以新能源为主体的新型电力系统路径优化和稳定机理是什么?
我国电力结构已经开始向绿色低碳转型。受成本下降、技术进步、生态环保等因素推动,可再生能源快速发展带动全球能源供应日趋多元,新兴经济体能源需求持续增长,占全球能源消费比重不断上升。截至2020年底,我国可再生能源发电装机总规模占比超过40%,位居世界第一。按照我国“碳达峰”“碳中和”时间表,到2030年实现“碳达峰”,意味着平均每年碳排放量由过去的年均3.6%增速降至0.5%[2]。2021年是“十四五”的开局之年,能源企业和电力企业需要迈好绿色低碳转型的第一步。尤其在发电领域,电源结构将发生重大改变,绿色电源将成为主体电源。在电网领域,电力资源配置由煤电、水电基地外送,转变为新能源一体化开发外送、源网荷储一体化就近利用,电网形态由区域互联大电网向大电网与微电网、分布式电网兼容并举转变,智能配电网成为未来发展重点[3];在用电领域,用电模式由单向流动转变为源网荷储双向互动模式,储能技术将加快发展,用电形式更加多样化。总之,能源清洁低碳发展成为大势。世界各国纷纷制定能源转型战略,提出更高的能效目标,制定更加积极的低碳政策,不断寻求低成本清洁能源替代方案,推动可再生能源发展和经济绿色低碳转型[4,5]。此外,世界能源技术创新进入活跃期。能源新技术与现代信息、材料和先进制造技术深度融合,太阳能、风能发电、新能源汽车技术不断成熟,大规模储能、氢燃料电池、第四代核电等技术有望突破,能源利用新模式、新业态、新产品日益丰富,将给人类生产生活方式带来深刻的变化[6,7]。
绿色低碳转型意味着巨大的成本。尤其对于以传统化石能源为主的发电企业来说,从高碳资产为主向绿色低碳资产转型的成本十分巨大。以“五大电力”企业为例,2020年有四家清洁能源装机占比低于50%,新能源电源增量成为这些企业投资发展的重点。随着新能源大规模发展,资源争夺和市场竞争将愈加激烈,各企业都在抢抓清洁能源转型的机遇,争取优质新能源资源,坚持集中式与分布式并举,新建为主并购为辅,实现风电、光伏跨越式大发展[1]。实施“碳达峰”“碳中和”是广泛而深刻的经济社会系统性变革,对政府、企业,甚至每个人的生活都是一场变革,“一场硬仗”。“十四五”时期,是我国实现“碳达峰”目标的关键期、窗口期,除了控制化石能源消费总量、提高利用效能,还要大力实施清洁能源替代行动,深化电力体制改革和碳交易制度创新,也要倡导绿色低碳生活,提升生态碳汇能力。
总之,构建以新能源为主体的电力系统,意味着光伏、风电等清洁能源的大规模发展,到2025年清洁电源装机比例将超过50%[8]。清洁能源的高比例发展必须采用市场化手段,避免大幅度的财政补贴。清洁能源的发展必须依靠创新驱动,以新能源为主体的新型电力系统应具备高度的数字化、智能化水平,才能不断提升分布式清洁能源的存储和消纳能力,真正让清洁能源成为电力供应的主体。
获取本报告PDF版请见文末
一是: “碳达峰”、“碳中和”以及国内2030年非化石能源占一次能源消费比重将达到25%左右目标明确,可再生能源将加速发展,光伏、风电接入应用比例提升;同时,分布式电站、充电桩、微电网等应用衍生新型生态系统,发电侧、电网侧、用户侧储能均将迎来新增应用需求。
二是: 储能相关配套政策逐步完善,包括明确规模目标、市场地位、商业模式、优化电价机制以及鼓励配套等方面,为储能创造有效的电力市场及政策支持环境。
基于以上观点,我们将在本篇讨论以下内容:
什么是储能技术 储能的应用场景 全球和中国的储能发展现状 “碳中和”趋势下的储能发展机遇 国内储能政策的持续完善 国内电化学储能发展空间。
电储能是实现电力存储与转换的技术,电化学储能是未来发展的重要方向。
储能即能量的存储;电储能是实现电力存储且包含电能与其他能量形式单向或双向转换的技术(本篇内容主要讨论电储能)。
电储能按照存储原理的不同又分为电化学储能和机械储能两种:
电化学储能是指各种二次电池储能,主要包括锂离子电池、铅蓄电池和钠硫电池等;
机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。
电化学储能不受自然条件影响,特别是锂电池储能,具有充电速度快、放电功率大、系统效率高等优点。
我们认为,随着系统成本的不断下降,电化学储能是未来储能产业重要的发展方向。
电力系统是储能领域的主要的应用场景
电力系统中储能可提供: 调频、备用、黑启动、调峰、需求响应、峰谷放冲等多种服务,是储能的重要应用领域。
储能在电力系统中根据应用场景可分为: 发电侧、输配电侧和用户侧;CNESA根据电力储能项目的主要用途进一步细化,将储能应用场景划分为:电源侧、辅助服务、集中式可再生能源并网、电网侧和用户侧。
除电力系统外,储能在其他应用领域也具备增长空间
通信: 储能在通信基站、数据中心和UPS等领域起到备用电源的作用,并可利用峰谷电价差进行套利以降低设备用电成本。
据GGII统计,2020年中国通信储能锂电池出货量为7.4GWh,同比增长23.3%,未来5G基站建设规模加大有望打开通信储能市场空间。
数据中心: 随着移动互联网的快速发展及新基建、数字经济等建设推动,数据中心行业有望持续快速发展。
据36氪研究院统计,2020年我国数据中心市场规模为1958亿元,预计到2025年有望接近6000亿元。储能作为数据中心的备用电源,前期数据中心的应用以铅酸电池为主,随着锂离子电池性价比持续提升,未来有望逐步取代铅酸电池成为数据中心主流的储能形式。
其他: 储能应用领域多样,例如,轨道交通领域配置储能可实现列车再生制动能量的高效利用等。
全球储能项目规模持续增长,抽水蓄能是过去最广泛的储能形式
累计装机规模方面: 根据CNESA全球储能项目库的不完全统计,截至2020年底,全球已投运储能项目累计装机规模191.1GW;
已投运抽水蓄能项目累计装机规模为172.5GW,占比达90.3%,是过去最广泛的储能应用形式;
已投运电化学储能项目累计装机规模为14.3GW,占比为7.5%;
其中,已投运锂离子电池储能项目累计装机规模为13.1GW,占电化学储能项目规模的的92.0%,是最主要的电化学储能形式。
