光伏发电系统由哪些部件构成?
你好!“光伏发电系统由太阳电池组件(方阵)、控制器、储能蓄电池(组)、直流/交流逆变器等部分组成。光伏发电系统的核心部件是太阳电池组件,它将太阳的光能直接转化为电能。太阳电池产生的电流为直流电,我们可以直接以直流电的形式应用,也可以用离网型直流/交流逆变器将其转换成为交流电加以应用。从另一个角度来看,对于光伏发电系统产生的电能我们可以即发即用,也可以用蓄电池等储能装置将电能存放起来,按照需要随时释放出来使用。
家庭用,地址在咸阳,每月大概100度电。 太阳能光伏发电系统主要是由太阳能电池方阵、控制器、蓄电池组、逆变器等设备组成,其各部分设备的作 用是: (1)太阳能电池方阵。太阳电池方阵由太阳电池组合板和方阵支架组成。因为单个太阳电池的电压一般比较低,所以通常都要把它们串、并联构成有实用价值的太阳电池板,作为一个应用单元,然后根据供电要求,再由多个应用单元的串、并联组成太阳能电池方阵。太阳能电池板(某些半导体材料,目前主要是多晶硅、单晶硅以及非晶硅,经过一定工艺组装起来)是太阳能光伏系统中的最主要组成部分,也是太阳能光伏发电系统中价值最高的部分。太阳能电池板在有光照情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光电效应”。在光电效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,它是能量转换的器件。 (2)蓄电池组。其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。在太阳能并网发电系统中,可不加蓄电池组。 (3)控制器。对电能进行调节和控制的装置。 (4)逆变器。是将太阳能电池方阵和蓄电池提供的直流电转换成交流电的设备,是光伏并网发电系统的关键部件。由于太阳能电池和蓄电池是直流电源,当负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统,本文主要介绍太阳能光伏并网发电系统[1]。如图1所示,并网逆变器由igbt等功率开关器件构成,控制电路使开关元件有一定规律的连续开通或关断,使输出电压极性正负交替,将直流输入转换为交流输出。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。
一、禁带亮度效率损失
VOC随Eg的增大而增大,但另一方面,JSC随Eg的增大而减小。结果是可期望在某一个确定的Eg随处出现太阳电池效率的峰值。
二、温度引起的效率损失
随温度的增加,效率η下降。I-SC对温度T很敏感,温度还对VOC起主要作用。对于Si,温度每增加1°C,VOC下降室温值的0.4%,h也因而降低约同样的百分数。
例如,一个硅电池在20°C时的效率为20%,当温度升到120°C时,效率仅为12%。又如GaAs电池,温度每升高1°C,VOC降低1.7mv 或降低0.2%。
三、光强对效率的影响
将太阳光聚焦于太阳电池,可使一个小小的太阳电池产生出大量的电能。设想光强被浓缩了X倍,单位电池面积的输入功率和JSC都将增加X倍,同时VOC也随着增加(kT/q)lnX倍。因而输出功率的增加将大大超过X倍,而且聚光的结果也使转换效率提高了。
四、金属栅和光反射引起的效率损失
在前表面上的金属栅线不能透过阳光,引起效率降低。为了使ISC最大,金属栅占有的面积应最小。为了使RS小,一般是使金属栅做成又密又细的形状。因为有太阳光反射的存在,不是全部光线都能进入Si中。裸Si表面的反射率约为40%。使用减反射膜可降低反射率。对于垂直地投射到电池上的单波长的光,用一种厚为1/4波长、折射率等于(n为Si的折射率)的涂层能使反射率降为零。对太阳光,采用多层涂层能得到更好的效果。
(1)独立光伏发电系统
独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、充放电控制器、蓄电池组
成,若要为交流负载供电,还需要配置交流逆变器。
(2)并网光伏发电系统
并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合电网要求的交
流电之后直接接人公共电网。
1)按是否具备调度性分为:带蓄电池的和不带蓄电池的并网发电系统。
带有蓄电池的并网发电系统:具有可调度性,可以根据需要并人或退出电网,还具有
