煤和石油是再生能源吗
答:不是。
煤、石油是非再生资源。人类可利用的资源可分为两类:[1]非再生资源;[2]二是再生资源。
定义:
[1]非再生资源:是指被人类开发利用一次后, 在相当长的时间(千百万年以内)不可自然形成或产生的物质资源。[2]再生资源:指被人类开发利用一次后,在一定时间(一年内或数十年内)通过天然或人工活 太阳能 动可以循环地自然生成、生长、繁衍,有的还可不断增加储量的物质资源。
分类:
[1]非再生资源:煤炭、石油、天然气、矿产等。
[2]再生资源:太阳能、风能、水能、生物质能等
都是不可再生资源。
不可再生资源指经人类开发利用后,在相当长的时期内不可能再生的自然资源。如:矿石资源,土壤资源,煤,石油等。
煤、石油、天然气都是亿万年前动植物由于地壳运动而被埋在地下长期受到微生物和地表巨大压力.地热等条件慢慢而形成的化合物,需要时间长,原料多,条件高,所以是不可在再生资源。
天然气、石油、煤矿、铁矿等矿产资源都是不可再生资源,它们用一些就少一些,不可能再重新产生。以铁矿为例,铁元素聚集成具有工业利用价值的矿床是一个漫长的地质历史过程,它们多形成于距今26~30亿年的太古时代。远古时代时期,成矿期均以亿年计算。与此相反,人类开采、消耗矿物却十分快速,一个矿区开采期仅为百年、数十年,以至几年,因此,从人类历史的角度看,矿产资源是不可再生的。另外,如果不注意保护、任意取用,可再生资源也有可能变成不可再生资源。比如对某种野生动物来说,一旦它的生存环境被破坏,其物种数量减少到一定程度后,它就不可能再维持自身的繁衍,只能灭绝,恐龙就是这样从地球上消失的。据统计,1600年以来,有记录的高等动物和植物已灭绝724种。经粗略测算,400年间,生物生活的环境面积缩小了90%,物种减少了一半,其中由于热带雨林被砍伐对物种损失的影响更为严重。所以,不管是不可再生资源,还是可再生资源,我们都应该注意保护和合理利用
而像森林.水.太阳能.风能......等在一定时期内就可以再生的资源就属于可再生资源.
可再生:指在短时期内可以再生,或是可以循环使用的自然资源,又称可更新资源。主要包括生物资源(可再生)、土地资源、水资源、气候资源等。后三者是可以循环再现和不断更新的资源。
土地资源虽然归为可再生资源(是因为它可以循环使用),但其具有不可再生性,因为土地的数量是一定的。在这方面,比不可再生资源还要宝贵。
注意:可再生资源与不可再生资源都是在自然资源的前提下出现的。
不可再生: 泛指人类开发利用后,在现阶段不可能再生的能源资源,叫“不可再生能源”。如煤和石油都是古生物的遗体被掩压在地下深层中,经过漫长的地质年代而形成的(故也称为“化石燃料”),一旦被燃烧耗用后,不可能在数百年乃至数万年内再生,因而属于“不可再生能源”。
“化石”确切指化石燃料的来源及生成过程。化石燃料和化石一样,来源都是古生物的遗体,都经历了复杂的化学变化(矿化),也叫矿物燃料,是不可再生资源(再生周期太长),成分主要是碳。一般化石燃料包括煤、石油、天然气三种,但只要满足上述的来源和生成过程的都可以算化石燃料,比如煤炭类的泥炭(含碳量比煤低)、油页岩等。
化石燃料是指煤炭、石油、天然气等这些埋藏在地下不能再生的燃料资源。化石燃料中按埋藏的能量的数量的顺序分有煤炭类、石油、油页岩、天然气和油砂。
煤炭是埋藏在地下的植物受地下和地热的作用,经过几千万年乃至几亿年的炭化过程,释放出水份、二氧化碳、甲烷等气体后,含氧量减少而形成的,含炭量非常丰富。由于地质条件和进化程度不同,含炭量不同,从而发热量也就不同。按发热量大小顺序分为无烟煤、烟煤和褐炭等。煤炭在地球上分布较为广泛,不集中某一产地。
