.3MW美国NREL的M.A.Contreras等报道铜铟锡(CIS)太阳能电池效率达到18.8%非晶硅太阳能电池占市场份额12.3%。
2000年世界太阳能电池年产量超过399MWWuX.,DhereR.G.,AibinD.S.等报道碲化镉(CdTe)太阳能电池效率达到16.4%单晶硅太阳能电池售价约为3USD/W。
2002年世界太阳能电池年产量超过540MW多晶硅太阳能电池售价约为2.2USD/W。
2003年世界太阳能电池年产量超过760MW德国FraunhoferISE的LFC(Laserfired-contact)晶体硅太阳能电池效率达到20%。
2004年世界太阳能电池年产量超过1200MW德国FraunhoferISE多晶硅太阳能电池效率达到20.3%非晶硅太阳能电池占市场份额4.4%,降为1999年的1/3,CdTe占1.1%而CIS占0.4%。
2005年世界太阳能电池年产量1759MW。
中国太阳能发电发展历史
中国作为新的世界经济发动机,光伏业业呈现出前所未有的活力。大量光伏企业应运而生,现在光伏产量已经达到世界领先水平。现在OFweek太阳能光伏网带大家来回顾下中国太阳能发展历史:
1958,中国研制出了首块硅单晶
1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务。在研究中,研究人员发现,P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。
1969年,半导体所停止了硅太阳电池研发,随后,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵。
1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。
1998年,中国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目。
2001年,无锡尚德建立10MWp(兆瓦)太阳电池生产线获得成功,2002年9月,尚德第一条10MW太阳电池生产线正式投产,产能相当于此前四年全国太阳电池产量的总和,一举将我国与国际光伏产业的差距缩短了15年。
2003到2005年,在欧洲特别是德国市场拉动下,尚德和保定英利持续扩产,其他多家企业纷纷建立太阳电池生产线,使我国太阳电池的生产迅速增长。
2004年,洛阳单晶硅厂与中国有色设计总院共同组建的中硅高科自主研发出了12对棒节能型多晶硅还原炉,以此为基础,2005年,国内第一个300吨多晶硅生产项目建成投产,从而拉开了中国多晶硅大发展的序幕。
2007,中国成为生产太阳电池最多的国家,产量从2006年的400MW一跃达到1088MW。
2008年,中国太阳电池产量达到2600MW。
2009年,中国太阳电池产量达到4000MW。
2006年世界太阳能电池年产量2500MW。
2007年世界太阳能电池年产量4450MW。
2008年世界太阳能电池年产量7900MW。
2009年世界太阳能电池年产量10700MW。
2010年世界太阳能电池年产量将达15200MW。
2019年后,中国光伏正式进入了“平价上网时代”,在光照条件好的地方,上网价格已经低于火电,整个产业竞争力不断提升,去年中国光伏新增装机量48.2GW,占全球三成。与此同时,中国光伏组件的出口目的地十分分散,“卡脖子”的顾虑已然烟消云散。
回溯中国光伏行业的发展,以欧美双反、“531新政”以及2019年国家能源局的平价上网通知,大致可以划分为四个阶段:
1. 两头在外的时代(2012年之前):上游原材料依赖进口,下游组件绝大部分都用于出口,内需不足,缺乏核心技术。
2. 产业扶持:(2013年到2018年):发改委等部门陆续推出补贴政策,拉动内需,但是出现了一些结构性问题,比如财政补贴窟窿越来越大,出现骗补现象。
3. 补贴退坡:(2018年到2020年):2018年“531新政”降低了光伏的补贴标准,限制了补贴规模,行业装机量出现间歇性回落,劣质产能被淘汰,加速了平价时代的到来。
