王树荣的人物简介
王树荣,男,1972年9月出生于浙江绍兴。博士研究生学位,浙江大学能源工程学系教授教授。1993年本科毕业于浙江大学热能与动力工程专业并留校任教,1995年开始直接攻读浙江大学工程热物理专业博士学位,于1999年提前获得工学博士学位并被授予2000届浙江省优秀毕业生称号。1999年起留校任教,2001年任职副教授,2006年晋升为教授,2008年增列为博士生导师。曾于2006~2007年期间受国家留学基金委和浙江大学“新星”计划资助赴瑞典皇家工学院进行合作访问交流。在浙江大学任职期间先后获得过浙江大学优秀研究生德育导师、浙江大学先进工作者和浙江大学优秀本科生班主任等荣誉称号。目前学术兼职于中国可再生能源学会生物质能专委会委员和中国生物质能技术开发中心理事会理事等学术工作。
先后负责承担了可再生能源研究领域的3项国家自然科学基金,1项国际科技合作与交流项目、1项国家“863”课题、1项国家“973” 子课题和1项教育部高等学校博士学科点专项科研基金的研究工作,另外还主持了煤清洁利用领域的1项国家科技支撑计划子课题,3项国家“863”子课题和1项国家“973”子课题等多个重要国家级项目的研究工作。曾以第二获奖人身份获得浙江省科技进步一等奖一项,并以主要参加人身份获得省部级奖3项。自2004年以来,以第一、二作者或者通讯作者先后在国内外期刊或会议上发表SCI收录论文15篇,EI收录论文31篇,一级期刊论文12篇。其中单篇论文被SCI正面他引30余次,单篇论文影响因子最高达8.25。以第一、二发明人授权或申请9项发明专利。
不是中国人发明的
据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率 不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段,下面分别予以介绍。
第一阶段(1900-1920)
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造 的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 -1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段(1920-1945)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
第三阶段(1945-1965)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件;1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段(1965-1973)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段(1973-1980)
自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳 能电站还未升空。
太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想
第六阶段(1980-1992)
70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。
第七阶段(1992- 至今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996- 2010),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施 。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996- 2005),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。
易元明曾是醴陵市建委主任、副市长,为解决醴陵瓷城的大气污染问题,他在任职期间就开始进行科学研究,1989年他首创了"深冷净化烟气"理论,通过深冷处理与气液分离彻底净化烟气。在自然现象启发下,他通过考察干冰生产等工程实际并进行试验,发明了一种实现相变以冷制冷循环的天然新制冷技术,继而又发明了低温新能源技术和低温新环保技术。《天然新制冷技术》以二氧化碳作为清洁冷媒,可以全面取代以氟里昂等对环境有害的制冷工质,在产品造价接近的前提下,新产品的制冷效率可以提高10倍以上,中央空调的电费可以由现在的每天万元以上下降到千元以下,家用分体式制冷空调的户外排热装置可以取消,电冰箱与制冷空调可以合二为一。
据介绍,目前该技术的生产工艺路线已经确立,北京中科信科技发展中心已经和易元明先生合作,着手进行规模化生产的开发工作。
科技日报 20000510 1版
物质、能量与信息。
因此,能源的发展史直接影响人类的发展史。
我们人类生存与发展中最具有决定性意义的要素是三个:¾¾ 物质、能量和信息。
组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。
一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。
能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极大地促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子内部的能量。
未来对能源的要求
有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。