石油是水中堆积的微生物残骸,在高压的作用下形成的碳氢化合物。石油经过精制后可得到汽油、煤油、柴油和重油。石油在地球上分布不均,中东占54%,北美占12%,南美占9%,几乎占了可确认埋藏量的3/4。 4油页岩是水藻化后形成的,含灰分过多,多半不能自燃。油砂是含重质油4-20%的砂子。油页岩和油砂在美洲大陆偏多。
天然气直接采掘于地下,含甲烷为主。在摄氏零下162度被冷却,液化后,作为液化天然气用油罐输送。天然气的分布也非常偏于中东,美洲和欧洲大陆。
可再生资源 指在短时期内可以再生,或是可以循环使用的自然资源,又称可更新资源。主要包括生物资源(可再生)、土地资源、水资源、气候资源等。后三者是可以循环再现和不断更新的资源。
可再生资源包括水能、电能、风能、波动能、潮汐能、地热能、生物能、太阳能等等。自然资源是指自然界中能被人类用于生产和生活的物质和能量的总称。如水资源、土地资源、矿产资源、森林资源、野生动物资源、气候资源和海洋资源等。这些自然资源按是否能够再生,可划分为可再生资源和不可再生资源。
天然气、石油、煤矿、铁矿等矿产资源都是不可再生资源,它们用一些就少一些,不可能再重新产生。以铁矿为例,铁元素聚集成具有工业利用价值的矿床是一个漫长的地质历史过程,它们多形成于距今26~30亿年的太古时代。远古时代时期,成矿期均以亿年计算。与此相反,人类开采、消耗矿物却十分快速,一个矿区开采期仅为百年、数十年,以至几年,因此,从人类历史的角度看,矿产资源是不可再生的。另外,如果不注意保护、任意取用,可再生资源也有可能变成不可再生资源。比如对某种野生动物来说,一旦它的生存环境被破坏,其物种数量减少到一定程度后,它就不可能再维持自身的繁衍,只能灭绝,恐龙就是这样从地球上消失的。据统计,1600年以来,有记录的高等动物和植物已灭绝724种。经粗略测算,400年间,生物生活的环境面积缩小了90%,物种减少了一半,其中由于热带雨林被砍伐对物种损失的影响更为严重。所以,不管是不可再生资源,还是可再生资源,我们都应该注意保护和合理利用。
都说化石能源是不可再生资源,你知道吗?实际上它们是可以再生的。
碳诞生于恒星内部,它随着剧烈的爆炸散布到宇宙空间,然后因为尘埃的聚集慢慢成为地球的一部分。地球上的碳含量几乎是恒定的,几十亿年来只有极少量的增加,这是因为强烈宇宙射线中的中子辐射9000~15000米的高层大气,使一部分氮-14分解为碳-14和氢。碳-14本身不稳定,它会通过β衰变变回到氮-14。地球上碳-14的含量极少,据计算全球碳-14的存量大约仅有50吨,其中大气层有840千克,其它全被固定在陆地材料中。
50吨的碳-14与地球碳总量相比微不足道。 地球上的碳主要是碳-12和碳-13,这是碳的两种稳定同位素,其中碳-12约占碳总量的99%,碳-13约为1% 。科学家们估计有超过6亿亿吨的元素碳以碳酸盐的形式被储存在岩石中,另有约1.5亿亿吨碳存在于一种叫做“油母质”或“干酪根”的固体有机混合物里;在地球中心的铁核中还有大量的碳,它与地核的铁结合成碳化铁Fe₇C₃;地球表面广阔的海洋中溶解和储存了大量碳化合物,其中含有38.4万亿吨碳;相比之下大气中的元素碳含量则要少得多,2000年测量的数值约为7200亿吨。
值得注意的是: 在2018年中期最新测量数据中,大气中二氧化碳的质量浓度达到622ppm 。我们知道地球表面大气总质量约为5.15×10¹⁸千克,这意味着大气中二氧化碳总质量约为32033亿吨,其中 元素碳的质量达到8736亿吨 ,远超过2000年的水平。科学家们认为这主要是由于人类活动每年向大气中排放超过290亿吨CO₂的结果,另外由火山喷发每年向大气贡献了不超过3亿吨二氧化碳。