4. 平价时代(2021年之后):凭借低成本和规模化创新优势,目前中国光伏发电侧已经接近平价,部分地区已经低于传统电价,竞争力优势不断凸显。
光伏产业的全球争霸赛中,无论是硅料、硅片、电池片还是组件,无论是市场份额还是技术实力,中国都是绝对世界第一,无论今后的技术路线再怎么变化,可以确定的是,最后的赢家一定是中国公司。
沙漠、湖泊、屋顶的光伏产业遍布中国,但很少人知道我们的光伏电站的模样。利用 Hightopo 的 HT 产品搭建轻量化的 3D 大型光伏发电站和光热发电站可视化场景,让大家线上游览一下光伏发电站。
光伏发电引发人们的热议,因为现在能源供应比较紧张,煤炭发电价格快速上涨,好多城市煤炭发电价格平均上涨15%~20%,这么高价格的上涨人们就在考虑替代品。比如说风力发电水力发电,太阳能发电,这些都是替代品,但是现在光伏发电的市场还不成熟。
要说光伏发电的前景确实是比较广阔的,但是如果是现在的这个市场的情况,对于普通个人用户来说不是一个好的选择。因为这个东西对你来说成本太高了,根本不合适,光伏发电,这种技术是没有问题的,但现在存在的两个主要问题,一个是成本问题,一个就是能源转化率问题,太阳能发电的效率比较低,非常容易受到自然条件变化的影响,太阳能不充足的时候发电量就会很小,而且真正能转换成电能的效率并没有你想象的那么高。
还有就是成本的问题,如果是一个光伏发电的模块,包括风机,包括能够储电的电池,包括这个太阳能的帆板,这一套下来,一个家庭一天如果按照6~10度电的需求来看的话,一个月差不多电费就是100块钱多一点,这样一个模块能满足大多数家庭的需要了。但你知道这样一个模块要多少钱吗?这一整套下来价格比较便宜的也要在1万块钱,而你一个月电费也就是100块钱多一点。
一年这个电费能省下来的就是1500块钱,但是这样一套设备要1万块钱,也就是说这套设备不出现任何问题的情况下,连续使用7年才能回本,你能保证这个设备不出任何问题吗,这还是说满效率运行的情况下说的天气不好的因素呢,到了冬天的时候,太阳能不是那么充足的时候呢,这个问题不解决就没有办法大规模的推广。
EVA是光伏组件必须用到的胶膜,和面积直接相关,一块组件1.63平米,EVA需要对电池片正反封装,且面积会比组件面积略小,所以一块组件所使用到的EVA面积为1.6 2=3.2平方米;
由于生产过程中会有一定面积的损耗,每块组件生产下来损耗的面积介于0.2~03平米之间,所以一片60型标准组件实际使用到的EVA的面积为3.2+0.2=3.4 。
EVA行业高度垄断集中,龙头公司福斯特一家占据全球48%的市场份额,去年出货量达到了5.77亿 ;
龙二为斯威克,去年产量1.56亿 ;第三是海优威,去年出货量约1.3亿 ,三家公司市场格局稳定,去年合计出货量8.63亿 ,如果折算成60型标准组件,对应8.63 3.4=2.538亿块;按照去年每块60型组件平均功率278W计算,对应总功率2.538 278=705亿瓦=70.5GW。
去年全球扣除薄膜组件后的总的组件出货量达到了101GW,上述三家公司的市场占有率恰好70%。
EVA和面积相关,所以电池技术进步带来的功率提升不会给EVA数据造成干扰。
EVA用量一定,产业内各家损耗差异很小,各家每片60型标准组件用量均为3.4平米左右,好记好算,容易寻找出确定性的衡量计算标准。EVA产线开停灵活,淡季来了不会为了囤积库存而盲目生产,库存因素扰动小;
EVA高度垄断集中,我们只需要追踪三家公司的产销数据便可覆盖全行业70%的出货情况,而且竞争格局稳定,我们只需要把三家数据除以0.7便可推算全行业的整体需求,简便快速地对行业冷暖有一个清晰认知。
其次,怎么去看光伏未来的投资机会?老规矩,要看未来,先回顾过去。
过去10年,光伏行业发生过三次大变革,第一次是尚德英利成立兆瓦级光伏组件生产线,第二次是保利协鑫突破冷氢化工艺占领硅料市场,第三次是隆基股份推动单晶硅片降本替代多晶硅片。
这三次分别对应光伏产业链三个环节组件、硅片和硅料的大幅度降本,实现大规模制造推动发电成本迈向平价。
而这背后,是光伏行业过去10年呈现明显的周期加成长的特征:行业总体在成长,但是周期波动剧烈,主流厂商经常被颠覆,曾经的领先者都是非主流的外来者,光伏行业不断重复穷鬼到首富再到破产的故事。