未来对能源的需求 未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。
而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。
除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。
u 能源的定义与源头
究竟什么是“能源”呢?《科学技术百科全书》是这样说的:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”。可见,能源是呈多种形式的、可以相互转换的能量的源泉。简而言之,能源是自然界中能为人类提供能量的物质资源。
能源的源头
来自地球以外天体的能源(如太阳能)、地球本身蕴藏的能源(如地热、核能)、地球与其它天体相互作用产生的能源(如潮汐)。
而能源是产生能量的源头。
人们通常按形态与应用方式对能源进行分类。一般分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中,前三类统称化石燃料或化石能源。已被人类认识的这些能源,在一定条件下可以转换为人们所需的各种形式的能量。比如薪柴和煤炭,加热到一定温度,能和氧气化合并放出大量热能,可以直接用来取暖,也可用来产生蒸汽推动汽轮机,再带动发电机,使热能变成机械能,再变成电能。把电送到工厂、机关和住户,又可以转换成机械能、光能或热能。
在我们生活的地球上,能源形形色色。总起来说有三个初始来源。
太阳能
地球
来自地球外部天体的能源(主要是太阳能)人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
地球本身蕴藏的能量 通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
与地球内部的热能有关的能源,我们称之为地热能。温泉和火山爆发喷出的岩浆就是地热的表现。地球可分为地壳、地幔和地核三层,它是一个大热库。地壳就是地球表面的一层,一般厚度为几公里至70公里不等。地壳下面是地幔,它大部分是熔融状的岩浆,厚度为2900公里。火山爆发一般是这部分岩浆喷出。地球内部为地核,地核中心温度为2000度。可见,地球上的地热资源贮量也很大。
与原子核反应有关的能源正是本书要介绍的核能。原子核的结构发生变化时能释放出大量的能量,称为原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的核裂变能资源,以及海洋中贮藏的氘、氚、锂等发生聚变反应时的核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是发电。此外,还可以用作其它类型的动力源、热源等。
来自星球引力的能量指由于地球与月球、太阳等天体相互作用的形成的能源。地球、月亮、太阳之间有规律的运动,造成相对位置周期性的变化,它们之间的引力随之变化使海水涨落而形成潮汐能。与上述二类能源相比,潮汐能的数量很小。全世界的潮汐能折合成煤约为每年30亿吨,而实际可用的只是浅海区那一部分,每年约可折合为6000 万吨煤。
u 能源结构与储量
地球上有哪些能量资源可供我们使用?它们还能维持多久?我们该怎么办?
能源的种类
一次能源:煤炭、石油、核能等自然界天然能量资源;
二次能源:汽油、电力、蒸汽等人工制造的能量资源,
一次能源和二次能源能源按其生成方式,分为天然能源(一次能源)和人工能源(二次能源)两大类。天然能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源,如煤炭、石油、天然气、核燃料、风能、水能、太阳能、地热能、海洋能、潮汐能等;人工能源则是指由一次能源直接或间接转换成其他种类和形式的能量资源,如煤气、汽油、煤油、柴油、电力、蒸汽、热水、氢气、激光等。
常规能源和新能源其中,已被人类广泛利用并在人类生活和生产中起过重要作用的能源,称为常规能源,通常是指煤炭、石油、天然气、水能等四种。而新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
煤的时代
能源结构的变迁历史上,伴随着新的化石资源的发现和大规模开采与应用,世界的能源消费结构经历了数次变革。18世纪的以煤炭替代柴薪,到19世纪中叶煤炭已经逐渐占主导地位。20世纪20年代,随着石油资源的发现与石油工业的发展,世界能源结构发生了第二次转变,即从煤炭转向石油与天然气,到20世纪60年代,石油与天然气已逐渐称为主导能源,动摇了煤炭的主宰地位。但是,20世纪70年代以来两次石油危机的爆发,开始动摇了石油在能源中的支配地位。以此同时,大部分化学能源的储量日益减少,并伴随着许多环境污染问题。
而人类对能源的需求却在与日俱增。例如主要能源形式 地球能源的储量估计
煤炭:~200年
石油、天然气:~50年
核能:无穷多
之一的电力消耗逐年增加。根据统计,人口若每30年增加一倍,电力的需求量每八年就要增加一倍。
于是,20世纪末,能源结构开始经历第三次转变,即从以石油为中心的能源系统开始向以煤、核能和其它再生能源等多元化的能源结构转变。特别是随着时间的推移,核能的比例将不断增长,并将逐步替代石油和天然气而成为主要的大规模能源之一。
化学能的储存量煤炭、石油、天然气还有多少年可以让人类开采利用?据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。必须指出的是,煤炭、石油等直接燃烧用来生产电能与热能实在太可惜了,且不说可能带来的环境污染,它们还是很好的化工原料呢!