地球的大气层中最早是没有碳的 ,当它开始形成时,包裹在周围的主要是氢气,还有少量的水蒸汽、甲烷和氨。 随着小行星不断地碰撞,频繁的火山活动将地下大量氮、二氧化碳以及少量惰性气体带到地球表面,形成新的大气层 。这些二氧化碳中的大部分溶解在水里形成早期的碳酸盐岩石,另一部分作为温室气体为早期的地球保温,这也为后来地球生命的产生创造了条件。早期的太阳光度只有今天的70%,更多的温室气体有利于保持地球表面的温度,在大约34亿年前,地球就已经存在早期生命的迹象,这与地下碳的大量排放时间基本吻合。
大量的地质证据表明,在大约24亿年前太古代晚期的数亿年时间里,地球大气和浅海区域大量氧气开始聚集,被称为“大氧化事件”,这是因为 大量蓝藻通过光合作用吸收空气中的二氧化碳,将碳固定在它们体内并向空气中释放氧气 。这些远古藻类和浮游动物死亡后沉入水底,经过数亿年的堆积和几十亿年的地质变化,这些成分复杂的有机化合物的混合物慢慢变成今天被称为“干酪根(Kerogen)”的固体物质。
干酪根是原始藻类、浮游生物和原始陆地植物固定地球大气层中碳的证据,它固定了超过10¹⁶吨(约1.5亿亿吨)元素碳,这些有机物质聚集在地下深处原始的沉积岩中,当其中一部分在地壳中被加热到合适的温度时( 油窗 :50-150 °C, 气窗 :150-200°C,两者都取决于烃源岩加热的速度),某些类型的干酪根会释放原油或天然气,形成油田或气田。
由此我们知道, 石油和天然气本身就是地球碳循环的其中一个产物 。
在地球 历史 的每一个地质时期,都有藻类和浮游生物沉积演化所形成的石油,从这个角度看,地球的石油储藏应当是源源不绝的。今天的渔民们不喜欢大量繁殖的水藻和浮游生物,它们会大量消耗浅层海水中的氧,导致鱼类死亡绝收,但十数亿年之后,这些海藻有可能就是后人的石油。
我此前在《煤炭与钻石,哪个更有价值?》一文中介绍了煤炭的来源,陆地上繁茂的植物在死亡之后慢慢堆积,将它们从空气中吸收的碳固定在地面,随着漫长岁月的地质演化,这些死亡植物在被微生物降解前变成泥碳,进而演化为III型干酪根,也就是我们通常所说的煤炭。
地球表面的碳循环与大量微生物、动植物的生长繁衍密不可分 。植物和藻类通过光合作用将空气中的二氧化碳转化为体内的有机碳,当它们死亡时,这些有机碳的大部分被保存在地面、深埋进泥土、进入地壳,然后变为泥炭和煤;动物和浮游生物通过吃植物和藻类完成碳的转移,它们会呼出二氧化碳,同时也会将一部分碳转化为碳酸盐固定下来,当大量浮游生物的尸体沉积到海底深处,加上某些种类细菌协助分解,它们有机会转化为干酪根或石油。大约有2万亿吨的碳被储存在生物圈、化石燃料中元素碳的存量达到4.13万亿吨,这比空气中的碳要多得多。
植物不只通过光合作用捕获空气中的二氧化碳,它还会通过呼吸作用释放二氧化碳,只不过它们吸收的碳更多;动物会吸入氧气呼出二氧化碳,这些碳大多来自它们所吃的植物。这使得大气中的碳基本保持平衡状态。
由于人类生产活动燃烧大量化石能量,将亿万年来积聚在地下的碳快速释放到大气中;同时又通过砍伐森林获取木材、发展农业减少了植物转化碳的能力,因此在工业革命后大气中碳的存量呈现快速上升的趋势,这将导致全球气候变暖。
照目前的势头,大气中二氧化碳的浓度会不会无限制地上升呢?不一定。土壤通过呼吸作用每年向大气中释放超过1000亿吨元素碳,比人类碳排放要多出十倍以上,但大气中二氧化碳的增量并没有那么多,这在本文的开始部分我们就已经做了计算。这是因为大气中有一多半的二氧化碳被海洋和陆地吸收了,二氧化碳或溶解在水里中和了海水的碱性(海洋的PH值约为8.2),或在阳光的照射下以碳酸盐的形式被封存在了土壤里。随着太阳光照度的增强,被土壤吸收的碳会越来越多,据计算,大气中的二氧化碳浓度有可能在6亿年后达到一个 历史 低点,这对于植物来说并不是件好事情。
我们通过分析地球碳循环的过程,可以发现石油和煤炭是能够再生的,为什么几乎所有的宣传资料甚至包括我们的教科书中都将化石能源列为不可再生资源呢?