电化学储能增长迅速,锂离子电池储能是主要的新增储能形式
新增装机规模方面: 2020年全球储能项目新增装机规模6.5GW,同比增长80.6%。
抽水蓄能新增装机规模为1.5GW,占新增储能项目装机规模的23.0%;
电化学储能新增装机规模为4.73GW,同比增长63.1%,占新增储能项目装机规模的72.8%;
其中锂离子电池储能新增装机规模4.65GW,同比增长69.6%,占电化学储能新增装机规模的98%。
中国是全球最大的新增电化学储能市场之一,未来有望持续领先
据CNESA全球储能项目库统计,在2020年全球电化学储能新增的4.73GW中,
地区结构:中国、美国和欧洲占据2020年全球储能市场的主导地位,投运规模占比分别为33%、30%和23%,合计占比达86%,且均突破GW级大关。
项目结构:辅助服务、新能源发电侧、用户侧安装较多,占比分别为29.3%、28.8%和27.3%,电网侧为14.7%;
在2020年全球电化学储能新增的1.56GW中,新能源发电侧装机规模超0.58MW,同比增长438%,未来随着中国新能源装机规模的不断扩大,中国储能发展将持续全球领先。
累计装机规模方面: 根据CNESA全球储能项目库的不完全统计,截至2020年底,中国已投运储能项目累计装机规模35.6GW;
已投运抽水蓄能项目累计装机规模为31.8GW,占比达89.3%,是过去应用最广泛的储能形式;
已投运电化学储能项目累计装机规模为3.27GW,占比为9.2%;
其中,已投运锂离子电池储能项目累计装机规模为2.90GW,占电化学储能项目规模的的88.8%,是最主要的电化学储能形式。
电化学储能高速发展,新增贡献接近一半
新增装机规模方面: 2020年中国储能项目新增装机规模3.2GW,同比增长190.9%。
抽水蓄能新增装机规模为1.49GW,2020年全球新增的抽水蓄能项目几乎都来自中国;
电化学储能新增装机规模为1.56GW,同比增长144.9%,占中国全部新增储能项目的48.8%;其中锂离子电池储能新增装机规模1.52GW,同比增长146.0%,占电化学储能新增装机规模的97.4%,是主要的电化学储能项目新增方式。
气候变化威胁形势严峻,“碳中和”势在必行
随着工业的发展和人类活动规模的扩大,对化石能源和自然资源的过度开发利用导致温室气体排放显著增长,造成全球温升和自然灾害。
2016年4月,175个国家和地区的领导人签署《巴黎协定》,成为全球应对气候变化的标志性事件之一;
2018年,政府间气候变化专门委员会(IPCC)发布《全球1.5 升温特别报告》指出,要将全球变暖限制在1.5 C,到2030年,全球人为二氧化碳净排放量必须比2010年的水平减少约45%,到2050年左右实现“净零”排放,即“碳中和”。
根据ECIU的统计,除了已经达成“碳中和”的苏里南和不丹外,已有超50个国家和地区已经公布“碳中和”相关目标,以应对全球气候变化的威胁。
新能源应用是碳减排的重要实现方式,储能有望同步受益
据CAIT,2018年全球能源活动排放量占全球温室气体总排放量的76.1%,是碳排放的主要来源。推动清洁能源转型、加大新能源应用比例是未来能源发展的主要方向。
2020年12月,进一步宣布“到2030年,非化石能源占一次能源消费比重将达到25%左右”、“风电、太阳能发电总装机容量将达到12亿千瓦以上”等目标。
据IRENA预测,到2050年全球49%的能源消费将来自电力,其中86%来自可再生能源,预计将以风电和光伏为主;到2050年全球光伏和风电的累计装机容量将有望超过8500GW和6000GW,光伏、风电装机规模具备可观发展空间。
新能源应用规模加大,新生态下电力系统对储能配备需求加大
新能源具备随机性、间歇性、波动性等特点,大规模新能源接入会对电力系统带来挑战。
储能配置将助力新能源消纳,并有效保障电网的稳定运行,我们预计未来随着新能源应用规模加大,储能技术将迎来高速发展。
储能在新能源比例提升的新型电力系统中可发挥多重作用:
发电侧:新能源发电侧配储能可以对新能源的波动性、间歇性等进行平滑,提升新能源的电网友好性,推动新能源的高质量发展。
电网侧:可提供调峰、调频、调压等功能,提升电网的新能源消纳能力,利于电网的稳定运行;
用户侧:随着峰谷电价差的拉大及分时电价政策的不断完善,分布式电站、充电桩、微电网等应用衍生出新型生态系统,将打开市场储能配置需求,以实现降低综合用电成本、促进电能优化配置利用、提高电力自发自用率、支撑微电网稳定运行等功能。
地方储能相关政策陆续出台
目前国内多地加大对可再生能源配套储能的支持政策或相关要求,多省份要求储能容量配比在10%-20%、储能时长在2小时及以上。
此外,青海省对“新能源+储能”、“水电+新能源+储能”项目中自发自储设施所发售的省内电网电量,给予0.10元/Kwh运营补贴。
各省对于储能政策落实将进一步加大储能在新能源发电侧的应用,有望加快储能系统的发展。
国家级储能政策密集发布,为储能的规模化发展铺平道路
近期国家发改委、国家能源局针对新型储能、分时电价、以及新能源消纳等政策进行了完善。
新型储能的商业模式和市场地位进一步明确。
7月15日,国家发展改革委、国家能源局发布《关于加快推动新型储能发展的指导意见》,其中提出“到2025年装机规模达3000万千瓦以上”的目标,以及从“明确新型储能独立市场主体地位”、“健全新型储能价格机制”以及“健全‘新能源+储能’项目激励机制”三个方面进行政策机制完善。
拉大峰谷电价差,推动用户侧储能发展。
7月26日,国家发改委发布《关于进一步完善分时电价机制的通知》,其中提出了“合理确定峰谷电价价差,上年或当年预计最大系统峰谷差率超过40%的地方,峰谷电价价差原则上不低于4:1;其他地方原则上不低于3:1”的要求,以及建立尖峰电价机制、健全季节性电价机制,优化分时电价机制,并提出建立动态调整机制等。
明确新增新能源并网消纳规模和储能配比,发电侧储能配套作用凸显。