备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并网发电系统常常安
装在居民建筑中。
不带蓄电池的并网发电系统:不具备可调度性和备用电源的功能,一般安装在较大型
的系统上。
2)按规模分为:集中式大型并网光伏电站和分散式小型并网光伏电站。
集中式大型并网光伏电站: - -般都是国家级电站,主要特点是将所发电能直接输送到
电网,由电网统- - 调配向用户供电。具有电站投资大、建设周期长、占地面积大的特点。
分散式小型并网光伏电站:特别是光伏建筑- - 体化光伏电站,具有投资小、建设快、
占地面积小、政策支持力度大等优点,是并网光伏发电的主流电站。
并网光伏系统组成:主要由光伏电池组件、并网逆变器、公共电网、监控系统组成。
(3)分布式光伏发电系统
分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现
场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,
或者同时满足这两个方面的要求。
分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直
流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装
置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能
转换输出的电能,经过直流汇流箱集中送人直流配电柜,由并网逆变器逆变成交流电供给
建筑自身负载,多余或不足的电力通过连接电网来调节。
对于安装建造来说,光伏电站主要设备包括以下几件:
1、光伏组件(太阳能光伏板)
将一定数量的单片电池采用串、并联的方式密封成太阳电池组件,组件封装质量的好坏决定了太阳电池组件的使用寿命及可靠性。组件需要定期维护清洁,提高光电转化效率。
2、逆变器
组件产生的电流是直流电流,需要转化为交流电使用,逆变器所做的就是这一功能。逆变器可分为单相、三相等,需要跟实际的组件发电功率相匹配,一般三相的功率大于单相,如你安装了15KW的组件,对应安装一个17KW的三相逆变器。
3、配电箱
配电箱集开关设备、测量仪表、保护电器和辅助设备为一体。有开关、检测、保护、报警功能。正常运行时可借助手动或自动开关接通或分断电路;故障或不正常运行时借助保护电器切断电路或报警。
以上即户用分布式光伏电站的主要组成部分。如果你对光伏发电、光伏电站感兴趣可以到碳银网网页链接了解。
(以上内容来源:碳银网、碳盈协同APP)
随着国内光伏产业的迅猛发展,大规模的光伏发电站项目在国内开始陆续建设并投入使用。为了解决实时监测了解电站的运行状况,满足上一级系统或电网调度系统的监控需求,是我们首先要解决的问题。光伏电站中涉及到的监控设备种类较多,包括光伏系统相关的光伏组串、巡日装置、汇流装置、逆变器、环境检测仪;安防装置(监控探头、避雷器、报警装置等)、集量装置(电量/电压/电能质量相关计量仪器)、保护装置(高压开关、直流接地)等。光伏电站监控系统主要由逆变器厂商随设备提供,主要从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,亦无法获取电站中的其他设备的信息及控制这些设备,更无法满足电网调度系统对电站的实时监测要求。另外,大型电站均会采用不同厂商的产品,这些厂商的产品彼此无法兼容造成一个个”孤岛”系统,无法形成统一的监控体系。因此,迫切需要一套统一的监控平台,能够对不同厂商、不同类别、不同型号的逆变器及其他设备进行统一的管理,实现对光伏电站完整、统一的实时检测和控制。随着工业以太网的发展,工业以太网这个平台很好的运用到了光伏发电监控系统之中,作为各种设备数据传输的载体。
赛康工业以太网交换机在光伏发电站监控系统的解决方案采用三层式架构,分别是数据采集层、网络传输层、中心监控层。此方案采用SC-Ring私有环实现前端设备冗余,以及使用汇聚层交换机端口汇聚实现上行电站控制层的链路冗余。核心机房采用机架式工业以太网交换机组成,汇聚多个环网数据流量,上行传至通信管理机进行协议转换解析数据。每个户外房由多个卡轨式环网交换机组成,每个环网通过物理隔离提高网络的安全性,环网交换机启用SC-Ring快速环网冗余协议,保障了网络的故障快速切换,在环网中启用交换机的VLAN虚拟局域网功能,将电力SCADA、环境检测仪、逆变器直流配电柜、汇流箱和视频等业务隔离,防止广播风暴产生影响其他业务,并开启交换机各业务接入端口的广播风暴抑制功能,可以实现网络中”有效数据传输,无效数据隔离“的功能,提高网络数据传输的安全性。同时采用Qos服务质量功能,根据不同的业务级别对交换机的接入端口进行带宽分配。