水能及新能源的潜力那么水能呢?我们知道,水力是可以长期开发利用的。但是,在那些大面积缺水、水力资源不丰富的国家和地区怎么办?再说,水能还有个季节性的问题。这些都使水能无法成为世界能源结构中唯一的主力军。新能源中,太阳能虽然用之不竭,但代价太高,并且就目前的技术发展情况来看,在一代人的时间里不可能迅速发展和广泛使用。其它新能源也是如此。其它一些能源与水能相似,它们的规模受到环境、季节、地理位置等条件的限制,如风能、潮汐能、地热能等等。
易裂变核素
易发生裂变的原子只有铀-235(U235)、钚-239(Pu239)、铀-233(U233)三种。而天然存在的易裂变元素只有铀-235,钚-239可由铀-238生成,铀-233可由钍-232(Th232)生成。
易聚变核反应
氘(D2)-氚(D3)反应。氘和氚都是氢原子的同位素。氘天然存在,而氚极少,必须由人工生成(如由锂制造)。
核能--无穷的能源 核能分为裂变能和聚变能两种。目前人类能正在用于和平利用的只有裂变能。可控聚变能利用技术正在攻克。
天然铀的成份
天然铀中占99.3%为难裂变的铀-238,仅有0.714%为易裂变的铀-235。铀-238可通过吸收一个中子变成易裂变的钚-239。
作为发展核裂变能的主要原料之一的铀,世界上已探明的铀储量约490万吨,钍储量约275万吨。如果利用得好,可用2400~2800年。
聚变反应主要来源于氘-氚的核反应,氘来可大量自海水,氚可来自锂。因此聚变燃料主要是氘和锂,海水中氘的含量为0.03克/升,据估计地球上的海水量约为138亿亿米3,所以世界上氘的储量约40亿万吨;地球上的锂储量虽比氘少得多,也有2000多亿吨,用它来制造氚,足够满足人类对聚变能的需求。这些聚变燃料所释放的能量比全世界现有能源总量放出的能量大千万倍。按目前世界能源消费的水平,地球上可供原子核聚变的氘和氚,能供人类使用上千亿年。如果人类实现了氘-氚的可控核聚变,核燃料就可谓“取之不尽,用之不竭了”,人类就将从根本上解决能源问题,这正是当前核科学家们孜孜以求的所以。聚变能源不仅丰富,而且安全、清洁。聚变产生的放射性比裂变小的多。
专家们预测,核能在未来将成为人类取之不尽的持久能源。
1.2 变脏的地球与干净的核电
本节要点:回答的问题以下问题:现有的能源还能维持多久?能源利用可以不污染环境吗?核能真是可持续能源吗?
u 能源的可持续发展
必须寻找一些既能保证有长期足够的供应量又不会造成环境污染的能源。
而目前人类面临的问题正是:能源资源枯竭;环境污染严重。
能源利用与环境的可持续发展
能源危机
目前世界上常规能源的储量有的只能维持半个世纪(如石油),最多的也能维持一、二百年(如煤)人类生存的需求。
今天,几乎所有的工业化国家都面临着两个关系到可持续发展的紧密相连的挑战:保证令人满意的长期能源供应和减少人类活动带给环境的影响。能源利用与环境的可持续发展已成为关系到人类未来生存与文明延续的一个重要问题。
能源供应危机今天的世界人口已经突破60亿,比上个世纪末期增加了2倍多,而能源消费据统计却增加了16倍多。无论多少人谈论“节约”和“利用太阳能”或“打更多的油井或气井”或者“发现更多更大的煤田”,能源的供应却始终跟不上人类对能源的需求。当前世界能源消费以化石资源为主,其中中国等少数国家是以煤炭为主,其它国家大部分则是以石油与天然气为主。按目前的消耗量,专家预测石油、天然气最多只能维持不到半个世纪,煤炭也只能维持一二百年。所以不管是哪一种常规能源结构,人类面临的能源危机都日趋严重。
浓烟滚滚的火电厂
能源对环境的污染 另一方面,特别是利用化石能源的过程也直接影响地球的环境,使大气和水资源遭受严重污染。大气中主要的五种污染物是:氮氧化物(如NO与NO2)、二氧化硫(SO2)、各种悬浮颗粒物、一氧化碳(CO) 大气污染的主要源头
目前世界上最严重的大气污染来自化石能源燃烧造成的大气中二氧化碳量的增加。带来的主要后果是:酸雨、温室效应和臭氧层破坏。
和碳氢化合物(如CH4、C2H6、C2H4等)。其来源主要有三个方面:① 煤、石油等化石燃料的燃烧;② 汽车排放的废气;③ 工业生产(如各种化工厂、炼焦厂等)产生的废气。而其中燃烧化石燃料的火力发电厂是最大的固定污染源。
1. 多元化