8月10日,国家发改委、国家能源局发布《关于鼓励可再生能源发电企业自建或购买调峰能力增加并网规模的通知》,其中明确:“每年新增的并网消纳规模中,电网企业应承担主要责任,电源企业适当承担可再生能源并网消纳责任”,并在电网企业承担风电和太阳能发电等可再生能源保障性并网责任以外,仍有投资建设意愿的可再生能源发电企业,提出“鼓励发电企业自建储能或调峰能力增加并网规模”、“允许发电企业购买储能或调峰能力增加并网规模”,并对自建调峰资源的“超过电网企业保障性并网以外的规模初期按照功率15%的挂钩比例(时长4小时以上)配建调峰能力,按照20%以上挂钩比例进行配建的优先并网。”
我们认为,随着光伏、风电等新能源装机规模的不断增长以及分布式能源应用扩大,无论是发电侧、电网侧还是用户侧配备储能的必要性和需求均大幅上升,政策的逐步完善将为储能发展创造良好的市场环境,有利于推动储能产业的高速发展。
国内电化学储能装机规模预计迎来可观增长空间
我们认为,随着可再生能源装机规模的持续增长、储能及电价相关政策的不断完善,以锂电池为主的新型储能技术有望在相关机制的推动下迎来高速发展契机。
国家能源局发布的《关于加快推动新型储能发展的指导意见》明确了2025年新型储能装机规模达3000万千瓦以上的目标。以此计算,2020-2025年均复合增长率将超50%。
据CNESA预测:
保守场景下,2025年中国电化学储能累计投运规模有望达35.5GW; 随着“碳达峰”和“碳中和”目标和储能相关政策的推动,理想场景下2025年中国电化学储能累计投运规模有望达55.9GW。
据赛迪智库预测:到2025年我国锂电储能累计装机规模有望达50GW;到2035年我国锂电储能累计装机规模有望达600GW。
我们认为,在新能源大规模接入的新型电力系统体系下,储能有望迎来大规模发展机遇:
“碳达峰”、“碳中和”以及2030年非化石能源占一次能源消费比重将达到25%左右目标明确,可再生能源将加速发展,同时分布式电站、充电桩、微电网等应用衍生新型生态系统,发电侧、电网侧、用户侧储能均将迎来新增应用需求;
国家级及地方相关政策进一步完善,2025年储能装机规模目标、市场地位、商业模式得到明确;峰谷电价价差的拉大有望推动用 户侧配置储能,项目经济性提升将加大储能市场需求;鼓励可再生能源发电企业自建或购买调峰能力增加并网规模利于进一步扩 大储能在发电侧的需求和应用空间。行业相关政策的逐步完善将有利于推动储能产业的高速发展。
储能发展机遇下的锂电池、逆变器、储能系统集成三条主线:
锂电池:储能系统装机规模的快速增长将直接推动锂电池需求,具备性能成本优势、销售渠道以及技术实力的企业有望受益;
逆变器:PCS与光伏逆变器技术同源性强,且用户侧储能与户用逆变器销售渠道较为一致,逆变器技术领先和具备渠道优势的企业有望受益;
储能系统集成:储能系统集成看重集成商的集成效率、成本控制以及对零部件和下游应用的理解,在系统优化、效率管理、成本管控以及应用经验具备竞争优势的供应商有望受益于市场规模扩大。
行业公司:阳光电源、锦浪 科技 、德业股份、科士达、宁德时代、亿纬锂能、鹏辉能源、国轩高科、派能 科技 等。
储能装机不及预期;
储能政策不及预期;
设备安全性风险;
储能成本下降速度不及预期等。
——————————————————
报告属于原作者,我们不做任何投资建议!
报告原名:《 新能源发展+政策双轮驱动,国内储能行业迈入快车道 》
作者、分析师: 华西证券 杨睿 李唯嘉
获取更多PDF版报告请登录【远瞻智库官网】或点击链接:「链接」
城市节能的发展趋势表现在:大力加强建筑节能,一方面采用新的节能材料和设备,另一方面研究开发红外热反射技术、高效节能玻璃、太阳能利用技术和建筑节能计算机技术等新的建筑节能技术,。论文写作,新能源城市发展。[10]
城市生活垃圾这一“放错了地方的财富”,已被公认是一种可提供能源的资源,采用高效流化床焚烧技术处理固态垃圾可获得良好的效果,在完成垃圾处理的同时,获得的能源可用于城市热能和电力供应。[11]而城市污水下水道污泥同样可以通过高压热裂解、蒸馏等化学物理手段制造液体燃料[12]。作为城市能源的有力供应。
9.2绿色能源的应用以及对城市建设的作用
绿色能源可概述为清洁能源和再生能源。狭义地讲,绿色能源指氢能、风能、水能、生物能、海洋能、燃料电池等可再生能源,而广义的绿色能源还包括在开发利用过程中低污染的能源,如天然气、清洁煤和核能等。从城市经济可持续发展的角度看,开发绿色能源具有重要的现实意义。坚持节约发展、清洁发展、安全发展,实现可持续发展。[13]
氢能汽车的使用是目前氢能利用的一大亮点:对于发展低碳经济,改善城市空气质量,建设生态、环保城市有十分重要的意义。2010年,我国在北京、上海、大连、郑州等20个城市开展节能与新能源汽车的试点工作。本届世博会上世博园区的196辆观光车采用了安全、便捷、环保的氢燃料。同时配套建设的加氢站是目前世界单体规模最大的一座加氢站。
而太阳能技术是解决未来城市能源问题最重要的突破口,未来的城市应该是太阳能的城市,通过太阳能的规模化应用,有效减少化石能源的消耗和温室气体排放。北京奥运会期间,北京的比赛场地及其相关场所90%使用太阳能照明。青岛奥帆中心安装采用了太阳能景观灯,此类太阳能路灯工程在国内已有很多。[14]通过太阳能屋顶或幕墙等方式,利用光伏组件收集太阳能,产生电能后向住户供电。也可以与公共电网相连接,组成并网光伏系统。这种并网系统因有太阳能、公共电网同时给负载供电,既充分利用了光伏系统所发的电能,供电可靠性又得以增强;同时,建筑本身消耗不完的电量也可反馈给电网,起到调峰作用。论文写作,新能源城市发展。论文写
可再生能源实际上存在于阳光,空气,地下深处和海洋中。它们是地球物理结构的一部分,这意味着它们不断通过自然方式进行更新,周而复始,无法用完。
国家能源局3月30日发布,近年来,我国可再生能源实现跨越式发展,为能源绿色低碳转型提供强大支撑。水电、风电、光伏发电、生物质发电装机分别连续16年、11年、6年和3年稳居全球首位。可再生能源实现跨越式发展,开发利用规模稳居世界第一。
能源资源利用体系的核心是什么?
