常规能源和新能源的优缺点
常规能源和新能源的优缺点
常规能源和新能源的优缺点,常规能源是指已能大规模生产和广泛利用的一次能源,而新能源是指常规能源之外的各种能源形式,常规能源和新能源它们的优缺点是什么呢?
常规能源和新能源的优缺点1煤炭、石油、天然气,水电和核电,这些被统称为传统能源。但在第一次工业革命的时候,煤炭是作为新能源取代木柴这个传统能源的。所以,当一种新能源取得大规模应用并经过足够长的时间,就成了传统能源。
目前,石油、天然气和煤炭这三种能源占据着全球80%以上的能源份额。这三种能源又被称为“化石能源”,因为其成因是由于远古时代的植物或动物在地下演变而来的。现有的这几种能源能够得到广泛应用从而成为“传统”,是因为其有着独特的优点:
第一、是其有比较高的能量密度。
能量密度可以按照单位重量或单位体积所产生的能量来计算,按质量计算,天然气的能量密度最高,石油次之,煤炭再次之。但如果按照体积计算,则石油最高,煤炭次之,天然气又次之。所以,才有了LNG,将天然气液化,在这种情况下,天然气才能够保持最高的能量密度。
第二、是它们便于开采、运输和储存。
无论是固态的煤、液态的油还是气态的天然气,都能够方便地进行储运其实,这三种传统能源的开采、储运都是十分复杂的,人类为了运输和储运这些能源花费了无数的资金建立起了一个庞大的储运系统。以煤炭为例,煤矿、燃煤电厂(相关的锅炉、汽轮机、发电机、脱硫、冷却等),为了运输所建立的铁路、公路和庞大的货运工具,这些为了煤炭能够发电而形成的系统本身已经成为一个庞大的产业,甚至庞大到了难以清除的地步。石油的炼油则更为复杂了。
第三、就是他们一度有着很大的储量,成本也足够低,甚至一度被认为是用之不竭的
这三个原因不仅使得这些能源在第一次、第二次工业革命得到广泛的应用,而且,也使得它们在今后相当长一段时间依然会占据人类经济社会的很重要的份额。当然,这里所说的成本低,自然没有包括资源破坏、环境破坏对人们的健康影响。
但是,随着人类生活和工业、商业活动对于能源的需求越来越大,传统能源的开采难度越来越大,易开采的煤矿、油田不断枯竭,有限的储量现在开始变得可见,不少能源的储量年限只剩下几十年。人们开始对于化石能源的储量产生了忧虑。人们认识到这些化石能源的储量不是无限的,即便有足够的储量,在枯竭之前,这些能源的开采成本也将越来越高。这就是所谓的能源枯竭问题。随着近期新兴经济体国家的发展,能源消耗越来越大。何况,当能源真的枯竭,那么,对社会的影响就不是成本的问题了,而是人类的经济社会能否延续的问题。
同时,这些能源在使用时有二氧化碳排放,而这不仅会造成气候变暖,而且,很难避免地产生粉尘、酸雨等污染,尤其是今年,在许多发展中国家崛起后,能源消耗量大幅上升,污染的情形不再像过去那样遥远,而是已经影响到了每个人的生活甚至生命。尽管水力发电和核电在正常情况下没有碳排放核粉尘污染,因此,可以被称为清洁能源。但水电站对自然条件的要求和对生态的影响,其实可安装的容量是十分有限的,尤其是大型水电站。而核电的燃料铀矿石,储量更加有限,而且,自从切尔诺贝利和福岛核事故后,人们认识到,在事故状态下的核污染,是非常难以预测和控制的。
而二氧化碳的排放导致的温室效应和气候极端变化使得人类的生态变得越来越脆弱,雾霾和酸雨直接威胁着人类的生存。所有的人都认识到,如果能源体系不进行变革,酸雨、雾霾将变得越来越频繁,地球将由于污染不仅会变得不适宜居住,而且会给人类带来灾难性的'影响。
如果将能源枯竭和环境污染的因素考虑进去,则传统的能源的成本,会比光伏的成本还高。再把各国政府因为污染而付出的医疗成本计算进去,成本更加高得可怕。
所以,人们将目光转向新的、可再生的、清洁的能源,并不是追求时尚,也不是要故作神圣,而是为了自己的生存不得不做出的选择。
常规能源和新能源的优缺点2新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