比如,在尚德英利突破组件工艺之前,是名不见经传的贸易商,保利协鑫突破硅料工艺之前,只是香港上市的二线热电厂,而现在的隆基在爆发之前,只是尚德三线供应商,火热的通威股份,还在生产饲料。
主流厂商不断被颠覆,因为上一波投资的巨量沉没成本捆住了他们难以动弹,拥抱新工艺左右为难,所以规模越大的死的越快。
具体来说。2008年金融危机之后,全球财政货币政策刺激,尤其德国西班牙等欧洲国家大力补贴光伏。
当时的产业链瓶颈在硅料供给,硅料价格暴涨到接近200美元,薄膜路线的性价比凸显,应用材料等半导体公司纷纷推出turnkey生产线,正泰光伏、新奥能源等企业大手笔买入,还有金属硅和废硅回收冶炼等非主流路线。
彼时,保利协鑫发现硅料的制备工艺其实是中等难度的化工流程,所以独辟蹊径招聘一批东北化工厂的工程师,自己设计还原炉和反应釜摸索工艺。2009年,保利协鑫的冷氢化工艺成功落地,震惊全球光伏届,股价也一飞冲天涨了10倍。
汹涌而来的资金推动保利协的产能从5000吨干到了6万吨,与此同时,硅料价格如坠机一样从200美元跌到20美元,从应用材料到正泰、新奥等薄膜企业黯然退场,汉能光伏却在高点接盘了薄膜的故事今天也没有结束,至于金属硅和废硅回收再无提及。
2010-2011年欧债危机消灭德国西班牙的补贴,疯狂扩产的多晶产业链遇到光伏 历史 上最惨烈的供需双杀,当时相对小众的单晶硅片企业降价反应迟钝,单价市占率被挤压至不到20%。
2011年上市的隆基股份手握10亿资金心有余悸,董秘感叹行业这么惨隆基应该能生存下去。
2012年底一个偶然机会,我们坐在钟总身边,在无聊的会议上钟总随手给我们划了一个2013-2017年的单晶降本路线图,并且拆分了新工艺的边际贡献,非常有说服力。
2013-2015年小小的隆基股份在强大的协鑫压力下埋头 探索 这些工艺,直到2015年第一次增发隆基股份成功获得20亿子弹启动单晶硅片第一次大规模扩产。
5GW、10GW、20GW直到65GW的过程像极保利协鑫,50倍的股价涨幅远远超越保利协鑫成为A股当之无愧的行业龙头。
硅料的技术迭代稳定硅料行业的竞争格局。今年以来海外硅料厂纷纷停产,通威、大全和协鑫等等厂商的市场集中度超过70%,硅料价格的波动率显著下降。硅片的技术迭代正在稳定硅片行业的竞争格局。
今年多晶硅片的市占率降到20%以下,随着隆基股份、中环股份和上机数控等厂商产能的大规模释放,前几位单晶硅片厂商的市占率接近70%。
4月以来单晶硅片价格暴跌,此次产能周期拐点引发暴跌的价格将在今年下半年接近硅片的长期价格中枢2.3RMB左右,以后随着波动率的收敛,硅片价格将缓慢下降
复盘来看,组件、硅料和硅片都发生了技术迭代,最后一个领域电池片依然悄然无息。正是这种悄然无息导致电池片的行业依然分散,面对硅片的产业链博弈始终没有话语权。
从货值计算,电池片的市场容量接近硅片两倍,单位利润率水平不及硅片的1/3,这是非常不正常的现象。
从十年前美国国家实验室的技术演进图来看,光伏的效率排序:异质结(multijunction)›单质结(single-junction)›多晶电池(crystalline si)›薄膜电池(thin-film)。产业层面的两次跳跃间断点完美体现这个效率路线。
市场认为光伏新技术层出不穷,难以辨识真伪。根据第一性原理,这个效率路线图是无可争辩的,背后是材料学的科学逻辑。
上帝早已安排光伏技术的未来,即异质结技术,独有的复合材料结构以及可观的效率潜力。
硅料替代薄膜和单晶硅片替代多晶硅片的过程为异质结替代单质结做好了产业铺垫,因为异质结电池的硅片基底是N型单晶硅片,P型单晶制备工艺可以转化为N型工艺(这并不是跳跃间断点),所以当P型单晶硅片全面替代P型多晶硅片的时候,宣告N型结构替代P型结构的开始。
光伏发电的最后目标是为了上网,但电网不是慈善机构,不会因为企业 社会 责任无限制地接纳光伏。
当光储系统达到发电侧平价,电网就有商业动机接纳光伏,火电被终结。
电网改革放开调频调峰等配售电领域辅助服务市场空间,储能运营商有了稳定收入来源。电网的并网压力倒逼储能需求的启动,电网的改革压力倒逼储能盈利模式的启动。
