建材秒知道
登录
建材号 > 太阳能光伏 > 正文

山地光伏电站如何做到最大收益,这几点很重要

现代的枕头
务实的豌豆
2022-12-31 15:50:21

山地光伏电站如何做到最大收益,这几点很重要

最佳答案
俊逸的白云
精明的鞋垫
2025-07-30 10:47:04

        您好!绿合岛非常高兴能为您解答!小岛认为,如今,在山区中形态比较好的地大都变作农田,剩余的便愈发“寸土寸金”,而留给光伏人可用于开发的山地,其复杂性与日俱增。 本篇文章通过对部分山地光伏电站的分析,以小见大总结出几点对于山地光伏电站如何做到最大收益的建议。

一 地面光伏电站的选址分析

在进行山地光伏电站选址时,具体流程如下表所示:

1.山地光伏电站的特点

1)山坡朝向差异大,容易受山体阴影影响

山区地形复杂,高差变化大,阴影的部分大部分是由于山体阴影产生的,所以合理的选区布置区域很重要。

2)山地地形本身或阵列之间的局部遮挡

山区地势高低不一,若施工过程中没有合理设计支架高度,将会出现阵列局部互相遮挡的现象。

3)光伏阵列分散、分区复杂,难以实现设计和设备选型的标准化

所以山地光伏电站地形复杂、高差变化大,合理的选取阵列布置区域、设置阵列间距、倾角、方位角,均是设计的重点和难点。

2.山地地形三维模拟及日照阴影分析

通过分析平面日照等时图,可以剔除山体因地形造成的自身遮挡区域,筛选出布置光伏方阵的可用区域。

3.山地光伏电站选址时的误区

1)山地≠山坡,大坡度≠复杂

复杂山地的概念绝不是山坡或大坡度能够诠释的。所谓复杂山地,是沟壑交错、多种朝向坡面相互过渡,地质、水文条件十分复杂的地块,在设计之初就要求设计团队充分考虑到微地形的变化。如果不加以考虑,很容易出现组件遮挡问题,给后期的布置和施工方面也会面临不小的麻烦。

这要求设计师一定要多跑现场,认真做地图分析与阴影分析。按照常规布置,山区中有些区域无论从设计角度还是施工角度都非常容易上手。但在阴影分析之后,这些区域就变成了遮挡区,不利于做布置方案,初期便需要剔除。

上图没有考虑到地形的变化给组件带来的变化,在近中午时分便已出现遮挡。

上图所显示的左下角也是一个地形变化的深沟,因为在设计初期考虑到了阴影拉长,所以在布置组件时便和后面的一排做了相应距离的拉长,以避免遮挡。这种阴影条件在设计起初就要考虑的非常仔细,在布置完现场以后,要对现场条件,尤其是恶劣的地形区域做重点排查。这样可以避免后期的损失

2)正南坡?东西坡?谁是真“鸡腿”?

按照常规设计,复杂山地中的组件布置一般是以正南坡为主,但东西坡就真的不堪大用吗?

上表是自云南投产一年多的山地光伏电站采集而来的数据,20号方阵是正南坡,42号是偏南坡,11号是西坡。对三个方阵的数据进行一年的采集后,取平均值进行比较,按照运营小时数正南坡运营时间是最长的,但发电量却并不是最大的,反而是最小的。而西坡这边发电量才是一年之中最大的。

3)最佳倾角≠最大收益

支架倾角的选择是山地光伏电站设计的重要环节。以前很简单,稍微计算一下。但最佳倾角并不能等同于电站的最大收益,如果想要电站拥有最大收益,度电成本的重要性要高于最佳倾角。

以上图项目为例,28度是这个项目计算得出的最佳倾角。但经比较,从21度到35度,随着倾角的变化,装机量都是在下降的,这三条曲线没有办法判断出哪个角度才能创造出最大收益。所以不能单以技术上的最佳倾角来判断电站的最大收益点。因此在设计上需要引入度电成本的概念。

光伏区造价+升压站等固定投资比上总发电量。这三个值比出来之后,将数据再次汇成表格,最佳倾角此时便已不是28度了,在24度时,投入产出比才是最高的。因此在做山地光伏电站设计时,不能单以技术角度来判断电站的好与坏,更要从整体成本出发进行设计才能取得最好的收益。

二 山地光伏电站的建设分析

1.山地光伏电站逆变器的选择

1)集中型逆变器应用实例:

a布置阵列集中

b光伏组件朝向一致

c山体坡度基本为南向

集中型逆变器应用实例 

2)组串型逆变器应用实例:

a布置场地地形复杂

b阵列布置较为分散

c光伏方阵容量差异大

d光伏组件朝向各异

组串型逆变器应用实例

下图是两套完整的工程方案,一个集中型、一个组串型。这个表格中计算出来的组串比集中式总的系统效率大约提升了3个点。

山地光伏电站不同逆变器方案效率分析图

3.山地光伏电站支架形式选择

山地光伏电站支架主要采用固定式安装,安装方式主要包括单立柱光伏支架、单立柱抱箍光伏支架、双立柱光伏支架,各种支架具体区别如下表所示:

4.山地光伏电站支架施工方案

由于山区地形起伏较大,对光伏支架的安装带来极大的麻烦,尤其是保证光伏组件倾角一致的条件下,对前、后立柱的调节要求较高,故山区电站支架应具有较大范围的调节能力。一般采用以下措施:

1)设计典型的光伏支架形式,根据地形及总图布置,施工人员现场对前、后立柱进行下料。前、后立柱通过后穿孔的方式进行连接。

2)在一些山地光伏电站设计中,可根据地形图进行前、后立柱高度分组设计,提供各立柱分组长度,减少钢构件在现场施工的工序,最大限度的减少钢构件的浪费。

3)采用单立柱光伏支架,可减少部分现场调节的工程量。

5.山地光伏电站集电线路设计方案

1)电缆直埋方案

本方案为经济性最好方案,但对于山地光伏电站来说,仅限于图层较厚,可以开挖的情况。

2) 电缆沿桥架敷设方案

本方案为经济性较好方案,适用于地表无法开挖、地表岩石的情况。

3)电缆架空敷设

本方案经济型一般方案,一般采用钢杆形式架空敷设,主要适用于山体情况较复杂,且光伏阵列布置分散的情况。

沿桥架敷设方式

架空敷设方式

三 关于山地光伏电站的几点总结

一是大自然的鬼斧神工,不应一概否定也不应简单应付,精细分析,既要吃肉、也能啃骨头,最大限度榨取地形的“剩余价值”;

二是运用三维地形阴影遮挡分析,将看似复杂凌乱的山地梳理出头绪,分区块设计和评估;

三是山地光伏电站设计中应重点分析阴影变化规律,根据太阳小时变化规律、地形东西坡变化规律及度电成本的分析,提出最优发电间距及倾角。

本文资料采用:《复杂山地光伏设计之细节分享》;《建设山地光伏电站必须要掌握六大要点》。

希望小岛的回答能帮到您,如果您觉得满意,请麻烦您高抬贵手帮小岛采纳哟,祝您及您的家人永远幸福安康!

最新回答
笑点低的冬日
娇气的天空
2025-07-30 10:47:04

一、结构设计的一般原则

1.1光伏面板的结构可按下列方式分为两类:

(1)分离式光伏面板: 只具有发电功能,不作为围护结构的面板;建筑需要围护功能时须另设密封的采光顶或幕墙。这种面板要设单独的支架,支架连接在主体结构上。因此这种光伏建筑是一体化设计,两层皮。

(2)合一式光伏面板:既具有发电功能,同时又是采光顶或幕墙的面板。又称为建材式光伏面板。由于发电和建筑功能合一,因此建筑外皮只需一套面板,一套支承。这种光伏建筑是一体化设计,一层皮。

合一式光伏结构系统与普通玻璃幕墙和采光顶大体相同,可以套用玻璃幕墙和采光顶的设计方法;分离式光伏结构系统在普通玻璃幕墙和采光顶的外侧另外附加了一个单独的结构,工作性质又不同于一般的幕墙和采光顶,必须进行专门的设计。

1.2光伏结构系统应进行结构设计,应具有规定的承载能力、刚度、稳定性和变形能力。

结构设计使用年限不应小于25年。预埋件属于难以更换的部件,其结构设计使用年限宜按50年考虑。大跨度支承钢结构的结构设计使用年限应与主体结构相同。

1.3光伏结构系统的设计目标是:在正常使用状态下应具有良好的工作性能。抗震设计的光伏结构系统,在多遇地震作用下应能正常使用;在设防烈度地震作用下经修理后应仍可使用;在罕遇地震作用下支承骨架不应倒塌或坠落。

1.4非抗震设计的光伏结构系统,应计算重力荷载和风荷载的效应,必要时可计入温度作用的效应。

抗震设计的光伏结构系统,应计算重力荷载、风荷载和地震作用的效应,必要时可计入温度作用的效应。

1.5光伏结构可按弹性方法分别计算施工阶段和正常使用阶段的作用效应,并进行作用效应的组合。

1.6光伏结构系统的构件和连接应按各效应组合中最不利组合进行设计。

1.7光伏结构构件和连接的承载力设计值不应小于荷载和作用效应的设计值。按荷载与作用标准值计算的挠度值不宜超过挠度的允许值。

二、荷载和作用

2.1光伏结构系统应分别不同情况,考虑下列重力荷载:

(1)面板和支承结构自重

(2)检修荷载

(3)雪荷载

2.2光伏结构系统的风荷载,应按国家标准《建筑结构荷载规范》GB 50009 2006版本采用。设计时应分别考虑:

(1)分离式光伏面板的风荷载应计入迎风面风荷载和背风面风荷载;

(2)支架的风荷载应计入面板传来的风荷载和支架直接承受的风荷载;

(3)合一式面板系统应分别采光顶和幕墙的风荷载,按相应规范采用

2.3分离式光伏结构系统应考虑突出屋面小结构的地震力放大作用。必要时可将其作为独立的质点,连同主体结构一起进行地震反应分析。

屋面上的分离式光伏系统结构具有一定的质量和刚度,相当于一个小楼层,但是其质量和刚度又远小于主体结构的质量和刚度。放在屋面上的地震反应要比放在地面上要强烈得多,称之为鞭梢效应。放在屋面上,地震力比放在地面上放大可达3~5倍,取决于它与主体结构的质量比和刚度比

2.4合一式光伏结构面板和支承结构的地震力计算与一般玻璃幕墙相同,可按照行业标准《玻璃幕墙工程技术规范》JGJ 102-2003 的规定进行。

2.5分离式光伏结构的支架暴露于室外,应考虑温度作用的影响。必要时可进行钢支架的温度应力计算

2.6光伏结构系统的荷载组合可按照行业标准《玻璃幕墙工程技术规范》JGJ 102-2003 的规定进行。

光伏采光顶和斜墙的重力荷载会产生平面外方向的作用分力,它与风荷载和地震力的作用相叠加,计算时应注意。

重力荷载起控制作用的组合,重力荷载的分项系数应取为1.35。

风荷载起主要作用的组合,地震作用的组合值系数应取为0.5。

三、面板设计

3.1面板的玻璃应能承受施加于面板的荷载、地震作用和温度作用。其厚度除应由计算确定外,尚应满足最小厚度的要求。

3.2分离式面板夹胶玻璃中的单片玻璃,厚度不应小于4mm。

3.3用作采光顶和幕墙的合一式面板,夹胶玻璃中的单片玻璃厚度不应小于5mm;幕墙中空玻璃的内侧采用单片玻璃时,厚度不应小于6mm。

3.4有光伏电池的夹胶玻璃,外片宜采用超白玻璃。夹胶玻璃的内外片,厚度相差不宜大于3mm。

3.5无中空层的单片夹胶玻璃,不宜采用Low-E镀膜;有中空层的夹胶中空玻璃,Low-E镀膜应朝中空层。

3.6合一式面板应采用PVB夹胶膜;分离式面板可采用PVB夹胶膜,也可采用EVA夹胶膜。非晶硅电池的夹胶玻璃宜采用PVB夹胶膜。

3.7采光顶采用中空玻璃时,室内侧也应采用夹胶玻璃;斜玻璃幕墙采用中空玻璃时,朝地面一侧宜采用夹胶玻璃

3.8夹胶玻璃宜采用半钢化玻璃或浮法玻璃,可采用钢化玻璃。点支承面板应采用钢化玻璃。

钢化玻璃有1%~3%的自爆率,即使经过二次热处理也还有0.1%~0.3%的自爆率。而半钢化玻璃和浮法玻璃不会自爆,夹胶后成为安全玻璃。所以如果承载力足够,完全不必采用钢化夹胶玻璃,以免使用后更换玻璃的困难。

点支承玻璃开孔处局部应力很大,只有强度高的钢化玻璃才能满足承载力的要求。

3.9 面板的结构计算应按《玻璃幕墙工程技术规范》JGJ 102-2003的规定进行。规范中已列出了边支承玻璃板和点支承玻璃板的计算公式和计算用表,可直接采用。

3.10 由荷载及作用标准值产生的面板挠度,边支承面板不宜大于短边的1/60;点支承面板不宜大于沿较大边长支承点间距的1/60。

四、支承结构设计

4.1支承结构设计应遵照《钢结构设计规范》GB 50017-2003 和《铝合金结构设计规范》GB 50429-2007 的规定进行。

4.2分离式面板的钢支架构件的截面厚度不应小于3.0mm,其钢种、牌号和质量等级应符合现行国家标准和行业标准的规定。钢材之间进行焊接时,应符合现行国家标准和行业标准的规定。

4.3分离式面板的钢支架应采取有效的防腐措施。当采用热浸锌防腐处理时,锌膜厚度不宜小于80微米。采用氟碳喷涂时涂膜厚度不宜小于40微米。采用防锈漆或其他防腐涂料时应遵照相应的技术规定。