世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛的利用。可持续发展、环境保护、能源供应成本和可供应能源的结构变化决定了全球能源多样化发展的格局。天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势。未来,在发展常规能源的同时,新能源和可再生能源将受到重视。在欧盟2010年可再生能源发展规划中,风电要达到4000万千瓦,水电要达到1.05亿千瓦。2003年初英国政府公布的《能源白皮书》确定了新能源战略,到2010年,英国的可再生能源发电量占英国发电总量的比例要从目前的 3%提高到10%,到2020年达到20%。
2. 清洁化
随着世界能源新技术的进步及环保标准的日益严格,未来世界能源将进一步向清洁化的方向发展,不仅能源的生产过程要实现清洁化,而且能源工业要不断生产出更多、更好的清洁能源,清洁能源在能源总消费中的比例也将逐步增大。在世界消费能源结构中,煤炭所占的比例将由目前的26.47%下降到2025年的21.72%,而天然气将由目前的23.94%上升到2025年的28.40%,石油的比例将维持在37.60%~37.90%的水平。同时,过去被认为是“脏”能源的煤炭和传统能源薪柴、秸杆、粪便的利用将向清洁化方面发展,洁净煤技术(如煤液化技术、煤气化技术、煤脱硫脱尘技术)、沼气技术、生物柴油技术等等将取得突破并得到广泛应用。一些国家,如法国、奥地利、比利时、荷兰等国家已经关闭其国内的所有煤矿而发展核电,它们认为核电就是高效、清洁的能源,能够解决温室气体的排放问题。
3. 高效化
世界能源加工和消费的效率差别较大,能源利用效率提高的潜力巨大。随着世界能源新技术的进步,未来世界能源利用效率将日趋提高,能源强度将逐步降低。例如,以1997年美元不变价计,1990年世界的能源强度为0.3541吨油当量/千美元,2001年已降低到0.3121吨油当量/千美元,预计 2010年为0.2759吨油当量/千美元,2025年为0.2375吨油当量/千美元。
但是,世界各地区能源强度差异较大,例如,2001年世界发达国家的能源强度仅为0.2109吨油当量/千美元,2001~2025年发展中国家的能源强度预计是发达国家的2.3~3.2倍,可见世界的节能潜力巨大。
4. 全球化
由于世界能源资源分布及需求分布的不均衡性,世界各个国家和地区已经越来越难以依靠本国的资源来满足其国内的需求,越来越需要依靠世界其他国家或地区的资源供应,世界贸易量将越来越大,贸易额呈逐渐增加的趋势。以石油贸易为例,世界石油贸易量由1985年的12.2亿吨增加到2000年的21.2 亿吨和2002年的21.8亿吨,年均增长率约为3.46%,超过同期世界石油消费1.82%的年均增长率。在可预见的未来,世界石油净进口量将逐渐增加,年均增长率达到2.96%。预计2010年将达到2930万桶/日,2020年将达到4080万桶/日,2025年达到4850万桶/。世界能源供应与消费的全球化进程将加快,世界主要能源生产国和能源消费国将积极加入到能源供需市场的全球化进程中。
5. 市场化
由于市场化是实现国际能源资源优化配置和利用的最佳手段,故随着世界经济的发展,特别是世界各国市场化改革进程的加快,世界能源利用的市场化程度越来越高,世界各国政府直接干涉能源利用的行为将越来越少,而政府为能源市场服务的作用则相应增大,特别是在完善各国、各地区的能源法律法规并提供良好的能源市场环境方面,政府将更好地发挥作用。当前,俄罗斯、哈萨克斯坦、利比亚等能源资源丰富的国家,正在不断完善其国家能源投资政策和行政管理措施,这些国家能源生产的市场化程度和规范化程度将得到提高,有利于境外投资者进行投资。
三、启示与建议
1. 依靠科技进步和政策引导,提高能源效率,走高效、清洁化的能源利用道路
中国有自己的国情,中国能源资源储量结构的特点及中国经济结构的特色,决定在可预见的未来,我国以煤炭为主的能源结构将不大可能改变,我国能源消费结构与世界能源消费结构的差异将继续存在,这就要求中国的能源政策,包括在能源基础设施建设、能源勘探生产、能源利用、环境污染控制和利用海外能源等方面的政策应有别于其他国家。鉴于我国人口多、能源资源特别是优质能源资源有限,以及正处于工业化进程中等情况,应特别注意依靠科技进步和政策引导,提高能源效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展。
2. 积极借鉴国际先进经验,建立和完善我国能源安全体系
为保障能源安全,我国一方面应借鉴国际先进经验,完善能源法律法规,建立能源市场信息统计体系,建立我国能源安全的预警机制、能源储备机制和能源危机应急机制,积极倡导能源供应在来源、品种、贸易、运输等方式的多元化,提高市场化程度;另一方面应加强与主要能源生产国和消费国的对话,扩大能源供应网络,实现能源生产、运输、采购、贸易及利用的全球化.