常见新能源
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。现在很多公司已经开始着手利用太阳能,例如太阳灶、太阳能烤箱、太阳灶反光膜、太阳能开水器等系列产品。太阳能清洁环保,无任何污染,利用价值高,太阳能更没有能源短缺这一说,其种种优点决定了其在能源更替中的不可取代的地位。
太阳能可分为3种:
1、太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2、太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
3、太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用。
核能的利用存在的主要问题:
1、资源利用率低
2、反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
3、反应堆的安全问题尚需不断监控及改进
4、核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
5、核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
生物质能利用现状
2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。
中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。
海洋渗透能
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
可以利用电解水分子和光以及化学分解水分子的方式,来分解到可燃烧的氢气,它可作为新的,多用途的能源来替代现有的矿物质能源。水分子的分解过程简而易行,投资少见效快。这给水能的综合利用带来了广泛的前景,在地球上,水是一种到处可见的液态物质。通过水的分解装置,制备出氢燃料,可用于汽车,航天航空,热力发电等工业和民用方面,在较大的程度上,缓解了人类对矿物质资源的过分依赖。
常规能源和新能源的优缺点3常规能源也叫传统能源,英文名conventional energy,是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的,这些能源短期内不可能再生,因而人们对此有危机感是很自然的。
已能大规模生产和广泛利用的一次能源。又称传统能源。如煤炭、石油、天然气、水,是促进社会进步和文明的主要能源。在讨论能源问题时,主要指的是常规能源。新能源是在新技术基础上系统地开发利用的能源,如太阳能、风能、海洋能、地热能等,与常规能源相比,新能源生产规模较小,使用范围较窄。常规能源与新能源的划分是相对的。以核裂变能为例,20世纪50年代初开始把它用来生产电力和作为动力使用时,被认为是一种新能源。到20世纪80年代世界上不少国家已把它列为常规能源。太阳能和风能被利用的历史比核裂变能要早许多世纪,由于还需要通过系统研究和开发才能提高利用效率,扩大使用范围,所以还是把它们列入新能源。
常规能源的储藏是有限的
温室效应室效应是由于大气里温室气体(二氧化碳、甲烷等)含量增大而形成的。石油和煤炭燃烧时产生二氧化碳。
酸雨
大气中酸性污染物质,如二氧化硫、二氧化碳、氢氧化物等,在降水过程中溶入雨水,使其成为酸雨。煤炭中含有较多的硫,燃烧时产生二氧化硫等物质。
光化学烟雾
氮氧化合物和碳氢化合物在大气中受到阳光中强烈的紫外线照射后产生的二次污染物质——光化学烟雾,主要成分是臭氧。
另外常规能源燃烧时产生的浮尘也是一种污染。
常规能源的大量消耗所带来的环境污染既损害人体健康,又影响动植物的生长,破坏经济资源,损坏建筑物及文物古迹,严重时可改变大气的性质,使生态受到破坏。