此系统采用了三层架构,分别是数据采集层、网络传输层、中心监控层。此方案实现了站控层的双系统备份,并且采用SC-Ring欢实现前端冗余,以及使用端口聚合实现上行至站控层的链路冗余。30个逆变室中的间隔层设备的监控数据通过串口服务器江485信号转换成以太网数据,用两条链路接到工业级环网交换机然后分别接入汇聚层交换机,以达到上行驶站控层的链路冗余。并将它的2个光口进行端口聚合,来对应1#和2#逆变室的端口聚合,并将站控层的操作工作站、工程师站等一些设备接入。
光伏并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。光伏并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电也有分散式小型并网发电系统,特别是光伏建筑一体化发电系统,是并网发电的主流。
太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。它主要由太阳能电池方阵和逆变器两部分组成。如下图所示:白天有日照时,太阳能电池方阵发出的电经过并网逆变器将电能直接输送到交流电网上,或将太阳能所发出的电经过并网逆变器直接为交流负载供电。
太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴,在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。
利用清洁干净、可再生的自然能源太阳能发电,不耗用不可再生的、资源有限的含碳化石能源,使用中无温室气体和污染物排放,与生态环境和谐,符合经济社会可持续发展战略。所发电能馈入电网,以电网为储能装置,省掉蓄电池,比独立太阳能光伏系统的建设投资可减少达35%一45%,从而使发电成本大为降低。省掉蓄电池避免了蓄电池的二次污染,并可提高系统的平均无故障时间。
照射在地球上的太阳能非常巨大,大约40min照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源,而且太阳能发电绝对干净,不产生公害,所以太阳能被誉为理想的能源。
(1)太阳能发电的优点
从太阳能获得电力,需通过太阳能电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:
①无枯竭危险。
②绝对干净(无公害)。
③不受资源分布地域的限制。
④可在用电处就近发电。
⑤能源质量高。
⑥使用者从感情上容易接受。
⑦获取能源花费的时间短。
不足之处是:
①照射的能量分布密度小,即要占用巨大面积。
②获得的能源同四季、昼夜及阴晴等气象条件有关。
但总的说来,瑕不掩瑜,作为新能源,太阳能具有极大优点,因此受到世界各国的重视。
(2)太阳能发电存在的问题
太阳能光伏发电还存在一些有待攻克的“弱点”。它的主要问题有以下几个方面。
①光电转化率很低。根据太阳能发电的基本原理,太阳光电池主要功能是将光能转换成电能,称之为光伏效应。这就使得我们在选取太阳能电池板原材料的时候,必须充分了解太阳光谱成分及其能量分布状况,必须考虑到材料的光导效应及如何产生内部电场,不仅要考虑材料的吸光效果,还要考虑它的光导效果。从目前太阳能发电的情况来看,即使采用目前最高效的材料进行光电转换,效率仍然很低,材料的选取仍旧是个有待提高的突破点。目前太阳能电池光电转化效率一般为10%~15%,因此,如何提高太阳能光伏发电的转换效率是我国及世界有关研究组织一直以来科技攻关的难题。
②光伏电池生产过程中存在高污染。从目前的实际状况来看,以单晶硅或多晶硅为主要原料的太阳能电池板正越来越多地点缀于城市建筑的屋顶、墙壁,成为一座座所谓“清洁无污染”的太阳能电站。然而,在这种被称为“绿色电站”的身后,却“隐藏”着一系列高能耗、高污染的生产过程。即使作为第三代太阳能电池的染料敏化电池来说,虽然它最大吸引力在于廉价的原材料和简单的制作工艺。据科学家估算,它的成本仅相当于硅电池板的1/10。但是此类电池的效率随面积放大而降低。这一点又与太阳能发电需要充足的日照和广域的面积相矛盾。