光伏是光储系统的一级火箭。
储能刺激锂电池下一个超级需求,储能需求和动力需求共同推动锂电池降本增效,反过来加速储能应用,这是光储系统的二级火箭,因此光储系统替代火电的时间或许比大家预期得更快,这个市场空间是两个千亿级市场的叠加,可能在万级别。
总结一下,异质结和储能将是未来光伏10倍股甚至百倍股的诞生之处。
最后的最后,讲一下对周期的理解。在讲周期的时候,从短及长,分为了库存周期、产能周期和经济周期。
库存周期引起利润表的变化,产能周期引起资产负债表变化,经济周期引起技术变化。
再进一步推演下去:
1)引起利润表变化的是营业收入。营业收入由价格和销量决定,价格受制于供需,销量来自于产销率和产能利用率,而产能是来自于资产负债表,所以利润表是资产负债表在当前时点的折现值;
2)当库存周期的价格波动引起利润表变化的时候,企业资产负债表尤其固定资产没有变化。当价格下跌的时候,落后企业的固定成本无法承受冲击,导致落后企业破产,全行业产能收缩,推动产能周期向上;
3)当技术淘汰来临,领先企业的固定成本无法承受冲击,全行业破产。企业固定资产(固定成本)能否承受冲击是区分三种周期级别的标准。
无论是落后还领先企业,本质都是通过折旧收回固定资产投资,所以再漂亮的利润表也无法掩饰虚弱的资产负债表和现金流。
在产能周期级别,落后企业被淘汰,领先企业集中度上升,行业越来越稳定,最后产生垄断。垄断是超额利润的来源,这一点对于任何行业都成立,问题在于行业稳定性的持续时间。
对于商业模式和技术进步层出不穷的行业,垄断是个伪命题,美国50年代军方需求孕育了半导体行业,过去50年以来半导体的数轮周期埋葬了无数的半导体领先公司。
当晶圆技术稳定之后才出现了上涨20年的台积电,身后的三星和英特尔进进出出依然动荡,摩尔定律在扩大台积电的护城河,即使在这个领域台积电赚钱依然幸苦。
称霸了CPU领域十几年的INTEL的市场份额被AMD在数年内赶上,新的构架依然在冲击领先者。
更进一步来说,在商业模式和技术进步层出不穷的行业里,企业阶段性的领先甚至会埋藏失败的起因,这就是著名的”创新者的窘境“。
领先者呕心沥血积累起来的庞大固定资产反而成为新一轮技术竞赛的包袱,地位越领先规模越庞大,被抛弃的可能性越大,因为提前计提资产减值就是主动破产,维持产能利用率又加速自我负循环,进退两难。
光伏行业从硅料技术变革到硅片变革再看未来的电池变革,从龙头到落后,从首富到破产,比比皆是。造成这样的局面,
1)技术变革太快所以固定资产淘汰太快;
2)效率溢价不足所以成本属性多于技术属性;
3)成本差异小所以重复性建设经常造成产能过剩。
不过,在经济周期级别,所有的库存周期和产能周期都是不值得一提的。
每一轮经济周期的尾声技术红利消失,增长乏力伴随着危机四起,比如战争、瘟疫或者金融危机,新兴产业完全替代落后产业,国家兴衰亦然,20年代美国超越英国靠的是第二次技术革命驱动的电力和 汽车 等行业,80年代美国超越日本靠的是第三次技术革命驱动的计算机互联网等行业,并不是新教伦理的白人文化也不是美联储滔滔不绝的流动性泡沫。
人、企业和国家一样,周期轮回都依赖于穿越牛熊的伟大产业,核心是基于固定资产的资产负债表。
1958,中国研制出了首块硅单晶。
1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务。在研究中,研究人员发现,P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。
1969年,半导体所停止了硅太阳电池研发,随后,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵。
1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。
1998年,中国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目,这个消息让现在的天威英利新能源有限公司的董事长苗连生看到了一线曙光。可是,当时太阳能产业发展前景尚不明朗,加之受政策因素制约,令不少人对这一新能源项目望而却步。在合作伙伴退出的情况下,苗连生毅然逆势而上,争取到了这个项目的批复,成为中国太阳能产业第一个“吃螃蟹”的人。