1980年(庚申年)联合国召开的“联合国新能源和可再生能源会议”对新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、潮汐能、地热能、氢能和核能(原子能)
新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能 等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。
在中国可以形成产业的新能源主要包括水能(主要指小型水电站)、风能、生物质能、太阳能、地热能等,是可循环利用的清洁能源。新能源产业的发展既是整个能源供应系统的有效补充手段,也是环境治理和生态保护的重要措施,是满足人类社会可持续发展需要的最终能源选择。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指太阳能、风能、地热能、氢能等。
按类别可分为:太阳能、风能、生物质能、氢能、地热能、海洋能、小水电、化工能(如醚基燃料)、核能等。
课程体系:经过科学系统的课程开发,形成由公共基础课、专业基础课、专业核心课程以及限课程组成的课程体系。
专业基础课程:机械制图、机械基础、电工电子技术基础、汽车构造、汽车传感器原理与检修、单片机与车载网络系统、旧机动车鉴定与评估、专业英语。
专业核心课程:新能源汽车高压安全及防护、新能源汽车储能装置与管理系统、新能源汽车驱动电机与控制技术、新能源汽车电子电力辅助系统、纯电动汽车结构与检修、混合动力汽车结构与检修。
男孩子学习这个专业还是不错的。
本期精选27项新能源(含新能源 汽车 )领域的技术成果进行推荐,感兴趣的企业朋友可以长按识别文末二维码或点击下方“阅读原文”,进行项目意向登记,我们专业的技术经纪团队将与您联系。
28:高比能锂离子动力电池
29:可穿戴钙钛矿光伏模组的产业化印刷制备
30:木质纤维素基高密度高热安定性航油催化合成研究
31:高性能管桩安全监测评估与防控关键技术
32:向阳而生——太阳能电池/集光器集成器件
33:超高功率锂离子电池开发
34:海上风机绝缘局部放电无损在线监测技术
35: 高性能高安全锂离子电池技术
36:350wh/kg高比能、低成本、智能动力电芯
37:MOF改性电解液用于高能量密度锂金属电池
38:变废为宝-有机固废资源化利用技术先锋
39:新能源系统无线电能传输关键技术开发与应用
40:基于低速涡流无叶片发电机的潮汐能技术开发与应用
41:质子交换膜电解水制氢阳极催化剂的制备
42:高功率密度、高效、高可靠性航空动力伞研制及产业化
43:磷酸铁锂电池材料回收技术的开发与应用
44:快充低温锂金属电池
45:脱碳全能王-适用生活和工业场景下的宽范围压力 PEM 制氢系统
46:有机固废高值化利用技术平台
47:太阳能光谱分频与余光汇聚再辐射耦合的光能梯级发电装置
48:低成本太阳能热电互补高效空调系统应用
49:新能源工程车辆能量管理专用实验平台
50:宽频带复杂信号精细化实时感知技术及应用
51:环境友好型硒化锑薄膜太阳电池研制
52:硫化物固体电解质及其固态动力锂电池
53:新型高功率储能技术——锂离子电容器
54:柔性固态锂电池自修复界面的设计与构筑
28: 高比能锂离子动力电池
1 基本信息
2 简介
本项目针对提升高镍三元正极材料能量密度的问题,研究了合成条件、改性工艺对材料晶体结构和性能的影响,突破了高镍三元正极材料制备和改性等关键技术,开发出满足新一代动力电池要求的高镍三元正极材料,且材料性能优异,处于国际先进水平。为了实现规模化生产,解决了工程化难题,创新地采用了具有成本优势的工艺路线,建成了年产超过1500吨的高镍三元正极材料的生产线,实现了高镍三元正极材料的产业化,产品成功应用于宝马、大众、东风、蔚来、奔驰、吉利、小鹏等国内外知名整车企业,打破了国外企业对高镍三元正极材料的垄断。并扩建了更高标准的年产2万吨高镍三元正极材料生产线,推动了设备制造商和上下游企业的发展,规模化生产后,预计每年将创造30亿元以上的产值。
