谁能告诉下太阳能电池制造中扩散的原理及工艺过程,最好把工艺的原理及目的说的详细些?
扩散的目的:太阳能电池的基本就够就是一个PN结,而扩散就是为了形成PN结。
扩散的原理:太阳能电池一般选用的是P型掺杂的单晶硅片或者是多晶硅片,我们就需要通过扩散在上面形成一个N型的扩散层,从而形成PN结。现在一般采用的都是磷扩散。扩散源是三氯氧磷(pocl3),在900℃的高温下,它与硅片反应,生成二氧化硅和磷。具体的反应过程如下:
PN结(PN junction)0 o. A5 I: B9 a F! R
$ t9 B. X$ S: B&b' M( o/ f采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。
% S2 S! ]) x! X# y6 q2 m&W9 a" q+ f( G% b g( v. ]
一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。
+ Z" a0 r( C2 A0 N5 [) XP型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; ) r- |( Y3 x C0 D1 J2 n% D
N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
7 _4 B) t2 X+ u$ D" D0 K在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。
3 r' q4 v, T" ]0 t在PN结上外加一电压 ,如果P型一边接正极 ,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。 + k4 t' @" ^$ S
PN结加反向电压时 ,空间电荷区变宽 , 区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。 PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。 1 n&j) E+ V% \, R2 I
根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个
/ L* K' F8 Pr: K9 v2 JPN结之间的相互作用可以产生放大,振荡等多种电子功能 。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在二级管中广泛应用。 0 b&M+ e0 P, o( M
PN结的平衡态,是指PN结内的温度均匀、稳定,没有外加电场、外加磁场、光照和辐射等外界因素的作用,宏观上达到稳定的平衡状态. PN结的形成 2 X( W1 a: ]9 B5 k
在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:
' s2 c. W3 c1 C% n, K因浓度差 ! @* T% l0 b8 V6 ez# c
↓
: kb) {W! G, J5 ^9 t7 K多子的扩散运动®由杂质离子形成空间电荷区 &f" ^9 g5 K4 ?/ Q0 [
↓
! Z$ E3 K8 aO" n[8 h5 W空间电荷区形成形成内电场 8 M" Y4 Z2 _# j4 R* s
↓ ↓
) h+ V# S2 n0 C* L内电场促使少子漂移 内电场阻止多子扩散
. |7 J$ M5 [+ c+ E' ~. j1 T最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。PN结形成的过程可参阅图01.06。 % n3 ^( L, I. y5 h4 W0 m0 O
图01.06 PN结的形成过程(动画1-3)如打不开点这儿(压缩后的) PN结的单向导电性
. _" I. \&]/ J) {7 m8 D) HPN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
/ I! A, ^% Z' n, M( H$ z( b如果外加电压使: ) r, H7 |?! W4 C$ F
PN结P区的电位高于N区的电位称为加正向电压,简称正偏;
4 b/ q/ J&p6 y. z% CA) g% g6 hPN结P区的电位低于N区的电位称为加反向电压,简称反偏。 * x&b2 O9 ?. v* O
(1) PN结加正向电压时的导电情况 c: q1 r# B- L( p&f/ N3 f# p
外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。
?: j# F* y$ [8 G" K(2) PN结加反向电压时的导电情况
&G- t8 m' O+ ]外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。
8 f5 l0 w&c, J. N1 {9 @) _在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 ! p. G/ ^8 y7 \' {
PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。 PN结的电容效应 1 w* T1 y- \! u. U8 Q- A
PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。 8 c' K- H( V+ A9 D/ s3 \( y
(1) 势垒电容CB 1 {+ E&t2 f&G3 X
势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。
) }- M9 K2 G, n- c! {图01.09 势垒电容示意图 F6 b5 d4 C, A1 ^0 L/ m3 V A" C7 I
(2) 扩散电容CD
7 J) Z+ Z( c6 _$ G4 {r扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。
S2 U0 I) W1 G( V3 k$ ?5 JP当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。
$ m4 hZ+ {" l4 U/ c) E6 e&O8 fPN结的击穿特性:当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示, PN结的反向击穿有雪崩击穿和齐纳击穿两种。 1、雪崩击穿阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电 子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急 ! ^% D3 L8 i^- F' i* Y4 k0 Q
剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。 2、齐纳击穿当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程 称为场致激发。
5 P" u0 h3 b: m+ U [一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。 3、击穿电压的温度特性温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。 4、稳压二极管PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几 乎不变(近似为V(BR),只要限制它的反向电流,PN结 就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏 $ m" z1 S8 E4 ~( m6 {2 k: P
安特性如上图所示:其主要参数有: VZ 、 Izmin 、 Iz 、 Izmax
2 |&F' V# e, \4 @
% G% f D/ I+ M0 ]+ l+ ?5 P8 ~&f6 Q6 ~( c0 ?7 D4 |
PN结的电容特性:PN结除具有非线性电阻特性外,还具有非线性电容特性,主要有势垒电容和扩散电容。 1、势垒电容势垒区类似平板电容器,其交界两侧存储着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CT表示。 ' K: v9 V( s2 M( J@
CT = - dQ/dV 6 d0 C' y3 B7 X7 O
PN结有突变结和缓变结,现考虑突变结情况(缓变结参见《晶体管原 理》),PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄 但这个变化比较小可以忽略,
, c6 ]7 ]# e* t- F* c则CT=εS/L,已知动态平衡下阻挡层的宽度L0,代入上式可得:
3 b8 J9 I\) e6 }/ N# m- k
&h&J) N# a l$ Y9 P' _4 P0 R3 A5 m6 \" T T
CT不是恒值,而是随V而变化,利用该特性可制作变容二极管。 2、 扩散电容多子在扩散过程中越过PN结成为另一方的少子, 当PN结处于 平衡状态(无外加电压)时的少子称为平衡少子 可以认为阻挡层以外的区域内平衡少子浓度各处是一样的,当PN结处于正向偏置时,N区的多子自由电子扩散到P区成为 P区的非平衡少子,由于浓度差异还会向P 区深处扩散,距交界面越远,非平衡少子浓度越低,其分布曲线见[PN 结的伏 安特性]。当外加正向电压增大时,浓度分布曲线上移,两边 非平 衡少子浓度增加即电荷量增加,为了维持电中性,中性区内的非平衡多子浓度也相应增加,这就是说,当外加电压增加时,P区和N区各自存储的空穴和自由电子电荷量也增加,这种效应相当于在PN结上并联一个电容,由于它是载流子扩散引起的,故称之为扩散电容CD,由半导体物理推导得 CD=( I + Is)τp/VT 推导过程参见《晶体管原理》。