腐蚀严重地区的钢支架,必要时可预留截面的腐蚀厚度。另外,圆管、方管等闭口钢型材,其内侧表面难以进行防腐处理,也可以留出腐蚀厚度。在通常条件下,钢材截面的腐蚀速度大概不超过每年0.02mm。这样一来,钢型材截面厚度额外增加1.0mm,就可留出单面腐蚀50年或双面腐蚀25年的余量。

4.4在风荷载标准值作用下,分离式面板支架的顶点水平位移不宜大于其高度的1/150。

4.5合一式面板的支承结构设计,应按《玻璃幕墙工程技术规范》 JGJ 102-2003 的规定进行

大力的大树
激动的手机
2025-07-30 10:47:04
1、逆变器屏幕没有显示

故障分析:没有直流输入,逆变器LCD是由直流供电的。

可能原因:

(1)组件电压不够。逆变器工作电压是100V到500V,低于100V时,逆变器不工作。组件电压和太阳能辐照度有关。

(2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。

(3)直流开关没有合上。

(4)组件串联时,某一个接头没有接好。

(5)有一组件短路,造成其它组串也不能工作。

解决办法:

用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。

如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,需要联系售后(PS:茂硕电气售后工程师李工可联系138****4778)。

2、逆变器不并网

故障分析:逆变器和电网没有连接。

可能原因:

(1)交流开关没有合上。

(2)逆变器交流输出端子没有接上。

(3)接线时,把逆变器输出接线端子上排松动了。

解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。

3、PV过压

故障分析:直流电压过高报警。

可能原因:组件串联数量过多,造成电压超过逆变器的电压。

解决办法:因为组件的温度特性,温度越低,电压越高。单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电压在600-650V之间。在这个电压区间,逆变器效率较高,早晚辐照度低时也可发电,但又不至于电压超出逆变器电压上限,引起报警而停机。

4、隔离故障

故障分析:光伏系统对地绝缘电阻小于2兆欧。

可能原因:太阳能组件,接线盒,直流电缆,逆变器,交流电缆,接线端子等地方有电线对地短路或者绝缘层破坏。PV接线端子和交流接线外壳松动,导致进水。

解决办法:断开电网,逆变器,依次检查各部件电线对地的电阻,找出问题点,并更换。

5、漏电流故障

故障分析:漏电流太大。

解决办法:取下PV阵列输入端,然后检查外围的AC电网。直流端和交流端全部断开,让逆变器停电30分钟以上,如果自己能恢复就继续使用,如果不能恢复,联系售后技术工程师。

6、电网错误

故障分析:电网电压和频率过低或者过高。

解决办法:用万用表测量电网电压和频率,如果超出了,等待电网恢复正常。如果电网正常,则是逆变器检测电路板发电故障,请把直流端和交流端全部断开,让逆变器停电30分钟以上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。

7、逆变器硬件故障

分为可恢复故障和不可恢复故障。

故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。

解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。

8、系统输出功率偏小

故障描述:达不到理想的输出功率。

可能原因:影响光伏电站输出功率因素很多,包括太阳辐射量,太阳电池组件的倾斜角度,灰尘和阴影阻挡,组件的温度特性等。

因系统配置安装不当造成系统功率偏小。

常见解决办法有:

(1)在安装前,检测每一块组件的功率是否足够。

(2)调整组件的安装角度和朝向。

(3)检查组件是否有阴影和灰尘。

(4)检测组件串联后电压是否在电压范围内,电压过低系统效率会降低。

(5)多路组串安装前,先检查各路组串的开路电压,相差不超过5V,如果发现电压不对,要检查线路和接头。

(6)安装时,可以分批接入,每一组接入时,记录每一组的功率,组串之间功率相差不超过2%。

(7)安装地方通风不畅通,逆变器热量没有及时散播出去,或者直接在阳光下曝露,造成逆变器温度过高。

(8)逆变器有双路MPPT接入,每一路输入功率只有总功率的50%。原则上每一路设计安装功率应该相等,如果只接在一路MPPT端子上,输出功率会减半。

(9)电缆接头接触不良,电缆过长,线径过细,有电压损耗,最后造成功率损耗。

(10)光伏电站并网交流开关容量过小,达不到逆变器输出要求。

9、交流侧过压

电网阻抗过大,光伏发电用户侧消化不了,输送出去时又因阻抗过大,造成逆变器输出侧电压过高,引起逆变器保护关机,或者降额运行。

常见解决办法有:

(1)加大输出电缆,因为电缆越粗,阻抗越低。

(2)逆变器靠近并网点,电缆越短,阻抗越低。

有魅力的白昼
顺利的钢笔
2025-07-30 10:47:04
根据经纬度 确定 光伏组件的 水平角度!