29: 可穿戴钙钛矿光伏模组的产业化印刷制备
1 基本信息
2 简介
本项目以低污染可穿戴钙钛矿模组的印刷制备为目标,从残余应力调控角度出发,聚焦晶格一致性研究,通过温敏性添加剂热膨胀系数的应力释放作用调控薄膜晶格应力状态,通过双齿配位仿生分子修饰消除薄膜表面应力累积,结合物理封装策略,实现低铅泄露模组的印刷制备。
30: 木质纤维素基高密度高热安定性航油催化合成研究
1 基本信息
2 简介
本项目基于对木质纤维素及其衍生物结构特点和航油分子构效关系的充分认识,创新以木质纤维素为原料制备高密度高热安定航油的高度集成的新技术,为高性能航空燃料提供新制备途径,进而为先进航空航天发动机提供高性能燃料,为现有航油提供高性能调和组分。项目拟开发木质纤维素定向转化制备多环烷烃燃油组分的核心工艺,包括:(半)纤维素水热转化制备呋喃醛并分离木质素,木质素一步水热解聚加氢脱氧制取芳烃、酚类、环醇和单环烷烃,木质素纤维素衍生物(呋喃醛、环醇、环酮及单环烷烃)共转化制取联环烷烃、稠环烷烃等多环烷烃,以及生物航油的调控调配等。
31: 高性能管桩安全监测评估与防控关键技术
1 基本信息
2 简介
项目围绕“高性能管桩安全监测评估与防控”这一难题,经过10 余年的 科技 攻关和工程实践,建立了集理论研究、工艺研发、产品制备、标准制定、工程应用于一体的技术体系,主要核心成果包括:先张法预应力混凝土耐腐蚀管桩、基于分布式光纤神经传感胶带的桩身应力实时监测技术、高性能管桩长期稳定性机理与应用关键技术、桩基础病险演变评估与治理体系研发与应用关键技术,实现了多学科交叉和产学研结合。
32: 向阳而生——太阳能电池/集光器集成器件
1 基本信息
2 简介
本项目所涉及到的关键技术主要包括集成器件所需材料的选择与制备工艺:具体为集光器荧光材料、钙钛矿太阳能电池中钙钛矿材料、电极材料的筛选与制备;钙钛矿太阳能电池的制备;太阳能集光器的制备;钙钛矿太阳能电池与太阳能集光器集成器件的制备;具体技术指标为:不透明钙钛矿太阳能电池的光电转换效率 22%(小面积1*1 cm 2 ), 17%(5*5 cm 2 ), 15% (10*10 cm 2 ),光照1000小时后(光照条件:室温25 , AM1.5G,光强1000W/ m 2 ),效率衰减 10%。不透明集成 器件的性能指标:集成器件光电转换效率较钙钛矿太阳能电池效率提升 6%。半透明集成器件的指标:在可见光区域透明度做到30%-70%可控可调,光电转换效率 8%。
33: 超高功率锂离子电池开发
1 基本信息
2 简介
本项目结合市场需求,开展超高功率高能量密度锂离子储能器件设计、制造等研究,发挥锂离子储能器件高能量密度的优势,突破锂离子储能器件瞬时充放电能力,提升功率密度,实现锂离子储能器件高功率密度,并兼具高能量密度、高安全性和长循环寿命以及低成本,形成具有自主知识产权的技术体系。
34: 海上风机绝缘局部放电无损在线监测技术
1 基本信息
2 简介
本项目拟研发出一种基于机械和电气特征量的海上风机绝缘局部放电无损在线监测技术,以期实现对海上风机的局部放电和绝缘状态的实时监控。该技术旨在绝缘发生明显劣化及局部放电现象产生之前监测其潜伏性故障,并在上述现象发生后对绝缘状态进行持续监测,进而对局部放电严重程度和绝缘状态做出定性诊断。这一研究成果不仅能为海上风机的维护检修方案提供可靠依据,降低事故发生概率,而且可有效减少盲目的停机检修,提高海上风机的可靠性与经济性。
35: 高性能高安全锂离子电池技术
1 基本信息
2 简介