③所需光照受天气影响较大。太阳能发电所需的必要条件是光照指数,如果在阳光不太充足的多云天气或雨雪天气里,太阳光伏效应转换的效率会大幅度降低,难以满足向用电系统连续供电。
④光伏发电成本过高。在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但其成本居高不下,远不能满足大规模推广应用的要求。最近,SunPower(美国加州)公司研制的太阳能电池板效率达到22%,尽管其光电转化效率非常可观,但由于受原料价格和提纯工艺的限制,发电成本过高。所以太阳能发电系统仍需要人们不断地探索与完善。
太阳能光伏发电系统由太阳能电池组、太阳能控制器、蓄电池(组)和太阳跟踪控制系统组成。如输出电源为交流220V或 110V,还需要配置逆变器。 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。
原材料特点:
电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。
玻璃: 采用低铁钢化绒面玻璃(又称为白玻璃), 厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。
EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。
TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。
边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。
主要特点:
1、使用了单片机和专用软件,实现了智能控制;
2、利用蓄电池放电率特性修正的准确放电控制。放电终了电压是由放电率曲线修正的控制点,消除了单纯的电压控制过放的不准确性,符合蓄电池固有的特性,即不同的放电率具有不同的终了电压。
3、具有过充、过放、电子短路、过载保护、独特的防反接保护等全自动控制;以上保护均不损坏任何部件,不烧保险;
4、采用了串联式PWM充电主电路,使充电回路的电压损失较使用二极管的充电电路降低近一半,充电效率较非PWM高3%-6%,增加了用电时间;过放恢复的提升充电,正常的直充,浮充自动控制方式使系统由更长的使用寿命;同时具有高精度温度补偿;
5、直观的LED发光管指示当前蓄电池状态,让用户了解使用状况;
6、所有控制全部采用工业级芯片(仅对带I工业级控制器),能在寒冷、高温、潮湿环境运行自如。同时使用了晶振定时控制,定时控制精确。
7、取消了电位器调整控制设定点,而利用了E方存储器记录各工作控制点,使设置数字化,消除了因电位器震动偏位、温漂等使控制点出现误差降低准确性、可靠性的因素。 1、太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,能够满足全球能源需求的1万倍。只要在全球4%沙漠上安装太阳能光伏系统,所发电力就可以满足全球的需要。太阳能发电安全可靠,不会遭受能源危机或燃料市场不稳定的冲击。
2、太阳能随处可取,可就近供电,不必长距离输送,避免了长距离输电线路的损失;
3、太阳能不用燃料,运行成本很低;
4、太阳能发电没有运动部件,不易用损坏,维护简单,特别适合于无人值守情况下使用;
5、太阳能发电不会产生任何废弃物,没有污染、噪声等公害,对环境无不良影响,是理想的清洁能源;
6、太阳能发电系统建设周期短,方便灵活,而且可以根据负荷的增减,任意添加或减少太阳能方阵容量,避免浪费。 1、地面应用时有间歇性和随机性,发电量与气候条件有关,在晚上或阴雨天就不能或很少发电;
2、能量密度较低,标准条件下,地面上接收到的太阳辐射强度为1000W/M^2。大规格使用时,需要占用较大面积;
3、价格比较贵,为常规发电的3~15倍,初始投资高。
4、后期投资较大,储能的蓄电池平均每2-3年要更换一次。
光伏发电系统的核心部件是光伏组件,光伏组件是由光伏电池串并联并封装而成,将太阳的光能直接转换为电能。
光伏组件产生的电为直流电,可以利用,可以用逆变器将其转换成为交流电,加以利用。
光伏系统产生的电能可以即发即用,也可以用蓄电池等储能装置将电能存放起来,根据需要随时释放出来使用。