能源资源利用体系的核心要求是:按照减量化、再利用、资源化的原则,以提高能源资源利用效率为中心,以节能、节水、节地、节材、资源综合利用为重点,通过加快产业结构调整,推进技术进步,加强法制建设,完善政策措施,强化节约意识,建立长效机制,形成节约型的增长方式和消费方式,促进经济社会可持续发展。
再生资源回收产业和利用有什么区别?
简单说,再生资源回收,再生资源回收体系等等。简单的都是回收。不同的是角度。就是铺设的回收环节不同而已。有些是上门回收,有些是中转回收。而再利用则是回收加工。在再生资源行业里算是后端。一般指钢厂,纸浆厂。和一些特殊的再生资源回收利用产业园。含厨余垃圾的堆肥,有色金属回收冶炼,废旧塑料的再生加工。
互联网+的再生资源回收体系
再生资源回收体系建设是一个复杂而艰巨的系统工程,牵涉到方方面面,需要政府的决心和努力,也需要居民素质的不断提高。互联网+废品回收是未来发展的必然趋势废旧物品的处理,废旧物品的回收就是目前非常富有市场前景的行业。在这个万众互联、万物互联的时代,再生资源回收行业也不可避免地受到互联网的影响和改变。如今,废品回收融入互联网基因,为居民百姓、商家店铺解决卖废品难的问题。总而言之,互联网+废品回收的时代已经来临,不再是以虚打实,而是以实打实,四两拨千斤。受限于回收渠道的再生资源回收行业迎来新的发展机遇,加速信息化和智能化的蜕变无疑会为再生资源回收新添强劲驱动力。废品之所以成为垃圾其根本在于“回收”,随意抛弃的是“垃圾”,回收成功的是“资源”。那么究竟该如何提高废品回收率呢?废品回收者给您答案:借势,借互联网之势趟出一条“互联网+资源回收”的新道路。
电力系统的任务是为人们日常生活、企业科研生产提供电力资源,而是社会经济能否稳定发展的重要依托。电力电子装置的应用贯穿电力系统的发电、配电、变电和输电等各个阶段,电力系统若想实现高可靠性、高稳定性和高效性,必须采用高度智能化的电力电子装置。与此同时,传统电力系统的发电方式往往使用不可再生能源,在造成严重的环境污染的同时能源的利用率低下,已不能满足社会的需求,对电力系统进行改进势在必行。在构建新型电力系统中必然会使用电具有较高科技水平的电力电子装置。因此,研究电力电子装置在电力系统中的应用具有重要的现实意义。
1 电力电子装置和电力系统的发展
随着大容量、远距离电力资源传输的需求逐渐提高,电力系统势必步入智能化、自动化发展的道路。目前,我国电力系统的智能化水平逐渐提升,在全国各地均可以使用电能,电力系统的规模位于世界前列。电力电子装置作为电力系统的重要基础,虽然起步较晚,但发展速度迅猛。电力电子装置的不断发展与改善同时也极大促进了电力网络的迅速发展。较为突出的改进为电力能源传输介质由传统的电缆传输转变为光纤传输;关键技术壁垒由硬件设计转变为软件设计;装置由传统的半控型装置逐步发展为全控型装置,目前已经发展到复合型装置;控制方法由传统的模拟控制转变为数字控制等等。然而,我国电力系统与发达国家相比仍存在着一定的差距,主要表现为智能化水平较低、科技含量较低、创新性技术应用较少等等。因此,我国电力行业的相关科技人才应该对电力电子装置进行深入的科学研究并将其先进的应用到电力系统的构建中,从而促进我国电力行业以及社会经济的进一步发展。
2.我国电力电子装置在电力系统中的应用
2.1 发电阶段
传统的电力系统通常利用不可再生能源进行发电,资源有限且会造成一定的环境污染。新型电力系统应因地制宜,利用当地环保的可再生能源,如风能、势能等,同时致力于进一步提高能源的利用效率,提高环保能源的使用率,本文将从风力发电、水力发电和太阳能发电三方面进行介绍电子电力装置在发电中的应用。
2.1.1 风力发电
由于风力变化极快,需要电力电子装置对风能进行整流、逆变后将其转变为可供人使用、具有稳定电压、频率的电能资源,最为普遍的装置为风力变流器。利用变流器中拓扑结构分层改变电能的容量和电压,增加了风力发电的效率。
2.1.2 水力发电
水力发电装置通过调节水库的高低位置的变化通过水力势能的改变进行发电。水力发电中发电机采用交流励磁技术,极大地加快了发电的速度,其核心电力电子装置为交流发电机组励磁。在交流励磁的控制系统原理简单,利用交流频率的改变直接调节对水压及流量的大小,可以实现快速、准确的水力发电,有效改善了水力发电站的发电。效率
2.1.3太阳能发电
太阳能发电需要的电力电子装置包括将太阳能转变为电能的光伏阵列原件、处理不稳定电能的滤波器、变压器、逆变器等装置。目前,太阳能发电系统的应用还存在一定的不足,如光伏阵列存在多峰值问题,有待进一步进行深入研究。
2.2 储能阶段
由于可再生能源的产生具有季节性、实时性,同时生活生产中使用电能也存在高峰期和低谷期,这就要求进行电能的储存,从而提高现有电力系统的稳定性和可靠性。本文将从目前在我国应用较为广泛的电池储能装置、水力储能装置和风力储能装置几个方面进行概述。
2.2.1 电池储能装置
我国对于电池储能装置的研究与其他其他储能方式相比时间较早,可以将任意发电装置产生的电力资源转化为电池中的电能。其原理为利用小功率直流变换器是电池中的电流平稳;利用拓扑结构将电池集成实现电压的高低和电流的变化;利用电压型四象限变换器在实现功率的调节。利用电力电子装置实现储能的最优化、损耗的最小化的储能系统。
2.2.2 水力储能装置
水力发电的储能装置一般采用抽水储能,常见的方法为利用抽水蓄能机组中励磁电流的频率和幅值的转换实现电力功率的转换,从而实现电力供能中调峰填谷、备用紧急能源等不同的作用。
2.2.3 风力储能装置
风力储能装置利用压缩空气进行储能,利用空气压缩机将剩余的电力资源用空气的压力进行存储,电能不足时,将空气的势能转化为电能进行发电。
2.3 输电阶段
电力系统若想在输电领域中实现长距离、高容量和低损耗的电力传输,需要电力电子装置进行协助降低电能的损耗,如换流器、变流器。在输电过程中长距离、高容量的电力传输一旦遇到意外灾害可能会造成严重的经济损失,电力电子装置能够及时的发现传输电力过程中的异常状况,根据具体的情况进行决策,以免产生重大的经济损失和资源浪费。
2.4 智能电网
智能电网是高度自动化、高度智能化的电力资源传输网络,利用自动化控制技术可对任意网络节点进行监控,实现节点间电力资源的双向流动。智能电网中采用功率变换器对用户的功率进行调节。利用电力电子装置的集成可实现电网中控制器通过通信系统进行协同工作,实现电网的自动化控制,增强智能电网的稳定性和可靠性。
2.5 提高电能利用率