本项目以国家和 社会 对高性能、高安全锂离子电池技术的重大需求为牵引,在微电子学、电化学和材料科学等多学科交叉融合的基础上,分别从“高比能硅负极材料表界面改性”与“基于EIS监测的新型电源管理芯片” 两大前沿技术开展研究,并取得了重要突破。本项目开发了微米硅/碳纳米管复合负极,通过简单低成本且可规模化生产的工艺构筑了高效且能适应Si负极的体积膨胀的柔性CNT导电网络及碳钝化层,降低了MSi颗粒的体电阻与颗粒之间的电阻,限制MSi的粉碎化。与传统的微米硅/碳复合负极(400 Ω m)相比,该复合材料的体积电阻率(157 Ω m)显著降低,可逆比容量为 2533 mAh/g,初始库仑效率为89.07%,在2A/g循环1000次时,可逆比容量超过840mAh/g。
36: 350wh/kg高比能、低成本、智能动力电芯
1 基本信息
2 简介
本项目所采用的正极材料为项目组自主研发的、具有独立知识产权的高比容量、低 成本富锂锰基正极材料。该正极材料采用全新的材料改性技术,包括材料优势晶面调控、 快离子导体包覆、超薄尖晶石异质相包覆等关键技术,使得项目组研发的富锂锰基正极材料的比容量高达260mAh/g,循环寿命长达500周,循环100周压降可控制在0.1V以下。基于此,项目组现已获得核心发明专利3项(均已授权),发表高水平学术论文5篇,此外项目组已与宜宾某公司建立合作,致力于该类正极材料的量产放大及产业孵化。
本项目致力于研发一款高比能、低成本、智能动力电芯,所 采用的智能传感器基于项目组自主研发的石墨烯基应力应变传感器和铜基温度传感器。研发的石墨烯基应力应变传感器具有大的工作范围和优异的灵敏度。研发的铜基温度传感器采用超薄超小尺寸的铜-康铜热电偶,同时具备高精度和宽监测窗口特点,并且对电池性能和比能量几乎不产生影响。本项目将应力应变传感器、温度传感器采用嵌入式技术植入电芯内部,可实时监测电芯充放电状态、电池安全状态、电芯温升等,通过外接电子信息处理系统实时、准确评估电芯的运行参数。基于此,项目组现已申请中国发明专利2项,发表高水平学术论文1篇。
37: MOF改性电解液用于高能量密度锂金属电池
1 基本信息
2 简介
本项目基于已有的研究成果,拟使用金属有机框架(MOF)作为电解液添加剂,利用其表面丰富的活性亲锂位点,调控锂沉积过程,消除锂枝晶。优化材料合成、电解液组成和电池组装参数,以适应规模化生产的需求,推进高能量密度锂金属全电池的实用化进程。主要面向无人机、动力外骨骼和 汽车 动力电池等高能量密度应用场景,突破现有的储能电池续航瓶颈,提升电池安全性,具有广阔的市场空间。
38: 变废为宝-有机固废资源化利用技术先锋
1 基本信息
2 简介
本项目将开发一种新型有机固废热化学处置技术,可实现高纯度H2和CO在不同温度区自分离生成,H2和CO可根据后续化工合成过程所需任意比例自由混合,为有机固废资 源化和能源化与现有化工过程无缝衔接提供便利。此外,该技术还具有以下优点:可彻底杀灭有机固废中致病病原体和有毒有害有机物,大幅减少约50-90%有机固废的体积;还可对有机固废的内在能量进行回收利用,将有机固废中的有机组分转化为可控H2/CO比例合成气;同时反应后剩余的富含无机组分残渣仍可进行资源化利用于水泥窑协同处 置和制作建筑材料等。
39: 新能源系统无线电能传输关键技术开发与应用
1 基本信息
2 简介
本项目设计面向复杂应用场景的新能源无线供电系统,开发满足源-储-荷高效协同和不确定环境下系统稳定工作的自适应切换技术,实现电能稳定高效传输。
40: 基于低速涡流无叶片发电机的潮汐能技术开发与应用
1 基本信息
2 简介
本项目提出的发电机采用无叶片式设计,结构简单,维护成本较低,不存在以往涡轮机械容易受到海水腐蚀、影响海湾水动力、容易破坏沿岸海洋生态系统等问题。发电机配有多单元往复式电磁感应发电机,大大提高了发电效率。是一种能够提供稳定、高效电能的新型的发电方式。
41: 质子交换膜电解水制氢阳极催化剂的制备
1 基本信息
2 简介