根据地势来考虑 如何布阵?(布阵时必须考虑阴影规避问题 )

根据 布阵的情况 和 电池板的容量来计算 逆变器的大小 !

这个问题 很复杂 !

不是一两天你能学会的 。

建议买些相关专业书籍 研究!

我 的回答希望你满意!

搞怪的芝麻
善良的小海豚
2025-07-30 10:47:04
一套完善的太阳能光伏发电系统需要进行各种设计,考虑到很多因素,如电气性能设计、防雷接地设计、静电屏蔽设计、机械结构设计等。对地面应用的独立光伏发电系统来说,最主要的是根据使用要求,决定太阳能电池方阵和蓄电池的容量,以满足正常工作的需求。光伏发电系统总的设计原则是在保证满足负载用电需要的前提下,确定最少的太阳能电池组件和蓄电池容量,以尽量减少投资,即同时考虑可靠性及经济性。

  太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的年总辐射能量也有较大的差别。设计者要了解太阳能光伏发电系统所在地的经度和纬度,了解并掌握使用地的气象资源,比如月(年)平均太阳能辐照情况。平均气温、风雨等资料,根据这些条件可以确定当地的太阳能标准峰值时数(H)和太阳能电池组件的倾斜角与方位角。

太阳能光伏系统工作的时间是决定太阳能光伏系统中太阳能电池组件大小的核心参数,通过确定工作时间,可以初步计算负载每天的功耗和与之相应的太阳能电池组件的充电电流。

太阳能光伏系统使用地的连续阴雨天数,决定了蓄电池容量的大小及阴雨天过后恢复蓄电池容量所需要的太阳能电池组件功率。确定两个连续阴雨天之间的间隔天数,可以决定系统在一个连续阴雨天过后充满蓄电池所需的太阳能电池组件功率。

蓄电池工作的浮充电状态下,其电压随太阳能电池方阵发电量和负载用电量的变化而变化。蓄电池提供的能量还受环境温度的影响。

太阳能电池充、放电控制器。逆变器由电子元器件组成,他本身运行时具有能耗,影响其工作的效率,控制器、逆变器所选用元器件的性能、质量等也关系到耗能的大小,从而影响到光伏发电系统的效率。

设计太阳能光伏发电系统的任务是在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等)保证所选择的太阳能电池方阵、蓄电池、控制器、逆变器,可以使构成的电源系统既具有高的经济效益,又保证系统的高可靠性。

无限的小蝴蝶
和谐的网络
2025-07-30 10:47:04
一、项目概括

1.1项目简介及选址

本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。

本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。

图1-1 选址地卫星图

图1-2 选址平面图

1.2 项目位置及气象情况

经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。

图1-3湘潭市地理位置

图1-4年均总辐射值

1.3项目设计依据

本项目设计依据如下:

《光伏发电站设计规范》GB50794-2012

《电力工程电缆设计规范》GB50217-1994

《光伏系统并网技术要求》GB/T19939-2005

《建筑太阳能光伏系统设计与安装》10J908-5

《光伏发电站接入电力系统技术规范》GB/T19964-2012

《光伏发电站接入电力系统设计规范》GB/T5086-2013

《光伏(PV)系统电网接口特性》GB/T20046-2006

《电能质量公用电网谐波》GB/T14549-19933

《电能质量三相电压允许不平衡度》GB/T15543-1995

《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000

二、电站系统设计

2.1组件选型

组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。

组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。

单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。

表2-1伏组件对比表

组件品牌及型号

晶科

Swan Bifacial 400 72H

晶科

Swan Bifacial 405 72H

晶澳

JAM72S10 400MR

最大功率(Pmax)

400Wp

405Wp

400Wp

最佳工作电压(Vmp)

41V

41.2V

41.33V

组件转换效率(%)

19.54%

19.78%

19.9%

最佳工作电流(Imp)

9.76A

9.83A

9.68A

开路电压(Voc)

48.8V

49V

49.58V

短路电流(Isc)

10.24A

10.3A

10.33A

工作温度范围(℃)

-40℃~+85℃

-40℃~+85℃

-40℃~+85℃

最大系统电压

1000/1500V DC(IEC/UL)

1000/1500VDC(IEC/UL)

1000/1500VDC (IEC)

最大额定熔丝电流

20A

20A

20A

输出功率公差

0~+5W

0~+5W

0~+3%

最大功率(Pmax)的温度系数

-0.350%/℃

-0.35%/℃

-0.35%/℃

开路电压(Voc)的温度系数

-0.290%/℃

-0.29%/℃

-0.272%/℃

短路电流(Isc)的温度系数

0.048%/℃

0.048%/℃

0.044%/℃

名义电池工作温度(NOCT)