1996年 韩广田先生研究空气源热泵热水器并在行业提出研究课题
1999年 韩广田先生研发出第一台空气源热泵热水器
2001年 韩广田先生与他人合作在北京第一台热泵热水器商用机投入使用
2002年 韩广田先生成立热泵热水器命名的热泵热水器专业研发生产公司,“东莞豪瓦特热泵热水器有限公司”
2003年 东莞市豪瓦特热泵热水器有限公司整理出豪瓦特热泵热水器企业标准并按标准生产管理
2003年 东莞市豪瓦特热泵出台企业第一本热泵热水器科普册《热泵热水器应用报告》
2004年 东莞市豪瓦特热泵热水器有限公司产品通过 3C 认证
2004年 东莞市豪瓦特热泵热水器有限公司通过 ISO-9001-2000 质量体系认证
2004年 东莞市豪瓦特热泵热水器有限公司通过技术水平查新检索报告
2004年 东莞市豪瓦特热泵热水器有限公司在上海使用空气源热泵热水设备小循环加热系统,产品使用更完善
2004年 东莞市豪瓦特热泵热水器有限公司完成别墅小区整体家用机安装项目 218 台
2004年 东莞市豪瓦特热泵热水器有限公司荣获热泵热水器行业评选“全国诚信示范企业” , “消费者信得过产品”称号
2004年 东莞市豪瓦特热泵热水器有限公司热泵热水器送检,通过国家级检测单位检测机组能效比 COP=4.78
2004年 东莞市豪瓦特热泵热水器有限公司 DM-150 制冷剂通过环保鉴定
2005年 东莞市豪瓦特热泵热水器有限公司产品在高寒地区大连市成功使用空气源热泵热水器
2005年 东莞市豪瓦特热泵热水器有限公司产品行业评选评为“质量服务 AAA 级”称号
2006年 东莞市豪瓦特热泵热水器有限公司完成别墅小区整体家用机安装项目第一期 360 台
2006年 东莞市豪瓦特热泵热水器有限公司行业评选被评为“中国热泵热水器驰名品牌”
2006年 东莞市豪瓦特热泵热水器有限公司与西北工业签订大学博士研究生实习基地
2007年 东莞市豪瓦特热泵热水器有限公司与上海交通大学合作开发智能远程可控系统
2007年 东莞市豪瓦特热泵热水器有限公司完成别墅小区整体家用机安装项目第二期 338 台
2007年 东莞市豪瓦特热泵热水器有限公司被评为东莞市“民营科技企业”称号
2008年 东莞市豪瓦特热泵热水器有限公司完成别墅小区整体家用机安装项目第二期 420 台
2008年 东莞市豪瓦特热泵热水器有限公司启动品牌升级,质量升级的双升行动,千家“舒量”形象店陆续开业
2008年 浙江豪瓦特节能科技有限公司成立
2009年 浙江豪瓦特节能科技有限公司成功进入全国数十个小区楼盘整体安装
2009年 浙江豪瓦特节能科技有限公司通过 ISO9001 质量管理体系认证
2009年 浙江豪瓦特节能科技有限公司舒量空气能系列产品全国通过中国 CCC 认证
2009年 韩广田 先生荣获“世界环保与新能源产业中国影响力 100 强”荣誉
2009年 韩广田 先生的发明成就被录入《中国专利发明人年鉴》 2010 第十一卷,并荣获 “建国六十周年百名优秀发明家”荣誉称号
2009年 韩广田 先生当选为中国农村能源行业协会第五届理事会理事
2009年 浙江豪瓦特节能科技有限公司成功签订康佳电子昆山公司热水工程项目
2010年 浙江豪瓦特节能科技有限公司当选为“中国太阳能热利用产业协会理事单位”
2010年 浙江豪瓦特节能科技有限公司为主要起草单位的国家标准 GB-T20889 2009 开始实施
2010年 浙江豪瓦特节能科技有限公司参与三项国家标准的起草
2010年 浙江豪瓦特节能科技有限公司行业评选被评为中国空气能热泵热水器 " 行业十佳品牌 "
2010年 浙江豪瓦特节能科技有限公司被评为“标准化良好行为企业”
2010年 浙江豪瓦特节能科技有限公司荣获“采用国际标准产品标志证书”
2010年 舒量空气能行业评选荣膺“中国空气能十大品牌”
2010年 舒量空气能系列产品通过中国节能认证
2010年 韩广田 先生行业评选被评为“影响中国第 11 届中国时代十大创新人物”
2010年 浙江豪瓦特节能科技有限公司行业评选被评为“中国建筑节能减排十大热泵品牌企业 "
2011年 韩广田 先生行业评选被评为“杰出华人企业家”
2011年 韩广田当选为中国可再生能源学会《太阳能学报》、《太阳能》杂志两刊第九届编委会编委
2011年 豪瓦特公司荣获 “浙江省标准创新型企业”称号
2012年 豪瓦特公司为主要起草单位的国家标准GB-T26973 2011开始实施
2012年 豪瓦特公司荣获“中国节能协会热泵产业联盟常务理事单位”称号
2012年 豪瓦特公司荣获“ISO14001环保体系认证证书”
2012年 豪瓦特公司舒量系列产品以4.5以上能效比中标节能惠民工程获国家最高补贴