本项目依托于兰州大学有色金属化学与资源利用重点实验室,合作导师为严纯华院士,围绕高效、稳定、廉价阳极酸性析氧催化剂的控制合成开展研究工作;旨在构筑系列界面异质结构酸性析氧催化剂;以“界面控制”法为主导,结合“固-液”、“固-固”和“固-气”界面辅助手段,实现界面异质结构酸性析氧催化剂的控制 合成;进一步通过配位替换、晶格掺杂、缺陷填充等策略,提升界面异质结构酸性析氧 催化剂的活性和稳定性;此外,结合原位表征技术实现对合成和催化过程的原位监测, 为催化剂的结构优化和性能提升提供坚实的实验数据,建立界面异质结构酸性析氧催化 剂结构和性能之间的构效关系;对质子交换膜电解水制氢的发展具有重要的科学意义。
42: 高功率密度、高效、高可靠性航空动力伞研制及产业化
1 基本信息
2 简介
为了提高高功率密度轴向磁通永磁电机的散热能力,本项目首先在特殊的定子架中分别设计了两种新颖的水冷结构。第一种是轴向内外循环水冷结构,第二种是槽内内外循环水冷结构。通过合理的等效与假设,建立了两种水冷结构的三维模型,并且基于流固耦合进行仿真分析。通过对比两种水冷结构的流速、压降、冷却效果和散热面积,选择槽内内外循环水冷结构作为电机的冷却系统。并且将基于流固耦合对两种水冷结构的流速、压降、冷却效果和散热面积进行分析对比,从而确定双转子单定子AFPM电机最有效的冷却结构,为AFPM电机的冷却结构设计及电磁方案优化提供了参考依据。
43: 磷酸铁锂电池材料回收技术的开发与应用
1 基本信息
2 简介
本项目从成本与环保的角度开发了一种便捷的锂离子电池材料回收工艺。在锂电池材料回收的过程中不涉及强酸、强碱的消耗,不产生硫酸钠等副产物;其次在回收的过程中,废旧磷酸铁锂材料能够与铝箔彻底分离,节省了后续的除杂步骤工序简单;最后相对于传统的拆解与回收技术,本技术能够节省成本在40%以上,经济效益潜力巨大,同时能够充分释放旧动力电池的残值促进动力电池的 健康 发展。
44: 快充低温锂金属电池
1 基本信息
2 简介
锂金属电池结构与锂离子电池相似,但消除了低容量和低压实密度的负极活性材料的使用。因此,相同重量和体积的锂金属电池比传统电池储存的能量可以提升40%以上,并大大节省电池制备成本。我们设计的锂金属电池与目前国内和国际市场通用的锂离子电池相比有以下优势:
1)成本优势,消除了负极的用料成本;
2)更高的能量密度,国内目前电池单体的能量密度依然 300Wh/kg,我们的电池单体能量密度 350Wh/kg;
3)更快的充电速度,Tesla公司的快速充电技术,20min可以充
进50%电量,我们的电芯快充时间:0-80%SOC 15min;
4)更低的运行温度,普通锂离子电池的最低温度极限为-20 , 我们设计的锂金属电池最低放电温度可达到-90 ,最低充电温度可到-70 。
45: 脱碳全能王-适用生活和工业场景下的宽范围压力PEM 制氢系统
1 基本信息
2 简介
本项目组针对国家发布的氢能战略,迅速开展PEM制氢相关研究,目前已掌握了电解槽结构设计方法、面向设计和开发的集成建模和优化技术,现已成功开发出面向生活和工业场景(加氢站、制氢需求的钢铁、冶金和化工等)的低中高压(0.1-10mpa)全范围PEM制氢系统(实验室级别)。在低压运行时,极大提高系统的功率密度;在高压运行时,可取消一级或二级压缩,减少压缩机运维成本。
46: 有机固废高值化利用技术平台
1 基本信息
2 简介
本项目根据不同有机固废不同的理化性质,以氧消化和水热转化技术为基础,开发出了实现其高值化利用的不同技术路线和不同的工艺,实现了有机固废的减量化、无害化处理,以及高附加值产品的制备。该项目可以实现有机固废的完全资源化再利用,具有很好的 社会 效益、环境效益和经济效益。
47: 太阳能光谱分频与余光汇聚再辐射耦合的光能梯级发电 装置
1 基本信息
2 简介
本项目提出太阳能光谱分频与余光汇聚辐射再调节耦合的光能梯级发电系统,旨在研究其基本科学原理及关键技术,并建成相应的示范装置。本项目积极响应国家“碳达峰,碳中和”的政策,聚焦太阳能的有序高效转化,旨在开发新型的太阳能高效转化技术装置。
