可再生能源有哪些
可再生能源有:
1、太阳能:直接来自于太阳辐射。
2、生物能:由绿色植物通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉。
3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成。
4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能。
5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的。潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响。
6、地热能:来自于地球内部放射性元素的衰变。
上述能源都是可再生能源,而且是直接来自于自然界的一次能源。楼上有提到氢能的,它应属于可再生能源,因为生产氢能的原料是取之不尽、用之不竭的。但它是经过人类加工的二次能源。如果这样举例的话,沼气、焦炭、蒸汽(蒸汽机的动力)也是可再生能源。
非可再生能源:煤、石油、天然气、核矿石等一次能源,以及汽油、柴油、煤油等二次能源。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
应用方面,例如水能的应用形式就是水利发电,像坝式水电站、河床式水电站、引水式水电站。
人类使用再生能源的原因主要有以下几点:
1、科技的进步让此类能源更加“好用”;
2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候;
3、某些再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险;
4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。
人类使用可再生能源的原因主要有以下几点
1、科技的进步让此类能源更加“好用”。
2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候。
3、某些可再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险。
4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。
请采纳~
清洁能源包括:太阳能、风能、地热能、海洋能、氢能、水电、核能、新能源汽车、生物质能、天然气水合物等。
太阳能的应用非常广泛,可分为三大类:
太阳热利用,太阳能光伏发电,太阳能光化学。
太阳能的热利用方式有很多,比如,太阳房,太阳能干燥,太阳能除湿,太阳能空调系统,太阳光聚热发电,太阳能海水淡化等,最典型的应用就是太阳能热水器;
太阳能光伏,就是利用太阳能电池,直接把太阳能转换成电能。 太阳能光伏发电系统,太阳能充电器,太阳能路灯,太阳能汽车,......
太阳能光化学,模仿树叶合成有机物。
是指一定时期内,一个国家或地区每生产一个单位的国内(地区)生产总值所消耗的新能源,为国家或地区全社会能源消费总量与国内(地区)生产总值之比。
使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、潮汐能、地热能、氢能和核能(原子能)
新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等。
在中国可以形成产业的新能源主要包括水能(主要指小型水电站)、风能、生物质能、太阳能、地热能等,是可循环利用的清洁能源。新能源产业的发展既是整个能源供应系统的有效补充手段,也是环境治理和生态保护的重要措施,是满足人类社会可持续发展需要的最终能源选择。
以上内容参考:百度百科-新能源
海洋学长
Vehicle Engineer&English lover
来自专栏整车LCA 生命周期碳排放 碳中和
一、背景
1.1交通部门能源消耗及温室气体排放显著
交通领域是我国目前温室气体排放增长最快的领域之一,汽车行业占比达23%以上。
1.2 欧洲地区是全球控制气候变化最积极的地区
国际汽车集团纷纷提出各自实现全生命周期“碳中和”或“零排放”的时间表
2020年博世碳中和:
2020年,集团全球400个业务所在地所有相关工程、制造和管理设施,将不再留下碳足迹
2030年前,逐步增加可再生能源份额,并投资10亿欧元提升分支机构能效
2039年戴姆勒碳中和:
在2022年之前,实现欧洲所有工厂的CO2中和;
到2030年,让电动汽车的销量占据集团总销量的50%以上;
最终在未来20年内建立一支碳中和的新汽车车队
2040年大陆碳中和:
2020年底,在所有生产基地使用可再生能源发电;
2040年,达成二氧化碳中和目标;
到2050年底实现CO2中性价值链
2040年沃尔沃零负荷:
在2040年之前将公司发展成为全球气候零负荷标杆企业;
2018年至2050年期间,将旗下每辆汽车全生命周期中的碳排放平均降低40%(较2018牛)
2050年大众碳中和:
2050年实现整个集团层面的全面碳中和
2025年汽车和轻型货车全生命周期的温室气体排放总量减少30%(较2015年);
积极推动汽车全生命周期向可再生能源的转变
2050年丰田零排放:
新车CO2零排放:2050年全球新车平均行驶过程中CO2排放量削减90%(较2010年);
生命周期CO2零排放:力求在汽车的整个生命周期内实现CO2零排放;
工厂CO2零排放:2050年全球工厂实现CO2零排放
1.3国内汽车行业缺乏统一碳排放核算技术规范
我国汽车行业缺乏统一碳排放核算技术规范,2019年生态环境部应对气候变化司委托中心开展《乘用车碳排放核算技术规范及限额》标准研究
二、研究目的及过程
2.1 研究目的
实现乘用车从材料制造、整车制造到汽车使用等各阶段的碳减排
1.推动更低碳材料的应用
所谓低碳材料,即为获取和加工过程中能源和辅料消耗更少的材料
2.推广生产加工过程更加低碳
即汽车生产加工过程中使用更少的能源和辅料
3.推动汽车单位行驶里程能源消耗量降低
4.推动更多回收材料在汽车上的应用
2.2 研究过程
2019年至今,在生态环境部应对气候变化司指导下,已召开2次专家讨论会,5次行业意见征集会
20余位业内专家(学术界)、40余家企业80多位代表(产业界)提出100多条综合意见和建议
三、乘用车生命周期碳排放核算技术规范研究进展
3.1 依据
(1)国外碳排放标准调研:调研欧盟、美国、新加坡等发达国家的乘用车碳排放标准,为我国乘用车碳排放核算技术规范及限额标准制定提供借鉴
(2)国内碳排放数据调研:开展企业数据调研,为制定适用于中国汽车行业的标准提供支撑
调研对象:涉及整车企业、零部件企业及材料供应商
样本量:89家整车企业,主要包括一汽集团、上汽集团、广汽集团、东风汽车、长安、吉利等自主及合资企业
(3)核算依据:标准借鉴ISO 14067《产品生命周期碳排放量化方法》的基本观点,重点考虑我国汽车行业生命周期碳排放核算的可行性,制定乘用车生命周期碳排放核算技术规范
引用点:
原则:生命周期视角、科学方法的优先顺序、相关性、完整性、一致性、精确度、透明度等
量化方法:目标和范围的定义、生命周期清单分析、影响评估
材料、零部件碳排放因子的计算:遵循同样的原则和量化方法
我国汽车行业特点:
温室气体类别:仅考虑京都议定书中要求削减的温室气体
碳排放源:未考虑土地利用和土地利用变化、服务提供和交付、牲畜生产和其他农业过程的碳排放
考虑碳汇
考虑特定零部件上的22种材料的碳排放
考虑整车生产过程的碳排放
考虑燃料生产、燃料使用、轮胎更换、铅酸蓄电池更换、制冷剂更换和逸散的碳排放
3.2 适用范围
包括能够燃用汽油或柴油燃料的M1类车辆和纯电动乘用车
适用于燃用汽油或柴油的单一燃料的M1类车辆和纯电动乘用车
纯电动乘用车没有明确的定义,GB/T 28382-2012中直接引用了改术语,指纯电动汽车和乘用车的交叉
3.3 指标
核算指标为乘用车单位行驶里程的碳排放量,生命周期行驶里程按15万km计算
碳(温室气体)(京都议定书中要求削减的温室气体)
生命周期行驶里程 13000km/年 × 11.5年= 1.5×105 km
由于不确定因素较多,采取保守考量,结合(世界资源研究所,2019)设置的基准参数情景,假设每年的汽车行驶里程变化较小,即2019年全国乘用车年均行驶里程沿用13000km;
根据商务部、发改委、公安部联合发布的《机动车强制报废标准规定》,乘用车使用年限参考值为8~15年。为使研究具有代表性,取平均值11.5年为乘用车生命周期。
3.4 边界
3.4.1乘用车整体核算边界
将汽车全生命周期纳入核算边界,包括原材料获取阶段、生产阶段、使用阶段及回收阶段,不包括道路与厂房的基础设施、各工序的设备、厂区内人员及生活设施的消耗和排放
原材料获取阶段边界:兼顾考虑材料占比高、碳排放因子高和数据可核查3个因素
1. 考虑重量大的材料
重量占比较大的材料主要包括:钢铁、铝合金、铸铁、陶瓷/玻璃、PP、橡胶、PU、织物、PA、PP/EPDM、PE、铜(线束)、涂料、PVC、胶粘/密封剂等15种,占汽车部件重量的95%以上。
2. 考虑碳排放因子高的材料
l碳排放因子较高的材料主要包括镁合金、钛及钛合金、镁及镁合金、电子线路板、电子设备、变形铝合金、铸造铝合金、PA等8种。
3. 注重数据的可核查性
充分借鉴碳市场MRV体系,对温室气体排放数据的收集和报告工作进行周期性的核查,帮助监管部门最大程度地把控数据的准确性和可靠性,提升温室气体排放整体报告结果的可信度。
选取重量大、均质材料占比高、可操作性强的零部件
3.4.2各阶段核算边界