2012年 豪瓦特公司舒量空气能荣获“浙江市场最具影响力品牌”称号
2013年 豪瓦特公司《实验室》通过国家权威机构认证
2013年 豪瓦特公司取得了空气能工业生产许可证
2013年 豪瓦特公司荣获“2012年度中国热泵产业联盟十大杰出品牌”称号
2013年 豪瓦特公司执行董事韩夏女士被聘为“中国热泵产业联盟第一届理事会常务理事”
2013年 豪瓦特公司执行董事韩夏女士被聘为“中国热泵联盟第二届副理事长”
当我们使用常规电力时,我们其实是间接的污染者,因为我们对电力的需求才产生了供给,从而间接对环境造成了污染。同时我们又是污染的受害者。
北京作为一个国际化的城市,特别作为一个正在申办奥运会的城市,应该向世界展示北京改善环境的能力和行动。然而非常遗憾的是,北京的用电结构非常不合理,几乎没有使用绿色电力,北京每年的用电量将近300亿度,94%来自于燃煤发电。北京市近郊有九家发电厂,除了两家水力发电厂外,其余均为火力发电厂,新建的三河火电厂距市中心只有50公里。据统计1998年北京发电厂消耗原煤591.62万吨,占全市1998年消耗原煤总量2677.7万吨的20%以上;燃油38.19万吨,燃气21119万立方米,并且每年要排放二氧化碳将近1035万吨,二氧化硫及二氧化氮14.6万吨,几乎占全市工业排放总量的一半;此外,燃煤发电厂需要消耗大量水资源,冲灰水的排放及重金属汞等污染物的排放对水体造成的污染也是殛待解决的问题,这对原本就缺水的北京地区来说,无疑是十分严峻的。
北京地区的外购电基本上来自内蒙古、山西等地的火力发电,这些火力发电自然在当地也造成不可忽视的环境污染。
北京目前正在积极申请2008年奥运会主办权,并提出了响亮的绿色奥运的口号。北京市政府也表示出极大的决心要改善北京环境状况,让奥运的天空变蓝。
众所周知悉尼绿色奥运会的成功举办给我们留下了深刻的印象,他们在环境保护方面所做的努力更为世人所称道。能源保护和可更新能源的利用被他们列为环保的首要目标。在悉尼奥运村,建设者采用了太阳能技术,使奥运村成为真正的绿色村落。沿着奥运大道步向主体育场一侧,一?quot长"得像长颈鹿的太阳能塔直冲云霄。这是奥运村的供电设备,可以满足全部体育场馆的照明。
绿色北京也需要绿色能源,而且北京周边省份不乏绿色能源的供应。内蒙古地区就有着丰富的风能资源,其风能储量可达10.1 亿千瓦,从1989年到1999年,内蒙古共实施了12个风电项目,总装机容量达45375千瓦,年发电量可达1亿度。因此内蒙古风电公司完全有能力向北京提供优质可靠的绿色电力。内蒙古地区的生态环境的持续恶化是北京近年来沙尘暴加强的原因之一,如果能通过风电带动内蒙经济的发展,对改善内蒙地区的生态环境将大有裨益,无疑也将对北京环境的改善起到重大作用。因此相比悉尼奥运村太阳能的利用意义,绿色电力对北京意义的更为深远。而与北京相邻的内蒙古有着丰富的风能资源,目前其风力发电的年发电量已达到了1亿度,完全有能力向北京提供优质可靠的绿色电力。
绿色电力实际上为消费者提供了一个机会选择对环境有益的绿色能源消费,他们只需要付出比常规电力稍高一点的价格就可保护环境,也间接支持了可再生能源的发展,选择使用绿色电力的行为更是对可持续发展理念的身体力行。 大力提倡使用绿色能源,有效控制北京及周边地区新建燃煤电场,是根治环境的明智选择。
使用常规电力,意味着排放更多的温室气体和污水。
使用绿色电力,意味着享受清新的空气和清洁的水。太阳能
太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当於500万吨煤。 地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源於太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限於太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它的资源丰富,既可免费使用,又无需运输,对环境没有任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。
地热能
地热能是来自地球深处的可再生热能,它起源於地球的熔融岩浆和放射性物质的衰变,其利用可分成地热发电和直接利用两大类。 地热能的储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那麼地热能便是可再生的。地热能在世界很多地区应用相当广泛,据估计,每年从地球内部传到地面的热能相当於100PW·h。 不过,地热能的分布相对来说比较分散,开发难度较大。
风能