45±2℃

45±2℃

45±2℃

组件尺寸:长*宽*厚(mm)

2031*1008*30mm

2031*1008*30mm

2015*996*40mm

电池片数

72

72

72

第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。

第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。

综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。

图2-1 组件图

2.2最佳倾斜角和方位角设计

本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。

对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。

图2-2 PVsyst最佳方位角、倾斜角模拟图

2.3组件排布方式

本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。

图2-3 组件排列方式

2.4组件间距设计

太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。

图2-4间距图

在公式2-1中:

L是阵列倾斜面长度(4050mm)

D是阵列之间间距

β是阵列倾斜角(18°)

为当地纬度(27.96°)

把以上数值代入公式后计算得:

2-5组件计算图

根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。

图2-6方阵间距图

2.5逆变器选型

逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。

表2-2 逆变器参数对比表

逆变器品牌及型号

华为

SUN2000-100KTL-C1

华为

SUN2000-110KTL-C1

固德威

HT 100K

最大输入功率

100Kw

110Kw

150Kw

中国效率

98.1%

98.1%

98.1%

最大直流输入电压(V)

1100V

1100V

1100V

各MPPT最大输入电流(A)

26A

26A

28.5A

MPPT电压范围(V)

200 V ~ 1000 V

200 V ~ 1000 V

200V ~ 1000V

额定输入电压(V)

600V

600V

600V

MPPT数量/输入路数

10/20

10/20

10/2

额定输出功率(KW)

100K W

110K W

100K W

最大视在功率

110000 VA

121000 VA

110000 VA

最大有功功率 (cosφ=1)

110KW

121K W

110KW

额定输出电压

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

380, 3L/N/PE 或 3L/PE

输出电压频率

50 Hz,60Hz

50 Hz,60Hz

50 Hz

最大输出电流(A)

168.8A

185.7 A

167A

功率因数

0.8 超前—0.8 滞后

0.8超前—0.8滞后

0.99 (0.8超前—0.8滞后)

最大总谐波失真

<3%

<3%

<3%

输入直流开关

支持

支持

支持

防孤岛保护

支持

支持

支持

输出过流保护

支持

支持

支持

输入反接保护

支持

支持

支持

组串故障检测

支持

支持

支持

直流浪涌保护

Type II

Class II

具备

交流浪涌保护

Type II

Class II

具备

绝缘阻抗检测

支持

支持

支持

残余电流监测

支持

支持

支持

尺寸(宽 x 高 x 厚)

1,035 x 700 x 365 mm

1,035 x 700 x 365 mm

1005*676*340

重量(kg)

85kg

85kg

93.5kg

工作温度(°C)

-25°C~60°C

-25°C~60°C

-25~60℃

3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。

第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。

第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。

本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。

2.6光伏阵列布置设计

2.6.1串并联设计

图2-7串并联计算

公式2-3、2-4中:

Kv——光伏组件的开路电压温度系数-0.00272

K——光伏组件的工作电压系数-0.0035

t/——光伏组件工作环境极限高温(℃)60

Vpm——光伏组件的工作电压(V)41.33

VMPPTmax——逆变器MPPT电压最大值(V)1000

VMPPTmin——逆变器MPPT电压最小值(V)200

Voc——光伏组件开路电压(V)49.58

N——光伏组件串联数(取整)

t——光伏组件工作环境极端低温(℃)-12.7

——逆变器允许的最大直流输入电压(V)1100

把以上数值代入公式中计算可得:

5.5≤N≤21

经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。

图2-8组件串并联设计图

2.6.2项目方阵排布

据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。

图2-9项目方阵排布图

2.7基础与支架设计

2.7.1水泥墩设计

本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。

考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。

图2-10水泥墩设计

图2-11电站整体水泥墩设计图

2.7.2支架设计

都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。

图2-12支架设计图

2.8配电箱选型

配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。

配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。

表2-3配电箱参数

项目名称

昌松100kw光伏交流配电箱

项目型号

100kw交流配电箱

额定功率

100KW

额定电流

780A

额定频率

50Hz

海拔高度

2500m

环境温度

-25~55℃

环境湿度

2%~95%,无凝霜

2.9电缆选配

电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。

直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆

交流电缆:

P:逆变器功率100KW

U:交流电电压380V

COSΦ:功率因数0.8

=

=190A

=0.035Ω

=976W

线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。

据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。

图2-13 电缆参数图

2.10防雷接地设计

防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。

本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。

图2-14防雷接地设计图

2.11电气系统设计及图纸

本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。

图2-15电气系统设计图

三、电站成本与收益

3.1电站项目设备清单

根据当地市场的物价,预估出了一个本电站预计投资表。

表3-1设备清单表

序号

设备

型号

单位

数量

单价

(元)