原材料获取阶段边界:考虑特定零部件上的22种材料,重量占比高于零部件50%且不属于20种材料的其他均质材料,也应纳入核算范围。材料生产制造的系统边界包括资源开采、加工提纯、生产制造等过程,同时生产制造过程用设备制造、厂房建设等基础设施不包括在边界范围内
纳入核算范围的零部件占到整备质量的60%以上(基于90多款车型拆解数据的平均值)
生产阶段边界:整车装配制造过程,包括冲压、焊接、涂装、总装和动力站房等工序
使用阶段边界:包括燃料生产过程的碳排放、燃料使用过程的碳排放、轮胎、铅酸蓄电池和制冷剂更换的碳排放
回收阶段边界:回收阶段只考虑用于汽车上的回收材料带来的收益
3.5 核算方法
3.5.1生命周期单位行驶里程平均碳排放
单位行驶里程碳排放量=(原材料获取阶段的碳排放量+整车生产阶段的碳排放量+使用阶段的碳排放量-碳汇量)/生命周期行驶里程
3.5.2原材料获取阶段碳排放量:材料重量与材料碳排放因子乘积的加和
3.5.3生产阶段碳排放量:整车生产过程中能源的碳排放和直接逸散的碳排放
3.5.4使用阶段碳排放量:燃料生产、燃料使用及轮胎、铅酸蓄电池、制冷剂更换的碳排放
轮胎更换的碳排放量
方法一:轮胎更换的碳排放量=(橡胶重量×橡胶碳排放因子+炭黑重量×炭黑碳排放因子)×轮胎更换次数
方法二:轮胎更换的碳排放量=轮胎重量×轮胎的碳排放因子×轮胎更换次数
铅酸蓄电池更换的碳排放量
方法一:铅酸蓄电池更换的碳排放量=(铅重量×铅碳排放因子+硫酸重量×硫酸碳排放因子+聚丙烯重量×聚丙烯碳排放因子)×铅酸蓄电池更换次数
方法二:铅酸蓄电池更换的碳排放量=铅酸蓄电池重量×铅酸蓄电池碳排放因子×铅酸蓄电池更换次数
制冷剂逸散及更换的碳排放量
制冷剂逸散及更换的碳排放量=制冷剂生产的碳排放量+制冷剂逸散的碳排放量
将碳汇纳入碳排放量核算范围
类别:森林碳汇、林业碳汇、绿地碳汇
测算:碳汇价值的测算是碳汇项目纳入核算范围的核心和技术关键之一。采用经第三方认证的测算量。
燃烧一升柴油排放1.58x10^6升二氧化碳。其中计算方法如下:按16烷值计算一吨柴油产生二氧化碳,1×192/226×44/12=3.115吨,因为二氧化碳的密度为1.977克/升,所以二氧化碳的体积为V=3.115x10^6/1.977=1.58x10^6升。
柴油产品
复杂烃类(碳原子数约10~22)混合物。为柴油机燃料。主要由原油蒸馏、催化裂化、热裂化、加氢裂化、石油焦化等过程生产的柴油馏分调配而成。
也可以由页岩油加工和煤液化制取。分为轻柴油(沸点范围约180~370℃)和重柴油(沸点范围约350~410℃)两大类。广泛用于大型车辆、铁路机车、船舰。
减碳计算器:
我们每一个人都是地球变暖的“祸首”,却也是受害者,我们每一个人都有责任和义务减少碳的排放量。然而我们每天都要呼吸、上网、用电、坐车,这些都能造成二氧化碳点的排放。如果减少碳的排放量会不会影响我们的生活?要成为低碳一族,必须学会计算碳排放量
消耗100度电=78.5公斤碳排放量=1棵树
消耗100公升汽油=270公斤碳排放量=3棵树
...... 禸*嫆唻@洎:狆国湠棑仿茭昜蛧 τāńpāīfāńɡ.cōm
这是由一套精准的公式计算出来的,它反映“公众日常消费——二氧化碳排放量——碳补偿”的环保链。二氧化碳排放量的计算引出了一个新词——碳足迹。它标示者某个公司、家庭或个人的“碳耗用量”,是一种新的用来测量某个公司、家庭或个人因每日消耗能源而产生的二氧化碳排放量对环境影响的指标。碳耗用量越高,导致全球变暖的元凶“二氧化碳”就越多,“碳足迹”就大,反之“碳足迹”就小。
为了维持生态平衡,产生的“碳足迹”需要进行碳补偿,这就是现在常说的“碳中和”
我们每天消耗的碳足迹:
家里电冰箱每个人0.65KG
烫衣服0.02KG
洗热水澡0.42KG
搭电梯上下一层楼0.218KG
开冷气机一小时0.621KG
看电视一小时0.096KG
听收音机一小时0.006KG
听音响一小时0.034KG
开节能灯一小时0.011KG
开钨丝灯泡一小时0.041KG
开电扇一小时0.045KG
用笔记本电脑一小时0.013KG
开车一公里0.22KG
骑机车一公里0.055KG
每用一吨水0.194KG
每用一立方米天然气2.1KG
搭高速列车一公里0.05KG
搭公交车一公里0.08KG
适用一公斤木炭3.7KG
外食一个便当0.48KG
丢一公斤垃圾2.06KG
吃一公斤牛肉36.4KG
买一件T恤4KG
碳补偿:
种树,通过植物光合作用来吸收二氧化碳制造氧气是碳补偿的唯一办法,一棵树生长40年,平均每年可吸收465公斤二氧化碳,平均每天吸收1.27公斤的二氧化碳。
依据以上数据,我们可以根据每天不同的耗电量、耗水量、汽油消耗量以及肉类食用量等来计算出碳足迹以及需要的相应的碳补偿
或许每个人的数据不同,但平均算下来需要的碳补偿所需每天的种树量去世不低于50棵。可见我们按照目前能源的消耗程度,碳补偿对于维持生态环境只是杯水车薪
我们正需要低碳生活这种以生活作息时尽量减少耗用能量从而减低二氧化碳的排放量为主的新绿色生活型态