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。
风能是一种有巨大发展潜力的无污染可再生能源,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有著十分重要的意义。即使在已开发国家,高效洁净的风能也日益受到重视。
海洋能
大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏著巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水裏,不像在陆地和空中那样容易散失。
海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在於海洋之中,分述如下:
潮汐与潮流能来源於月球、太阳引力,其他海洋能均来源於太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存著温差热能,其能量与温差的大小和水量成正比。
潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比。
河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。
生物能
生物质是指由光合作用而产生的各种有机体,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源於植物的光合作用。在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当於全世界每年耗能量的10倍。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林?品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。
氢能
氢能是一种二次能源,因为它是通过一定的方法利用其他能源制取的,而不像煤、石油和天然气等可以直接从地下开采,这种能源总有枯竭的一天,而氢能若能从中生产,则可望能抒解能源危机的警戒。
在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。燃料电池即是将氢与氧直接通过电化学反应产生电与水,一个步骤就可发电,发电较传统方式有效率。商品化后,这样的发电系统不但适合一般家庭使用,其副产品所产生的热水,大约在摄氏40到60度间,相当适合家庭洗澡与厨房利用,一举两得。
如果用煤、石油和天然气等燃烧所产生的热或所转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等於把无穷无尽的、分散的太阳能转变成了高度集中的乾净能源了,其意义十分重大。
可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。
风能。风能是指风所负载的能量,风能的大小决定于风速和空气的密度。我国北方地区和东南沿海地区一些岛屿,风能资源丰富。据国家气象部门有关资料显示,我国陆地可开发利用的风能资源为2.53亿千瓦,主要分布在东南沿海及岛屿、新疆、甘肃、内蒙古和东北地区。此外,我国海上风能资源也很丰富,初步估计是陆地风能资源的3倍左右,可开发利用的资源总量为7.5亿千瓦。
太阳能。太阳能是指太阳所负载的能量,它的计量一般以阳光照射到地面的辐射总量,包括太阳的直接辐射和天空散射辐射的总和。太阳能的利用方式主要有:光伏(太阳能电池)发电系统,将太阳能直接转换为电能;太阳能聚热系统,利用太阳的热能产生电能;被动式太阳房;太阳能热水系统;太阳能取暖和制冷。
小水电。水的流动可产生能量,通过捕获水流动的能量发电,称为水电。小水电在我国是指总装机容量小于或等于5万千瓦的水电站。
生物质能。生物质能包括自然界可用作能源用途的各种植物、人畜排泄物以及城乡有机废物转化成的能源,如薪柴、沼气、生物柴油、燃料乙醇、林业加工废弃物、农作物秸秆、城市有机垃圾、工农业有机废水和其他野生植物等。
地热能。地热能是贮存在地下岩石和流体中的热能,它可以用来发电,也可以为建筑物供热和制冷。根据测算,全球潜在地热资源总量相当于每年493亿吨标准煤。
海洋能。海洋能是潮汐能、波浪能、温差能、盐差能和海流能的统称,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、海流等形式存在于海洋之中。例如,潮汐的形式源于月亮和太阳对地球的吸引力,涨潮和落潮之间所负载的能量称之为潮汐能;潮汐和风又形成了海洋波浪,从而产生波浪能;太阳照射在海洋的表面,使海洋的上部和底部形成温差,从而形成温差能。所有这些形式的海洋能都可以用来发电。