因为 化石能源的再生过程是以亿年为时间单位计算的,对于人类来说这个过程太漫长了 。我们人类从智进化至今仅仅20万年,人类利用化石能源的 历史 仅数千年,大规模开采煤炭石油也只有数百年时间。相对于石油和煤炭的产生,人类消耗它们的速度简直快如闪电,即使今天海洋中的浮游生物、森林中的树木有可能再变成石油与煤炭,到那时候人类是否还能存在都将是未知数。从人类发展的角度看,化石能源是不可再生的。
我们的脚下埋藏着超过4万亿吨的煤炭、有数千亿吨碳储存在石油里,更有1.5亿亿吨的碳被封存于干酪根,它们会在合适的地下转化为新的油气田,看起来石油与煤炭是取之不尽的。问题是当这些碳被开采出来燃烧后,它们会被排放到大气中,二氧化碳浓度的升高有可能导致全球变暖,并由此引发严重的气候问题,我们必须要加以重视并努力避免。
生物质能的优点主要是廉价和分布广泛。但是,生物燃料燃烧会产生二氧化碳、烟、灰而污染环境;在很多地方,人们砍伐和燃烧树木、灌木的速度大大超过了它们的再生速度。
在我国生物质能是仅次于煤炭、石油和天然气的第四大能源资源。生物质能是我国许多农村的重要生活能源,但大部分是传统的低效利用方式。而我国通过现代化技术利用生物质能发展最成功的是沼气技术,特别是农村户用沼气技术,如今全世界约有农村家用沼气池530万个,中国就占了92%。此外,还建成了生物质能发电装机容量200多万千瓦,主要为蔗渣和垃圾发电。利用陈化粮生产乙醇燃料的项目正在全面推进,能源农作物生产乙醇燃料和生物柴油的技术也在进行试点和示范。
不可再生能源,又称非再生能源、耗竭性能源,与可再生能源对应,是无法经过短时间内再生的能源,而且它们的消耗速度远远超过它们再生的速度。煤炭、石油、天然气等化石燃料与核燃料、矿产等均属于不可再生能源,如该能源一旦耗尽,将不能开采出更多的可用储备供将来使用。
不可再生能源核燃料
核能发电提供约6%和世界的13%-14%的电,核技术需要核燃料作为能源,但核燃料在世界上的浓度相对很低,开采相对困难,目前只有19个国家能够开采到铀矿。 核电厂、医院、农业、工业、食品业与科学研究等都会产生出放射性废料,世界上有许多国家虽然没有核电厂但是也有放射性废料处理厂。
化石燃料
由于使用化石燃料的内燃机技术在17世纪被迅速发展,因此化石燃料被现代社会大量使用。然而化石燃料是不可再生的,目前人类使用的主要能源仍然依赖不可再生能源,而且主要能源快速消耗的同时,需求还不断增加。可是所有耗竭性能源都需要数百万年时间慢慢形成,在人类的时间尺度上,它们都不能被及时再补充,是不可再生的资源。由于不可再生能源在短时间内无法被制造,而人类社会的许多活动都会消耗不可再生能源,导致其价格不断攀升。
可再生能源生物质能
生物质能是指能够当作燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物(Biodegradable waste)制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。
地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达摄氏7000度,而在80至100公里的深度处,温度会降至摄氏650度至1200度。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
海洋能
海洋能源(有时也简称为海洋能)是指由波浪、潮汐、洋流、海水盐度的和海洋温度的差异产生能量。海洋能是一种新兴技术,地球上的海洋运动提供庞大的动能力量或运动中的能量。可以利用这种能量发电,以供家庭、运输和工业用电。
太阳能
太阳能一般是指太阳光的辐射能量,自地球形成生物就主要以太阳提供的热和光生存,广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能,化石燃料可以称为远古的太阳能。自古人类就懂得以阳光晒干物件,也是保存食物的方法,如制盐和晒咸鱼等。太阳能使用的方式可分为光热转换(被动式利用)和光电转换两种方式。主动式太阳能技术,包括利用太阳能光伏板和太阳能集热器储存能量。被动式太阳能技术,包括导向建筑物在阳光下,选择材料具有良好的热质量或光分散性能和设计自然空气流通的空间。
水力
在水中的能量亦为人类所驱,因为水比空气的密度高800倍,即使是慢慢流的水都可以产生很大的能量。
风能
空气中随着温度高低,气流会移动,即为“风”, 风力发电机利用风能可以转变成机械能,再将机械能转成电能,现代的风力发电机一开始系由丹麦研究进入商业运行,起始于1970年代后期的石油危机,丹麦意识到自己国家缺乏自产能源,高度仰仗进口能源将危害国家中长期发展,所以在此危机意识下,大力推动风力发电。
现代的风机在1980年后至今有突飞猛进的进步,不论在技术的进步以及成本的下降,都足以和传统电能分庭抗礼。现代风机的单机容量在1.5-3MW之间。由于风的能量与其速度为2的立方比(8倍),所以风速增加一些些,其能产生的能量就大得许多。一般而言,风机的发电量每年在1500-3000满发小时之间。
从有机质的埋藏 压实 变成沉积岩 再埋深 经过一系列演化过程
这个时间短则上万 上十万百万年 长则以千万年甚至亿年计算
而人类进入工业化时代是19世纪 对这类矿产的认识开发业只有短短的数百年历史
大规模工业化开采还不到一百年
消耗速度是远远快于形成速度的
从地质历史的角度 则是可以再生的~只是这又是若干万年的周期
届时有没有人类都是未知数~
所以 以人类的历史和认知范围内 这是不可再生资源——等几十万年以后人在哪呢~
如煤和石油都是古生物的遗体被掩压在地下深层中,经过漫长的演化而形成的(故也称为“化石燃料”),一旦被燃烧耗用后,不可能在数百年乃至数万年内再生,因而属于“不可再生能源”。除此之外,不可再生能源还有,煤、石油、天然气、核能、油页岩。