由于自然中可再生资源如水力、风力或是太阳能并非是长时间供应的,但是对于电能的需求却逐年增加,因此电力系统必须降低电能的损耗、提高电能的使用效率。其中,链式静止同步补偿器可以通过无功补偿降低电压的扰动、维护电力系统的稳定性;谐波治理装置可以降低电网中的谐波,抑制不必要的能量损耗;动态电压恢复器通过对电压暂降进行补偿,降低电压引起的电力设备的损害,从而保障电力系统的稳定性和可靠性运行。
3 电力电子装置发展的建议
目前,我国在电力电子装置的应用方面已经取得了较大的突破,但是距离世界顶级的电力系统中电力电子装置的应用还有一定的差距。针对电力资源的大量需求和电力系统改善的需要,电力电子装置应该加强以下几个方面的研究。首先,增强电力系统的智能化,通过电力电子装置的一体化设计,实现电力系统的自动化控制。其次,在发电阶段加强风力发电换流器的可靠性与太阳能发电中逆变器的稳定性。再次,研究其他可再生能源发电的可行性与适用性。最后,增加电力系统出现故障时的应急措施,通过不断改进控制算法增强电力系统进行资源优化配置的能力,提高电力能源的使用效率。
4 总结
电力电子装置是电力系统的重要基础,在保障电力系统及时、准确和可靠运行等方面发挥举足轻重的作用。换言之,电力电子装置科技水平的高低直接影响电力系统自动化水平的高低,直接决定我国经济的发展。因此,我国必须注重电力电子装置的科研与开发,促进电力单位或企业与高校或其他科研单位的合作,致力于将先进的电力电子装置应用于电力系统中,以便进一步满足社会发展对电力资源日益增加的需求。
参考文献:
[1] 姜建国.乔树通.郜登科.电力电子装置在电力系统中的应用[J].电力系统自动化,2014,3:2-5.
[2] 周孝信.陈树勇.鲁宗相.电网和电网技术发展的回顾与展望——试论三代电网[J].中国电机工程学报,2013,33(22):1-11.
[3] 国家电网公司“电网新技术前景研究”项目咨询组.大规模储能技术在电力系统中的应用前景分析[J].电力系统自动化,2013,37(1):3-8.
混合能源系统是基于太阳能、风能、柴油发电机组、市电储能等能源混合为一体的能源系统,其不仅可以降低用电成本,还可以提高供电系统的可靠性,可应用在海岛、边防哨所、电信基站、别墅、工商业储能等离网或并网混合能源供电系统。
HES9510混合能源控制器可用于柴油发电机组与太阳能,风能,储能电池等以逆变器做为电源输出的能源系统。它可以控制逆变电源的起/停机,输出模式,功率输出大小以及输出断路器的合分闸,也可以根据负载情况,控制系统中的发电机组的起停,为逆变电源提供旋转备用,还可以控制变流器对储能电池进行充放电管理等功能。
HES9510可应用在有市电或无市电能源系统中。控制器可控制市电、发电机组、储能电站、PV电站或风力电站使用的优先级。 每种能源可单独设置优先级,优先级数值越小,优先级越高,同时也支持动态调整优先级。
在有市电的系统中,系统可由市电,光伏和柴油发电机组组成,正常运行时光伏并网发电,在市电功率限制、阶梯电价电费高等原因时,最大限度的减少市电使用。在市电故障时,光伏和发电机组并网带载并通过对光伏输出功率的控制,使柴油发电机组以最小的功率输出,并且可以通过对光伏输出功率的控制,可以防止在和柴油发电机组并网运行时造成柴油发电机组逆功。
在无市电的系统中,系统可由光伏、风电,储能和柴油发电机组组成。白天风能和光伏带载并为储能电池组充电;晚上风能和储能电池组带载,当储能电池组电量不足时,柴油发电机组带载。
第 三十三 号《中华人民共和国可再生能源法》已由中华人民共和国第十届全国人民代表大会常务委员会第十四次会议于2005年2月28日通过,现予公布,自2006年1月1日起施行。中华人民共和国 主 席 胡 锦 涛
2005年2月28日中华人民共和国可再生能源法
(2005年2月28日第十届全国人民代表大会常务委员会第十四次会议通过)目 录第一章 总则
第二章 资源调查与发展规划
第三章 产业指导与技术支持
第四章 推广与应用
第五章 价格管理与费用分摊
第六章 经济激励与监督措施
第七章 法律责任
第八章 附则 第一章 总则第一条为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,制定本法。
第二条本法所称可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。
水力发电对本法的适用,由国务院能源主管部门规定,报国务院批准。
通过低效率炉灶直接燃烧方式利用秸秆、薪柴、粪便等,不适用本法。
第三条本法适用于中华人民共和国领域和管辖的其他海域。
第四条国家将可再生能源的开发利用列为能源发展的优先领域,通过制定可再生能源开发利用总量目标和采取相应措施,推动可再生能源市场的建立和发展。
国家鼓励各种所有制经济主体参与可再生能源的开发利用,依法保护可再生能源开发利用者的合法权益。
第五条国务院能源主管部门对全国可再生能源的开发利用实施统一管理。国务院有关部门在各自的职责范围内负责有关的可再生能源开发利用管理工作。
县级以上地方人民政府管理能源工作的部门负责本行政区域内可再生能源开发利用的管理工作。县级以上地方人民政府有关部门在各自的职责范围内负责有关的可再生能源开发利用管理工作。第二章 资源调查与发展规划第六条国务院能源主管部门负责组织和协调全国可再生能源资源的调查,并会同国务院有关部门组织制定资源调查的技术规范。
国务院有关部门在各自的职责范围内负责相关可再生能源资源的调查,调查结果报国务院能源主管部门汇总。
可再生能源资源的调查结果应当公布;但是,国家规定需要保密的内容除外。
第七条国务院能源主管部门根据全国能源需求与可再生能源资源实际状况,制定全国可再生能源开发利用中长期总量目标,报国务院批准后执行,并予公布。
国务院能源主管部门根据前款规定的总量目标和省、自治区、直辖市经济发展与可再生能源资源实际状况,会同省、自治区、直辖市人民政府确定各行政区域可再生能源开发利用中长期目标,并予公布。
第八条国务院能源主管部门根据全国可再生能源开发利用中长期总量目标,会同国务院有关部门,编制全国可再生能源开发利用规划,报国务院批准后实施。
省、自治区、直辖市人民政府管理能源工作的部门根据本行政区域可再生能源开发利用中长期目标,会同本级人民政府有关部门编制本行政区域可再生能源开发利用规划,报本级人民政府批准后实施。
经批准的规划应当公布;但是,国家规定需要保密的内容除外。
经批准的规划需要修改的,须经原批准机关批准。
第九条编制可再生能源开发利用规划,应当征求有关单位、专家和公众的意见,进行科学论证。 第三章 产业指导与技术支持第十条国务院能源主管部门根据全国可再生能源开发利用规划,制定、公布可再生能源产业发展指导目录。
第十一条国务院标准化行政主管部门应当制定、公布国家可再生能源电力的并网技术标准和其他需要在全国范围内统一技术要求的有关可再生能源技术和产品的国家标准。