48: 低成本太阳能热电互补高效空调系统应用
1 基本信息
2 简介
本项目研发的“低成本太阳能热电互补高效空调系统”由太阳能集热子系统、喷射式制冷子系统和压缩式热泵子系统三部分组成。
49: 新能源工程车辆能量管理专用实验平台
1 基本信息
2 简介
本项目以绿色矿山战略理念为引领,聚焦新能源工程车辆能量管理技术的发展需求,针对目前市场对新能源工程车辆能量管理实验产品的市场空白,开发面向新能源工程车辆的专用能量管理实验平台,为研究开发先进能量管理技术提供有效验证、分析及测试条件。
50: 宽频带复杂信号精细化实时感知技术及应用
1 基本信息
2 简介
本项目的总体目标是以低碳能源系统宽频域运行形态衍变为契机,以宽频信息感知为视角,开展宽频带复杂信号精细化实时感知技术研究,研发面向新能源电力系统的宽频带信息感知技术、装备与 探索 平台,并 探索 技术成果在生命科学、深海探测、航空航天等多个重大领域的拓展应用潜力。
51: 环境友好型硒化锑薄膜太阳电池研制 1 基本信息
2 简介
本项目依托于深圳大学、广东省光电子器件与系统重点实验室和深圳市先进与薄膜应用重点实验室的研究平台,面向国家对新型高效低成本光伏发电技术集中攻关的重大战略需求,开展真正环境友好型(区别于现存高能耗硅基电池,涉及贵金属铜铟镓硒太阳电池和含铅钙钛矿太阳电池等非环境友好型太阳电池技术)硒化锑薄膜太阳电池研制及其应用研究工作。
52: 硫化物固体电解质及其固态动力锂电池
1 基本信息
2 简介
项目针对液态锂离子电池存在的比容量低、安全性和循环寿命有待提高等问题,研发高安全性、高容量、长寿命固态锂电池,解决制备硫化物固体电解质材料与全固态电池存在的离子电导率偏低、一致性较差、对湿度过于敏感、无法量产、与正负极材料接触不稳定、正极容量释放差、库伦效率低下、长循环性能差等难题,突破由实验室研究到产业化生产的系列关键技术。
53: 新型高功率储能技术——锂离子电容器
1 基本信息
2 简介
中国科学院电工研究所经过多年的理论创新与技术积累,自主研发的新型高功率电化学储能技术——锂离子电容器,具有低成本、长寿命、高安全、兼具高功率密度和高能量密度等优势。
54: 柔性固态锂电池自修复界面的设计与构筑
1 基本信息
2 简介
本项目创新性地提出了本征自愈固态电解质双涂层愈合界面构筑策略,通过“自愈固态电解质”来构筑“固固一体化界面”,就能取长补短,有望满足构筑柔性锂电池电解质/电极界面的各项技术需求。申请人将正负极片表面涂覆具有可逆自愈功能的固态电解质涂层,进行微界面完全浸润以及一体化融合,然后将预制备的固态电解质膜与涂层紧密贴合,并进行热压诱导,利用聚合物涂层与电解质膜中大量存在的多重自互补氢键系统,促使层间界面愈合,从而达到构筑高稳定性、可自修复、一体化的电极/电解质界面的目的。
学历对找工作影响较大。本科毕业一般只能去电厂、制造企业等,而研究生、博士毕业可以去研究院、高校以及大型国企等,从技术含量和发展前景看能高出一个层次。如果你想报考能源专业的话,那最好是做好读研或者读博的心理准备。
学习的课和工作非常对口,找工作很容易。
1.如何判断是否擅长&喜欢这几个专业?
能源环境和新能源这2个专业,无论是从学习内容来看,还是说从就业方向来看,都非常的接近,本文中统称「能源专业」。
综合来看,能源专业还是比较简单的,唯一对学生的要求就是说数学和物理要稍微好一点,就没有问题了,多花点时间,那就能学好了,都能学会。
总之就是不难读,你来的话不至于像通信工程、微电子、数学之类的专业,读到你怀疑人生,分分钟想去给自己做个智商检测。
至于会不会喜欢,考虑到大家高中化学、物理课程都接触过各种风能、火力发电、核能相关的内容,如果你缺乏想了解更多更深的兴趣,建议谨慎考虑能源类专业。
2.都会去做哪些工作,什么学历要求?