2001年,无锡尚德建立10MWp(兆瓦)太阳电池生产线获得成功,2002年9月,尚德第一条10MW太阳电池生产线正式投产,产能相当于此前四年全国太阳电池产量的总和,一举将我国与国际光伏产业的差距缩短了15年。
2003到2005年,在欧洲特别是德国市场拉动下,尚德和保定英利持续扩产,其他多家企业纷纷建立太阳电池生产线,使我国太阳电池的生产迅速增长。
2004年,洛阳单晶硅厂与中国有色设计总院共同组建的中硅高科自主研发出了12对棒节能型多晶硅还原炉,以此为基础,2005年,国内第一个300吨多晶硅生产项目建成投产,从而拉开了中国多晶硅大发展的序幕。
2007,中国成为生产太阳电池最多的国家,产量从2006年的400MW一跃达到1088MW。
2008年,中国太阳电池产量达到2600MW。
2009年,中国太阳电池产量达到4000MW。
2006年世界太阳能电池年产量2500MW。
2007年世界太阳能电池年产量4450MW。
2008年世界太阳能电池年产量7900MW。
2009年世界太阳能电池年产量10700MW。
2013年3月无锡市中级人民法院发公告称,无锡尚德太阳能电力有限公司无法归还到期债务,依法裁定破产重整。
2015年前三季度,我国光伏制造业总产值已超2000亿元。其中,多晶硅产量约为10.5万吨,同比增长20%;硅片产量约为68亿片,同比增长10%以上;电池片产量约为28GW,同比增长10%以上;组件产量约为31GW,同比增长26.4%。光伏企业盈利情况得到明显好转,产业链各环节均有较大幅度增长。2015年前三季度,我国光伏产品进出口、下游电站建设、企业盈利等领域全面向好。其中,硅片、电池片、组件等主要光伏产品出口额达到100亿美元。光伏新增装机约10.5GW ,同比增长177%,其中地面电站约为6.5GW。 目前我国光伏企业的自主研发实力普遍不强,主要的半导体原材料和设备均靠进口,技术瓶颈已严重制约我国光伏产业的发展。
在整个光伏产业链中,封装环节技术和资金门槛最低,致使我国短时间内涌现出170多家封装企业,总封装能力不少于200万千瓦。但由于原材料价格暴涨、封装产能过剩,这些企业基本上没有多少利润,产品质量也参差不齐。
相对而言,处于产业链上游、拥有先进技术的无锡尚德、南京中电光伏等太阳能电池制造商,日子要好过得多。他们生产的多为第一代晶体太阳能电池,性能稳定,是市场上的主流产品。
不过,在世界范围内,太阳能电池产品正由第一代向第二代过渡,第二代产品的薄膜太阳能电池的硅材料用量少得多,其成本已低于晶体太阳能电池。在专家看来,薄膜太阳能电池今后将和晶体太阳能电池展开激烈竞争。
中科院电工所研究员、中国可再生能源学会副理事长孔力认为,我国在晶体太阳能电池的后续研发,以及薄膜太阳能电池的研发等方面与国外存在较大差距,至少落后10年。
光伏技术的世界纪录保持者基本上是国外公司。例如,日本京瓷推出了光电转换效率为18.5%的多晶体硅太阳能电池;日本三洋利用晶体硅基板和非晶硅薄膜制成的混合型太阳能电池,光电转换效率达22%;美国联合太阳能公司以微米级不锈钢带为衬底的柔性非晶硅薄膜太阳能电池,与其他公司的玻璃硬衬底太阳能电池相比具有重量轻、可弯曲等优点。
世界光伏技术不断突破,产业成本不断下降。《2007中国光伏发展报告》称,随着技术的不断进步和产业规模的不断扩大,光伏发电的成本有望在2030年以后与常规电力相竞争,成为主流能源利用形式。
在9月份于北京举行的2007世界太阳能大会暨展览会上,国际太阳能学会副主席、日本京瓷公司顾问汤川荣男介绍,日本计划在2010年、2020年和2030年将光伏发电的成本分别降到相当于每度电1.5元、0.93元和0.47元人民币的水平。另据国际能源署预测,2020年世界光伏发电的发电量将占总发电量的2%,2040年则会占到20%-28%。 我国光伏产业发展正处在上升期,如果能够突破政策和技术方面的瓶颈,必然前途无限。上海交通大学太阳能研究所所长、博士生导师崔荣强认为,当前国家应加强政策引导,促进行业缩短与国际先进水平的差距。