价格

(万元)

1

组件

晶澳JAM72S10 400MR

260

1.77

18.4

2

逆变器

固德威HT 100K

1

3.3w

3.3

3

直流电缆

PV1-F-1*4mm²

1500

5.2

0.78

4

交流电缆

ZRC-YJV22 70mm2

100

72

0.72

5

支架

39

556

2.17

6

水泥墩

500*500*500mm

78

250

1.95

7

配电箱

昌松100kw光伏交流配电箱

1

1.3w

1.3

8

运输费

18

1000

1.8

9

其他

4.15

10

人工费

7

合计:41.57万元

3.2电站年发电量计算

本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。

(式3-1)

Q=100*1116.6*0.8=89328度

Q——电站首年发电量

W——本项目电站总容量(85KW)

T——许昌市年日照小时数(1258.2H)

——系统综合效率(0.8)

任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。

表3-2电站发电量

发电年数

功率衰减

年末功率

年发电量(kWh)

累计发电量(kWh)

第1年

2.5%

97.50%

89328.000

89328.000

第2年

0.7%

96.80%

87094.800

176422.800

第3年

0.7%

96.10%

86469.504

262892.304

第4年

0.7%

95.40%

85844.208

348736.512

第5年

0.7%

94.70%

85218.912

433955.424

第6年

0.7%

94.00%

84593.616

518549.040

第7年

0.7%

93.30%

83968.320

602517.360

第8年

0.7%

92.60%

83343.024

685860.384

第9年

0.7%

91.90%

82717.728

768578.112

第10年

0.7%

91.20%

82092.432

850670.544

第11年

0.7%

90.50%

81467.136

932137.680

第12年

0.7%

89.80%

80841.840

1012979.520

第13年

0.7%

89.10%

80216.544

1093196.064

第14年

0.7%

88.40%

79591.248

1172787.312

第15年

0.7%

87.70%

78965.952

1251753.264

第16年

0.7%

87.00%

78340.656

1330093.920

第17年

0.7%

86.30%

77715.360

1407809.280

第18年

0.7%

85.60%

77090.064

1484899.344

第19年

0.7%

84.90%

76464.768

1561364.112

第20年

0.7%

84.20%

75839.472

1637203.584

第21年

0.7%

83.50%

75214.176

1712417.760

第22年

0.7%

82.80%

74588.880

1787006.640

第23年

0.7%

82.10%

73963.584

1860970.224

第24年

0.7%

81.40%

73338.288

1934308.512

第25年

0.7%

80.70%

72712.992

2007021.504

3.3电站预估收益计算

根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入

参考文献

[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.

[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.

[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.

[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.

[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.

[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.

[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.

[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.

[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.

[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.

忧虑的鱼
包容的鞋垫
2025-07-30 10:47:04
离网光伏系统的设计内容不少,但主要是蓄电池容量和电池板功率的设计

1,用电器的功率100KWh/天。连续阴雨天为3天,即要求蓄电池容量至少是300kwh.根据C=D*F*P0/L*U*K,

C:蓄电池容量[kwh]

D:最长无日照间用电时间[h]

F:蓄电池放电效率的修正系数(通常取1.05)

Po:平均负荷容量[kw]

L:蓄电池的维修保养率(通常取0.8)

U:蓄电池的放电深度(通常取0.5)

可以算出蓄电池容量,结果大于300kwh

2,用电器的功率100KWh/天,交流电压为220V,日照时长为5.67个小时

电池板方阵容量的设计

P=w1*f/(Tm*n2*n3*L*Ka)

w1:负载的消耗功率

F:蓄电池放电效率的修正系数(通常取1.05)

Tm:峰值日照时数

n2:方阵表面由于尘污遮蔽或老化引起的修正系数,通常取0.9--0.95)

n3:方阵组合损失和对最大功率点偏离以及控制器效率的修正系数,通常取(0.9--0.95)

Ka:包括逆变器等交流回路的损失率(通常取0.7)

可以算出电池板方阵容量

懦弱的啤酒
妩媚的钢铁侠
2025-07-30 10:47:04
(1)优点

太阳能光伏发电发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪声、无污染;太阳能资源分布广泛且取之不尽、用之不竭。因此,与风力发电、生物质能发电和核电等新型发电技术相比,光伏发电是一种最具可持续发展理想特征(最丰富的资源和最洁净的发电过程)的可再生能源发电技术,具有以下主要优点。

①太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。

②太阳能资源随处可得,可就近供电,不必长距离输送,避免了长距离输电线路所造成的电能损失。

③光伏发电的能量转换过程简单,是直接从光能到电能的转换,没有中间过程(如热能转换为机械能、机械能转换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。