能源专业本科毕业以后大概有1/3的同学会选择直接就业,另外有2/3的同学会选择出国或者说在国内读研或读博来继续深造。
「本科直接就业」的工作去向
从直接就业的三分之一的同学来看,主要的就业去向分为这么几类。
第一类主要是去火电厂或者核电厂这样的一些电厂,包括像嘉兴电厂、宁波电厂、大亚湾核电站或者秦山核电站这样的一些电厂。在电厂的工作的话,主要是做电厂运营以及电厂现场的巡逻,或者说电厂发生突发情况的一些应对。
另外的话,就是去电厂设备相关的一些制造企业,比如说哈尔滨锅炉厂、上海电气或者东方电气等。这些企业有一个共同点,即大部分都是大型的国企,所以说这些工作都相对来说比较稳定,也不是特别辛苦,相对来说也比较轻松一点。
能源专业本科毕业以后,学习期间学的内容以及所找的工作其实是非常对口的。所以找工作相对来说比较容易,并不是特别的难。
在这里要特别强调一点:
但是,如果说能源专业的同学本科毕业以后直接参加工作的话,这些工作有一个特点,就是技术含量其实并不是特别的高,起点相对来说也不是特别的高,所以这也就是为什么大概有三分之二的同学会选择出国或者在国内读研或读博来继续深造。
「研究生或博士毕业后」的工作去向
研究生或者是博士生毕业以后,工作岗位或者工作方向就会提高一个层次,就业方向主要变成像能源设计院、能源研究院、电力设计院、电力研究院,或者说一些高校,还有一些大型的国企等。
这类工作岗位的话,无论是从技术含量来看,还是说从将来的发展前景来看,其实是高了一个档次,会比较好。所以我的建议就是说,如果大家想报考能源专业的话,那最好是做好一个心理准备,那就是要读研或者读博。
行业前景
能源行业尤其是像煤炭、电力、石油这样一些传统的传统能源,已经发展的非常成熟,可能在将来的发展空间没有那么大,发展速度也没有那么快。
但是大家要注意一点,能源行业是其它所有行业的一个基础,因为其它所有行业的发展都离不开能源行业,能源行业是一个永不过时的行业。
最近几年,尤其是以新能源为代表的能源行业发展的非常迅速,对人才需求也是非常的大,所以这一块也有非常大的想象空间。
3.专业的学习内容与难易度
能源专业的话,学习内容,主要分为三类。
第一类是理论基础类的,比如说热力学、传热学、流体力学等这类理论课程。这类课程可能相对来说难度会有一点点,但也不是特别的难,因为这些课程主要应用到的知识就是数学或者物理。
如果说你在高中阶段的数学和物理学得比较好,那其实你就不用很担心你来能源专业学这类课程很吃力,其实是比较轻松的。就算你高中的时候这些数学或者物理学得也不怎么样,那也不用太担心,以后来能源专业的话,只要花点时间,这类课程也能学得不错。
第二类课程的话,就是偏工程应用类的课程,尤其是与电厂相关的,比如说电厂运行、或者说透平机械原理、锅炉原理等课程。这些课程有个共同点,就是它与我们的电厂运行紧密相连,理论知识也会用到一点点。这类课程难度也并不是很大,比第一类的理论课程相对来说要简单一点,所以大家也不用太担心这一类课程学不会。
第三类课程的话,那就更简单了,主要是一些科普类的课程,比如说新能源概论、污染防治这样的一些课程,那就像读小说一样,大家读着读着,或者背一背记一记就能学好了,并不是特别的难。
所以总体来看,我们能源专业的课程,难度并不高,那学得也并不是特别的吃力,你花点时间就能学好了。
主要教学内容为新能源汽车技术的车辆运行原理、日常保养及检测、车辆维修等,使得学生从根源上了解并掌握新能源汽车的相关技术。在实操教学中,采用比亚迪、江淮、众泰等国内市场主流新能源车型,从而保障了技术与市场的贴合性,极大提升了学生进入市场后的适应力,缩短了从学生到技术员工的转变时长。
毕业后,学生则可以从事新能源版汽车的养护、检测、维修、钣金、美容等全系列技术工作,使得学生的就业选择面更为广泛。而新能源汽车属于新兴技术产业,学生所选择的企业也将是更为高品质的汽车企业。科技的发展、环保理念的不断升级和推广,传统汽车行业将面临向新能源汽车的转型。作为从事汽车技术人才培养的职业院校,也必须顺应行权业变化,在人才培养上进行转型