首先,制定以培养光伏应用市场和促进光伏产业发展为目标的中长期规划,从法律上规定和细化可再生电力采购比例和重点用途。
其次,鼓励民用上网。借鉴国外经验,逐步启动和实施真正意义的光伏屋顶计划,确立光伏发电在全国电力能源结构中的地位。
第三,建立专项扶持资金,在金融财税等环节实施费用减免政策。如目前国内电费中抽出专用资金补贴到光伏产业中;贫困地区发展光伏用电,政府补贴一部分,企业支持一部分,以成本价支持等。
第四,借鉴发达国家普通建筑必须要有光伏产品的经验,在发达地区实施公共设施、政府建筑必须采用太阳能的刚性政策。
第五,扶持上游高纯度硅原材料产业,降低光伏电池成本,进而加快光伏并网电站成本的降低和应用推广。 全国1200多所高职院校中,真正开设光伏发电技术应用专业的不超过30家。 教育部高职高专新能源分教指委主任委员戴裕崴教授说,因为国内缺少专门的高技能人才,一般只好招用电子、化工等专业毕业生,根据需要再培养。光伏产业大部分需要的是复合型技能人才,巨大的缺口亟待高职毕业生填补。
某知名太阳能公司负责人也表示:光伏产业蓬勃发展,太阳能的应用领域愈来愈广,但是专业对口的人才太少了,每年缺口约有20万。
1839年 法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。
1876年 亚当斯等在金属和硒片上发现固态光伏效应。
1883年 制成第一个“硒光电池”,用作敏感器件。
1930年 肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提 出用“光伏效应”制造“太阳电池”,使太阳能变成电能。
1931年 布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。
1932年 奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。
1941年 奥尔在硅上发现光伏效应。
1954年 恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。
1955年 吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。
1957年 硅太阳电池效率达8%。
1958年 太阳电池首次在空间应用,装备美国先锋1号卫星电源。
1959年 第一个多晶硅太阳电池问世,效率达5%。
1960年 硅太阳电池首次实现并网运行。
1962年 砷化镓太阳电池光电转换效率达13%。
1969年 薄膜硫化镉太阳电池效率达8%。
1972年 罗非斯基研制出紫光电池,效率达16%。
1972年 美国宇航公司背场电池问世。
1973年 砷化镓太阳电池效率达15%。
1974年 COMSAT研究所提出无反射绒面电池,硅太阳电池效率达18%。
1975年 非晶硅太阳电池问世。同年,带硅电池效率达6%~%。
1976年 多晶硅太阳电池效率达10%。
1978年 美国建成100kWp太阳地面光伏电站。
1980年 单晶硅太阳电池效率达20%,砷化镓电池达22.5%,多晶硅电池达14.5%,硫化镉电池达9.15%。
1983年 美国建成1MWp光伏电站;冶金硅(外延)电池效率达11.8%。
1986年 美国建成6.5MWp光伏电站。
1990年 德国提出“2000个光伏屋顶计划”,每个家庭的屋顶装3~5kWp光伏电池。
1995年 高效聚光砷化镓太阳电池效率达32%。
1997年 美国提出“克林顿总统百万太阳能屋顶计划”,在2010年以前为100万户,每户安装3~5kWp。光伏电池。有太阳时光伏屋顶向电网供电,电表反转;无太阳时电网向家庭供电,电表正转。家庭只需交“净电费”。
1997年 日本“新阳光计划”提出到2010年生产43亿Wp光伏电池。
1997年 欧洲联盟计划到2010年生产37亿Wp光伏电池。
1998年 单晶硅光伏电池效率达25%。荷兰政府提出“荷兰百万个太阳光伏屋顶计划”,到2020年完成。
更多信息 参考 光电新闻网