从地球蕴藏的能源数量来看,自然界存在有无限的能源资源。仅就太阳能而言,太阳每秒钟通过电磁波传至地球的能量达到相当于500多吨煤燃烧放出的热量。这相当于一年中仅太阳能就有130万亿吨煤的热量,大约为全世界目前一年耗能的一万多倍。不过,由于人类开发与利用地球能源尚受到社会生产力,科学技术、地理原因及世界经济、政治等多方面因素的影响与制约。包括太阳能、风能、水能在内的巨大数量的能源,可以利用的仅占微乎其微的比例,因而,继续发展的潜力巨大。人类能源消费的剧增、化石燃料的匮乏至枯竭以及生态环境的日趋恶化,逼使人们不得不思考人类社会的能源问题。国民经济的可持续发展,依仗能源的可持续供给,这就必须研究开发新能源和可再生能源。
太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时(3.78× 1024J),相当于1.3×106亿吨标准煤。按目前太阳的质量消耗速率计,可维持6×1010年。所以可以说它是“取之不尽,用之不竭”的能源。但如何合理利用太阳能,降低开发和转化的成本,是新能源开发中面临的重要问题。
风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、制冷和致热等。风力发电是主要的开发利用方式。中国的风能总储量估计为1.6×109千瓦,列世界第三位,有广阔的开发前景。风能是一种自然能源,由于风的方向及大小都变幻不定,因此其经济性和实用性由风车的安装地点、方向、风速等多种因素综合决定。
对于核电站,人们有许多误解,其实核能发电是一种清洁、高效的能源获取方式。对于核裂变,核燃料是铀、钚等元素,核聚变的燃料则是氘、氚等物质。有些物质,例如钍,本身并非核燃料,但经过核反应可以转化为核燃料。我们把核燃料和可以转化为核燃料的物质总称为核资源。
近年来,许多发展中国家虽然都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,尤其是近年来,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。2005年,根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。
氢是一种二次能源,一种理想的新的含能体能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质加工后方能得到氢气。最丰富的含氢物质是水,其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。
地热是指来自地下的热能资源。我们生活的地球是一个巨大的地热库,仅地下10千米厚的一层,储热量就达1.05×1026焦耳,相当于9.95×1015 标准煤所释放的热量。地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。
海洋能通常指蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能等。海洋能蕴藏丰富,分布广,清洁无污染,但能量密度低,地域性强,因而开发困难并有一定的局限。开发利用的方式主要是发电,其中潮汐发电和小型波浪发电技术已经实用化。波浪能发电利用的是海面波浪上下运动的动能。1910年,法国的普莱西克发明了利用海水波浪的垂直运动压缩空气,推动风力发动机组发电的装置,把1千瓦的电力送到岸上,开创了人类把海洋能转变为电能的先河。目前已开发出60-450千瓦的多种类型波浪发动装置。
此外,还有生物质能,是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。
能源是现代社会赖以生存和发展的基础,清洁燃料的供给能力密切关系着国民经济的可持续性发展,是国家战略安全保障的基础之一。中国是能源消耗大国, 2000年一次能源消费量为7.5亿吨油当量,仅次于美国成为世界第二人能源消费国,到本世纪中叶中国全面达到小康水平时,一次能源的消费量将达到30多亿吨油当量。然而目前中国人均一次能源的消费量不到美国的1/18,仅为世界平均水平的1/3。与世界一次能源构成不同的是中国以煤为主,煤占一次能源的比例为63.6%,由于煤的高效、洁净利用难度大,使用过程中已对人类的生存环境带来严重的污染。另一方面中国人均能源资源严重不足,人均石油储量不到世界平均水平的1/10,人均煤炭储量仅为世界平均值的1/2。预计到2010年,中国石油供需缺口1亿吨,天然气缺口400亿立方米。因此,开发洁净可再生能源已成为紧迫的课题。