④光伏发电本身不使用燃料,不排放包括温室气体和其它废气在内的任何物质,不污染空气,不产生噪声,对环境友好,不会遭受能源危机或燃料市场不稳定而造成的冲击,是真正绿色环保的新型可再生能源。

⑤光伏发电过程不需要冷却水,可以安装在没有水的荒漠戈壁上。光伏发电还可以很方便地与建筑物结合,构成光伏建筑一体化发电系统,不需要单独占地,可节省宝贵的土地资源。

⑥光伏发电无机械传动部件,操作、维护简单,运行稳定可靠。一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,基本上可实现无人值守,维护成本低。

⑦光伏发电系统工作性能稳定可靠,使用寿命长(30年以上)。晶体硅太阳能电池寿命可长达20~35年。在光伏发电系统中,只要设计合理、选型适当,蓄电池的寿命也可长达10~15年。

⑧太阳能电池组件结构简单,体积小、重量轻,便于运输和安装。光伏发电系统建设周期短,而且根据用电负荷容量可大可小,方便灵活,极易组合、扩容。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点。太阳能光伏发电与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用电的独立太阳能发电系统,这些特点是其他电源无法比拟的。

(2)缺点

当然,太阳能光伏发电也

强健的小松鼠
追寻的衬衫
2025-07-30 10:47:04
根据展宇的施工要求,给你按项目流程列举:一:项目策划阶段:工程项目决策依据的可行性研究报告是该阶段工作的核心。伏电站可行性研究报告编制的主要依据是GD003-2011《光伏电站项目管理暂行办法》。二:项目准备阶段:在条件具备时,项目业主应在初步设计开展之前对光伏组件、逆变器等主设备进行招标。设计方一般应提供相应主设备的技术规范书。初步设计的编制时本阶段的核心工作,其依据是【项目策划阶段】批准的可行性研究报告。初步设计的任务是确定全站性的三:项目实施阶段项目实施阶段设计方的主要任务是围绕工程建设的需要,提供如下产品或服务:①提供其他设备的技术规范书供业主招标使用,并参与签订最终的技术协议;②绘制施工地图图纸,作为现场施工、安装的主要依据;③提供现场技术服务等。四:项目竣工阶段:在项目竣工阶段,设计方的主要任务是编制竣工图。

超帅的长颈鹿
畅快的世界
2025-07-30 10:47:04
    光伏发电站建设从2014年大量建设以来,到目前为止并网容量达到300GW左右,由于光伏发电站工程施工工艺相对简单,所以工程管理人员鱼目混珠,特别在2014-2017年间建设的光伏电站工程质量存在诸多问题,笔者随意举例说明(因记录往事,不加照片),如有雷同,敬请谅解!

    笔者亲自操作某300兆瓦大型地面光伏发电站,低处沙漠,原地势属于小丘陵,高差部分达到2米。在当时的政策允许的情况下,采取了场地平整,整体将高差控制在500-800mm左右,为未来场地检修运行管理创造了便利,但是费用也惊人。场平后公司老领导担心大雨洪水冲击电站,特把我叫到长沙与设计一起开了专题会,因低处沙漠,附近50km内没有大山,不可能对该处形成洪水,老领导安排设计人员重新落实。其实在这后期,很多大型公司光伏场区电站被洪水冲毁,损失惨重!

在华北某革命老区一座光伏发电站,光伏场区建设在陡峭的山上,山上很多乱石,建设期间还是非常辛苦。并网后电站人员发来了当年洪水冲击电站大门的照片,真是洪水滔天,电站内积水超过100mm,非常危险。在当时该公司有主管工程副总裁、工程总监、副总监、项目经理管理体系,都看到洪水滔天的照片感觉问题不大,竟然对笔者讲:没问题,每年下雨后对冲的泥沙清理清理即可。笔者听后未回复这位同志,只是知道了他虽坐工程管理岗位位置,确实是不懂土木工程的团队。笔者带着土建设计师到现场进行实地踏勘。光伏场区建在山坡上,在半山腰修建了几条道路,将土方堆积在雨水沟汇集处,高约15米左右,部分虚土已经被洪水冲了一个很大的缺口,已经非常危险。顺着山腰道路到光伏升压站,道路作了一条排水沟直接到电站大门。当时笔者内心感慨,企业怎么搞了这么多“王八蛋”来管理工程。

最后抓紧和土建设计师商量了一个方案,在大门处增加一条排水沟,山上洪水下来直接排到电站排水沟,将电站两个排水沟混凝土盖板改为铁篦子,这样电站也不会再积水。将虚土处两边增设洪水沟,把虚土山坡播种草籽,后期施工即将结束,与质量管理同志再去,又增加了部分过水路面。记得去年该区域又下暴雨,该电站再也未报告洪水冲击等消息。(未完待续)