对前款规定的国家标准中未作规定的技术要求,国务院有关部门可以制定相关的行业标准,并报国务院标准化行政主管部门备案。
第十二条国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域,纳入国家科技发展规划和高技术产业发展规划,并安排资金支持可再生能源开发利用的科学技术研究、应用示范和产业化发展,促进可再生能源开发利用的技术进步,降低可再生能源产品的生产成本,提高产品质量。
国务院教育行政部门应当将可再生能源知识和技术纳入普通教育、职业教育课程。第四章 推广与应用第十三条国家鼓励和支持可再生能源并网发电。
建设可再生能源并网发电项目,应当依照法律和国务院的规定取得行政许可或者报送备案。
建设应当取得行政许可的可再生能源并网发电项目,有多人申请同一项目许可的,应当依法通过招标确定被许可人。
第十四条电网企业应当与依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内可再生能源并网发电项目的上网电量,并为可再生能源发电提供上网服务。
第十五条国家扶持在电网未覆盖的地区建设可再生能源独立电力系统,为当地生产和生活提供电力服务。
第十六条国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物。
利用生物质资源生产的燃气和热力,符合城市燃气管网、热力管网的入网技术标准的,经营燃气管网、热力管网的企业应当接收其入网。
国家鼓励生产和利用生物液体燃料。石油销售企业应当按照国务院能源主管部门或者省级人民政府的规定,将符合国家标准的生物液体燃料纳入其燃料销售体系。
第十七条国家鼓励单位和个人安装和使用太阳能热水系统、太阳能供热采暖和制冷系统、太阳能光伏发电系统等太阳能利用系统。
国务院建设行政主管部门会同国务院有关部门制定太阳能利用系统与建筑结合的技术经济政策和技术规范。
房地产开发企业应当根据前款规定的技术规范,在建筑物的设计和施工中,为太阳能利用提供必备条件。
对已建成的建筑物,住户可以在不影响其质量与安全的前提下安装符合技术规范和产品标准的太阳能利用系统;但是,当事人另有约定的除外。
第十八条国家鼓励和支持农村地区的可再生能源开发利用。
县级以上地方人民政府管理能源工作的部门会同有关部门,根据当地经济社会发展、生态保护和卫生综合治理需要等实际情况,制定农村地区可再生能源发展规划,因地制宜地推广应用沼气等生物质资源转化、户用太阳能、小型风能、小型水能等技术。
县级以上人民政府应当对农村地区的可再生能源利用项目提供财政支持。第五章 价格管理与费用分摊第十九条可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定,并根据可再生能源开发利用技术的发展适时调整。上网电价应当公布。
依照本法第十三条第三款规定实行招标的可再生能源发电项目的上网电价,按照中标确定的价格执行;但是,不得高于依照前款规定确定的同类可再生能源发电项目的上网电价水平。
第二十条电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊。具体办法由国务院价格主管部门制定。
第二十一条电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收。
第二十二条国家投资或者补贴建设的公共可再生能源独立电力系统的销售电价,执行同一地区分类销售电价,其合理的运行和管理费用超出销售电价的部分,依照本法第二十条规定的办法分摊。
第二十三条进入城市管网的可再生能源热力和燃气的价格,按照有利于促进可再生能源开发利用和经济合理的原则,根据价格管理权限确定。第六章 经济激励与监督措施第二十四条国家财政设立可再生能源发展专项资金,用于支持以下活动:
(一)可再生能源开发利用的科学技术研究、标准制定和示范工程;
(二)农村、牧区生活用能的可再生能源利用项目;
(三)偏远地区和海岛可再生能源独立电力系统建设;
(四)可再生能源的资源勘查、评价和相关信息系统建设;
(五)促进可再生能源开发利用设备的本地化生产。
第二十五条对列入国家可再生能源产业发展指导目录、符合信贷条件的可再生能源开发利用项目,金融机构可以提供有财政贴息的优惠贷款。
第二十六条国家对列入可再生能源产业发展指导目录的项目给予税收优惠。具体办法由国务院规定。
第二十七条电力企业应当真实、完整地记载和保存可再生能源发电的有关资料,并接受电力监管机构的检查和监督。
电力监管机构进行检查时,应当依照规定的程序进行,并为被检查单位保守商业秘密和其他秘密。第七章 法律责任第二十八条国务院能源主管部门和县级以上地方人民政府管理能源工作的部门和其他有关部门在可再生能源开发利用监督管理工作中,违反本法规定,有下列行为之一的,由本级人民政府或者上级人民政府有关部门责令改正,对负有责任的主管人员和其他直接责任人员依法给予行政处分;构成犯罪的,依法追究刑事责任:
(一)不依法作出行政许可决定的;
(二)发现违法行为不予查处的;
(三)有不依法履行监督管理职责的其他行为的。
第二十九条违反本法第十四条规定,电网企业未全额收购可再生能源电量,造成可再生能源发电企业经济损失的,应当承担赔偿责任,并由国家电力监管机构责令限期改正;拒不改正的,处以可再生能源发电企业经济损失额一倍以下的罚款。
第三十条违反本法第十六条第二款规定,经营燃气管网、热力管网的企业不准许符合入网技术标准的燃气、热力入网,造成燃气、热力生产企业经济损失的,应当承担赔偿责任,并由省级人民政府管理能源工作的部门责令限期改正;拒不改正的,处以燃气、热力生产企业经济损失额一倍以下的罚款。
第三十一条违反本法第十六条第三款规定,石油销售企业未按照规定将符合国家标准的生物液体燃料纳入其燃料销售体系,造成生物液体燃料生产企业经济损失的,应当承担赔偿责任,并由国务院能源主管部门或者省级人民政府管理能源工作的部门责令限期改正;拒不改正的,处以生物液体燃料生产企业经济损失额一倍以下的罚款。 第八章 附则第三十二条本法中下列用语的含义:
(一)生物质能,是指利用自然界的植物、粪便以及城乡有机废物转化成的能源。
(二)可再生能源独立电力系统,是指不与电网连接的单独运行的可再生能源电力系统。
(三)能源作物,是指经专门种植,用以提供能源原料的草本和木本植物。
(四)生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油等液体燃料。
第三十三条本法自2006年1月1日起施行。
新能源是指传统能源之外的各种能源形式。我整理了浅谈新能源技术论文,欢迎阅读!