1 @5 ]. j. ~4 H" ?' K当外加反向电压时 I = Is , CD趋于零。 3、 PN结电容PN结的总电容Cj为CT和CD两者之和Cj = CT+CD ,外加正向电 压CD很大, Cj以扩散电容为主(几十pF到几千pF) ,外加反向电压CD趋于零,Cj以势垒电容为主(几pF到几十pF到)。 4、变容二极管PN结反偏时,反向电流很小,近似开路,因此是一个主要由势垒电容构成的较理想的电容器件,且其增量电容值随外加电压而变化 利用该特性可制作变容二极管,变容二极管在非线性电路中应用较广泛, 如压控振荡器、频率调制
制绒:酸、碱物质的腐蚀作用
扩散:三氯氧磷是剧毒物质,但是一般都在炉管内反应完全,只剩下少量氯气
去磷硅玻璃:同制绒清洗,有HF,强腐蚀性
印刷:基本浆料的包装上都会注明对人体有危害,因为浆料内都含有有毒物质,包括少量的铅
太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
光伏探测器的光电特性主要与材料、光照范围、负载大小、外加电压这些因素有关。
1、材料
光伏探测器这类器件品种很多,其中包括:
光电池、光电二极管、光电晶体管、光电场效应管、PIN管、雪崩光电二极管、光可控硅、阵列式光电器件、象限式光电器件、位置敏感探测器(PSD)、光电耦合器件等。
2、光照范围
无光照是,pn结的伏安特性曲线和普通二极管一样。有光照时,pn结吸收光能,产生反向电流,光照越强,光电流越大。
3、负载大小
负载越小,光电流与照度直接的线性关系越好,且线性范围越宽。
4、外加电压
在发光的条件不变的情况下,通过改变负载电阻的大小,电压越来越大,电流越来越小。
扩展资料:
光伏探测器性能参数:
1、响应率
光伏探测器的响应率与器件的工作温度及少数载流子浓度和扩散有关,而与器件的外偏压无关,这是与光电导探测器的不相同的。
2、噪声
光伏探测器的噪声主要包括器件中光生电流的散粒噪声、暗电流噪声和器件的热噪声。
3、比探测率
光伏探测器工作于零偏时,比探测率与成正比。当入射波长一定,器件量子效率相同时,越大,就越高。所以,零偏电阻往往也是光伏探测器的一个重要参数,它直接反应了器件性能的优劣。
4、光谱特性
和其他选择性光子探测器一样,光伏探测器的响应率随人射光波长而变化。通常用硅能很好的光伏探测器。
5、频率响应及响应时间
光伏探测器的频率响应主要有三个因素决定(1)光生截流子扩散至结区的时间(2)光生截流子在电场作用下通过结区的漂移时间(3)由结电容与负载电阻所决定的电路常数。
6、温度特性
光伏探测器和其他半导体器件一样,其光电流及噪声与器件工作温度有密切关系。
参考资料:百度百科-光伏探测器
少量磷源泄露,应该及时通风透气,如果发生大量磷源泄露,带着防毒面具处理,换个源瓶换上,如果是管处漏源,可以切掉管一段,重新装,螺丝拧紧,如果是阀门泄漏,只有换瓶子了。如果是气管断了,马上换上防护服,带上自给式呼吸器,一个密封的袋子(只有一个口),橡胶手套,一个皮筋。进去把磷源装上,迅速拿出来,到野外,找到空旷的沙土地,倒掉,掩埋。如果是爆裂,碎裂,还是和气管断了一样,多拿一个棉布,把液体擦干,地面擦干净,到野外用水冲。OK
光伏效应指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。
当P-N结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子(电子-空穴对)。但能引起光伏效应的只能是本征吸收所激发的少数载流子。因P区产生的光生空穴,N区产生的光生电子属多子,都被势垒阻挡而不能过结。只有P区的光生电子和N区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。光生电子被拉向N区,光生空穴被拉向P区,即电子空穴对被内建电场分离。这导致在N区边界附近有光生电子积累,在P区边界附近有光生空穴积累。它们产生一个与热平衡P-N结的内建电场方向相反的光生电场,其方向由P区指向N区。此电场使势垒降低,其减小量即光生电势差,P端正,N端负,此时费米能级分离,因而产生压降,在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。
一、原理不同
光电效应:光电效应的原理是在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流。
光伏效应:光伏效应的原理是将太阳光照进行转化的过程,光子转化为电子,光能转化为电能,然后再形成电压,即光生伏特效应。
二、现象不同
光电效应:光电效应的现象是当光照射到金属表面时,金属内部的自由电子从表面逃逸出来的现象。
光伏效应:光伏效应的现象是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。
三、材料不同
光电效应:光电效应的材料通常为金属材料。
光伏效应:光伏效应的材料通常为半导体材料。
四、应用不同
光电效应:光电效应用于制造光电倍增管、光控制电器、光电倍增管等。
光伏效应:光伏效应用于太阳能电源、家庭灯具电源、光伏电站、太阳能建筑等。
参考资料来源:百度百科-光伏效应
参考资料来源:百度百科-光电效应