光伏玻璃跟钢化玻璃的区别?
光伏玻璃和普通钢化玻璃主要区别是 透光率要求很高,否则会明显降低组件效率。因为光伏玻璃的含铁量在0.05%到0.02%左右,其可见光透射比大于等于91.5%,300-2500nm光谱范围内大于等于91%,可以承受500度以上的高温,对酸雨和环境中的有害气体欧一定的抗腐蚀性,并且抗冲击性比较好。而普通玻璃的含铁量在0.2%以上,可见光透射比在88-89%之间,并且不具有抗腐蚀性,以及抗冲击能力比较弱。
太阳能到达地球大气层上界,大约是每平方米的功率为1367W,目前光伏组件效率最高的产品约为21%,也就是说一平方米最大能产生的最大功率是210W,这中间的1157W能量哪去了。
1、有一半被大气层吸收和反射
地球上空有数千公里的大气层,分为对流层、平流层、中间层、热层和外逸层,太阳约有30%的能量会反射到太空,约有19%的能量被云层和大气吸收,变成风雷雨电,到达地球表面的约占51%。也就是说,太阳能到达地球表面,每平方米的平均功率约为690W,组件的标准测试条件是每平方米辐照度为1000W,大部分地方的光照都达不到这个条件,当然也在少数地方,在某个特定的时刻辐照度可能超过1000W。
2、电池组件吸收可见光部分能量
太阳光的光谱知识:太阳光是由连续变化的不同波长的光混合而成,包含了各种波长的光:红外线、红、橙、黄、绿、蓝、靛、紫、紫外线等,其中由红、橙、黄、绿、靛、蓝、紫是可见光,人眼可见。其中辐射能量最大的区域在可见光部分,占到大约48%,紫外光谱区的辐射能量占到约8%,红外光谱区的辐射能量占到约44%,在整个可见光谱中,最大能量在波长0.475μm 处,太阳能电池只能吸收部分的能量,转化为电能,紫外光谱区不能进行能量变换,红外光谱区过长的长波只能转换为热量。
目前组件只能吸收约可见光部分的能量,如果都能吸收,最大效率可达48%左右,但没有哪一种技术的电池带宽能做到这么宽,当禁带宽度在1.0~1.6eV时 ,电池片的最大转换效率在44%以下,预测晶硅电池的极限效率是29%,2017年3月,日本化学制造公司开发出转化率为26.3%的晶硅太阳能电池。
3、组件封装损失
封装成组件后,由于组件面积大于电池总面积,约损失了2个百分点的全面积效率其次,由于光伏玻璃的透光吸收损失了0.5个百分点EVA胶膜透光吸收损失0.5个百分点第三,互联条/汇流引出条的电阻损失1个百分点。总共损失了约4个百分点。随着组件技术不断发展,现在推出多主栅电池组件,双玻无铝边框组件,MWT背接触无主栅电池组件,可以把组件封装损失降低到1%以下。
刘继茂
低铁就是说这种玻璃的含铁量比普通玻璃要低,含铁量(三氧化二铁)≤150×l0-6,从而增加了玻璃的透光率。超白是说由于这种玻璃比普通玻璃含铁量低,从玻璃边缘看,这种玻璃要比普通玻璃更白一些,普通玻璃从边缘看是偏绿色的。
绒面的意思就是说这种玻璃为了减少阳光的反射,在其表面通过物理和化学方法进行减反射处理,使玻璃表面成了绒毛状,从而增加了光线的入射量。有些厂家还利用溶胶凝胶纳米材料和精密涂布技术(如磁控喷溅法、双面浸泡法等技术),在玻璃表面涂布一层含纳米材料的薄膜,这种镀膜玻璃不仅可以显著增加面板玻璃的透光率2%以上,还可以显著减少光线反射,而且还有自洁功能,可以减少雨水、灰尘等对电池板表面的污染,使其保持清洁,减少光衰,并提高发电率1.5%~3%。
钢化处理是为了增加玻璃的强度,抵御风沙冰雹的冲击,起到长期保护太阳能电池的作用。面板玻璃的钢化处理,是通过水平钢化炉将玻璃加热到700℃左右,利用冷风将其快速均匀冷却,使其表面形成均匀的压应力,而内部则形成张应力,有效提高了玻璃的抗弯和抗冲击性能。对面板玻璃进行钢化处理后,玻璃的强度比普通玻璃可提高4~5倍。