浅谈新能源技术论文篇一论新能源发电技术
摘要:本文从全球能源的现状,介绍了中国能源发电技术的应用情况,发现中国新能源发电对现代化建设具有重要战略意义。进一步介绍了风力发电系统和燃料电池发电系统两种新能源发电技术。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是近期发展的重点。燃料电池是一种将化学能直接转换成电能的装置,它能量转化效率高,几乎不排放氮的氧化物和硫的氧化物。
关键词:新能源风能燃料电池发电技术
中图分类号: F206 文献标识码: A
能源紧缺已成为制约各国经济发展的瓶颈,如何开发先进安全的新能源使用技术、如何提高能源利用率也随之成为世界各国关心的课题。欧盟就首先提出了20-20-20计划:到2020 年,可再生能源占欧盟总能源消耗的20%。2007年12月,美国前总统布什也签署了《能源独立和安全法案》(EISA),从而大力推动新能源的使用和节能计划。另外,从环境的角度来看,为了保护人们赖以生存的地球,开发新能源也是必由之路。
一、我国能源和发电技术的现状
2011年,我国新能源发电继续保持快速发展态势,并网装机容量持续增长,发电量不断增加。截至2011年底,我国新能源安装容量达到7000万kW,居世界首位,并网新能源装机容量达到5409万kW,同比增长47.4%,约占全部发电装机容量的5.1%。其中,风电并网容量约占并网新能源装机总量的85.5%并网太阳能光伏装机容量约占并网新能源装机总量的4.4%生物质及其他新能源发电装机容量约占并网新能源装机总量的10.1%。
2011年,我国新能源发电量约为1016亿kW?h,同比增长29.9%,约占全部发电量的2.2%。其中,风电发电量约占新能源发电总量的72.0%太阳能光伏发电约占0.9%生物质及其他新能源发电约占27.1%。2011年我国新能源发电量按发电煤耗320g/(kW?h)计算,相当于节约3241万tce,减排二氧化碳9030万t。
电能是国民生活和生产的根基,无论是从能源角度,还是电力系统自身方面来看,研究新能源发电技术对于我国的现代化建设和人民生活都具有相当大的现实意义和战略意义。
二、风力发电技术
风能资源主要包括陆地资源与近海离岸资源两部分。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是目前新能源发展的重点方向。
1.发展现状
近年来,我国风力发电产业取得了长足发展,这与我国的风能资源丰富密不可分。据有关资料显示,陆地上离地面10米高度处,我国风能资源理论储量约为43亿千瓦,技术可开发量约为3亿千瓦,离地面50米,估计可能增大一倍近海资源10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦。从我国联网风电场总装机量来说,到2006 年底,我国已建成约91个风电场,装机总容量达到约260万千瓦,比2005年新增装机134万千瓦,增长率为105%。根据国家中长期规划,2015年风能发电要达到1500万千瓦,2020年要达到3000万千瓦。但是,与风电发达国家相比,我国的发展规模还很小,发展速度也较缓慢。制约我国风电发展的重要因素包括技术和制度两个方面。技术方面,风电机组的制造水平较低,风电机组性能测试设备和技术也相对落后,并缺少相应的认证机构制度方面,风电场的运行维护水平和制度与国外风电场及国内火电生产相比有明显差距,缺乏对运行过程中出现的问题和故障的详细记录、分析。
2.对电力系统的影响
风力发电机是以风作为原动力,风的随机波动性和间歇性决定了风力发电机的电能输出也是波动和间歇的。所以,风电场的大规模接入将会带来波动功率,从而加重电网负担,影响电网供电质量和电网稳定性等。
(1)对电能质量的影响。空气气流运动导致的风速波动周期一般为几秒到几分钟,这种短周期的风速波动以及风电机组本身的运行特性可能影响电网的电能质量。首先会对频率产生影响:风力发电有功功率波动引起电磁功率的波动,由于发电机组转子惯性,调节系统很难跟上电磁功率的瞬时变化,造成功率不平衡,使发电机转速变化,系统频率也将改变。此外,风电还会对电压产生影响:并网风电机组输出功率的波动导致电压的波动,而其输出功率的频率范围正处于电压闪变的范围之内(25Hz),因此又会造成电压闪变,最后会产生谐波电压和谐波电流。
(2)对电网稳定性的影响。对较为薄弱的电网,风电功率波动将导致瞬间电压跌落以及风力发电机的频繁掉线。在故障清除之后,发电机的磁化和转差率的增加会消耗大量无功,导致电网电压恢复困难。
(3)对调频调峰能力的影响。气流长时间、季节性运动导致的风速波动周期一般为数小时,甚至数天、数月,这种长周期的风速波动会增加现有电网调频调峰的负担。负荷曲线的低谷期常常对应了风电出力的高峰期,风电场的并网发电使电网的等效负荷峰谷差增大,大大增加了电网调频调峰负担。
三、太阳能光伏电池发电技术
1. 1 太阳能光伏电池
太阳能光伏电池发电也简称为太阳能光伏发电,被认为是未来世界上发展最快和最有前途的一种可再生新能源技术。太阳能光伏电池的基本原理是利用半导体的“光生伏打效应”( 光伏效应) 将太阳的光能直接转换成电能。能利用光伏效应产生电能的物质,称为光伏材料。利用光伏效应将太阳能直接转换成电能的器件叫太阳能光伏电池或光伏电池。光伏电池是太阳能光伏发电的核心组件。
1839 年,法国物理学家贝克勒尔 ( Edmond Bec-qurel) 发现: 将两片金属浸入电解液中所构成的伏打电池,当接收到太阳光照射时电压升高,他在所发表的论文中把这种现象称为“光生伏打效应( PhotovohaicEffect) ”。“光生伏打效应”是不均匀半导体或半导体与金属混合材料在光照作用下,其内部可以传导电流的载流子分布状态和浓度发生变化,因而在不同部位之间产生电位差的现象。1941 年,奥尔在硅材料上发现了光伏效应,从而奠定了半导体硅在太阳能光伏发电中广泛应用的基础。1954 年,美国贝尔实验室的科学家恰宾( Darryl Chapin) 和皮尔松( Gerald Pearson) 研制成功世界上第一个实用的单晶硅光伏电池。同年,韦克尔发现砷化镓具有光伏效应,并在玻璃上沉积硫化镉薄膜,制成世界上第一块薄膜光伏电池。我国2010 年 12 月投入运行的大丰 20 MW 光伏电站,是目前全国最大的薄膜光伏电站,年发电量2 300 万 kW·h。
太阳能光伏电池的工作原理如图 1 所示。
在半导体中掺加杂质制成 PN 结,以形成在平衡状态时具有的内建电场,在该内建电场的作用下分离由外界激发而生成的过剩载流子,从而形成外部电压。在光照条件下,半导体中的电子吸收光子能量从价带跃入导带,形成电子———空穴对,成为载流子。生成载流子所需要的最低能量是半导体的禁带宽度 Eg,使用禁带宽度较小的材料制作的太阳能电池可以形成较大的电流。
基于单晶硅的第一代光伏电池是目前太阳能光伏电池市场的主流,其光电转换率已达 24. 7%基于薄膜技术的第二代光伏电池的光电转换效率已达到16. 5% ~ 18. 8% 。由于薄膜光伏电池大大减少了半导体材料的消耗,因此具有很好的发展前景。应该指出,光伏电池在光电转换过程中,光伏材料既不发生任何化学变化,也不产生任何机械磨损,因此太阳能光伏电池是一种无噪音、无气味、无污染的理想清洁能源。2006 年,我国太阳能电池生产总量首次达到400 MW,从而超过美国成为全球第三大生产国,也是世界上发展最快的国家。
1. 2 太阳能光伏电站
太阳能光伏电站是将若干个光伏转换器件即光伏电池封装成光伏电池组件,再根据需要将若干个组件组合成一定功率的光伏阵列,并与储能、测量、控制装置相配套,构成太阳能光伏电站。
太阳能光伏电池具有很大的灵活性,不仅可以用其建设零星规格的电站,而且可以组成应用于小型、分散电力用户的太阳能光伏发电系统。这种独立运行的太阳能光伏发电系统称之为离网型太阳能光伏发电系统。
由于受昼夜日照变化及天气的影响,离网型光伏发电系统通常需要和其他电源形式联合使用,比如柴油发电机组以及蓄电池组,从而增大了电站的投资和维护费用。离网型光伏发电系统往往建在距离电网较远的偏远山区及荒漠地带,向独立的区域用户供电。西藏措勒 20 kW 光伏电站是我国建设较早的离网型光伏电站,总投资 290 万元,1994 年 12 月正式投产发电。
离网型太阳能光伏电站系统如图 2 所示。
电站的发电系统由太阳能光伏电池方阵、蓄电池组、直流控制器、直流 - 交流逆变器、交流配电柜和备用电源系统( 包括柴油发电机组和整流充电柜) 等组成。其工作原理为太阳能光伏电池方阵经过直流控制柜向蓄电池组供电,并根据需要整定蓄电池组的上限和下限电压,由直流控制柜自动控制充电。蓄电池组通过直流控制柜向直流 - 交流逆变器供电,经逆变器将直流电变换成三相交流电,再通过交流配电柜以三相四线制向用户供电。当蓄电池组的电压下降到下限电压时,为不造成蓄电池组的过渡放电,直流控制柜将自动切除其输出电路,使直流 - 交流逆变器停止工作。柴油发电机组为电站的备用电源,必要时由备用电源通过整流充电柜向蓄电池组充电,或在光伏发电系统出现故障及停运时直接通过交流配电柜向用户供电。直流 - 交流逆变器和柴油发电机组不能同时向用户供电,为此必须在交流配电柜中设置互锁装置以保证供电电源的唯一性。
当太阳能光伏电站的容量达到一定规模时,还可与电网相联,即所谓的并网型光伏电站。这时,如果本地负荷不足,则可将多余的电能输送给电网。当本地太阳能发电量不足时,则由电网向用户提供电能。因此,并网型光伏电站可以不需要使用蓄能装置,减少系统投资和维护费用。同时由于与电网的互济,提高了发电设备的利用率和供电用电的安全可靠性,是大规模开发太阳能发电技术的必然趋势。我国第一座并网型光伏电站是 2006 年建成投运的西藏羊八井可再生能源基地 100 kW 高压并网光伏电站。2010 年底全国首个光伏并网发电项目敦煌 2 ×10 MW 光伏发电项目建成投产。
四、结论与展望
本文从全球和我国的能源现状出发,分析说明了新能源发电技术是当前迫切而有实际价值的研究课题,进而具体介绍了风力发电系统和燃料电池发电系统的特点以及我国在这两个方面的发展现状。新能源不仅仅指风能和燃料电池,还包括生物质能、海洋能、地热能和光伏电池等。我国乃至全世界的新能源发电技术发展的潜力都是巨大的。在人类明天的舞台上,新能源将取代化石燃料,扮演重要的角色。
参考文献:
[1] 徐德鸿 . 新能源电力电子导论 [D]. 杭州 : 浙江大学 ,2009.
[2] 郝伟, 舒隽, 张粒子. 新能源发电技术综述 [C].华北电力大学第五届研究生学术交流年会 ,2007.
[3] 施涛.燃料电池发电系统的建模与仿真 [D].南京:东南大学,2007:5-6,63-64.
点击下页还有更多>>>浅谈新能源技术论文
(一)可再生能源开发利用的科学技术研究、标准制定和示范工程;
(二)农村、牧区生活用能的可再生能源利用项目;
(三)偏远地区和海岛可再生能源独立电力系统建设;
(四)可再生能源的资源勘查、评价和相关信息系统建设;
(五)促进可再生能源开发利用设备的本地化生产。