生物质能源有哪些种类?
依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
1、林业资源
林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。
2、农业资源
农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。
能源植物泛指各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。
3、污水废水
生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。
4、固体废物
城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。
5、畜禽粪便
畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。
6、沼气
沼气是由生物质能转换的一种可燃气体。沼气是一种混合物,主要成分是甲烷(CH4)。沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种混合气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。
人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。通常可以供农家用来烧饭、照明。
生物质能源特点:
1、可再生性
生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2、低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3、广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4、总量十分丰富
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。
随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
5、广泛应用性
生物质能源可以以沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、热裂解生产生物柴油等形式存在,应用在国民经济的各个领域。
以上内容参考:百度百科-生物质能
生物质中的碳是跟着他的衍生物不断地在变化,但是无论是秸秆还是能源草还是甲醇他们的在他们的循环中始终是以碳在循环,在这个生态链中间无论是秸秆-甲醇还是他们释放能量后产生的二氧化碳都是围绕着碳在变化,最后产生的二氧化碳等大部分被光合作用转化为生物质进入下一个循环,不断再生,所以说生物质是可再生碳源,其他的物质做不到这样的循环。
因为生物质的排放中是都是可以被大自然重复利用的元素,因此认为是没有碳排放。
根据国际能源机构(IEA)的定义,生物质(biomass)是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。
生物质能则是太阳能以化学能形式储存在生物质中的能量形式,它一直是人类赖以生存的重要能源之一,是仅次于煤炭、石油、天然气之后第四大能源,在整个能源系统中占有重要的地位。
在各种可再生能源中,由于核能、大型水电具有潜在的生态环境风险,风能和地热等区域性资源制约,大力发展遭到限制和质疑,而生物质能却以遍在性、丰富性、可再生性等特点得到人们认可。生物质的独特性,不仅在于能贮存太阳能,还是一种可再生的碳源,可转化成常规的固态、液态和气态燃料,煤、石油、天然气等能源实质上也是由生物质能转变而来的。
生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。
特点:可再生性。低污染性。广泛分布性。资源丰富。碳中性。
生物质包括植物、动物和微生物。
广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。
狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。
生物质能的特性包括如下:
1、可再生性。生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源, 资源丰富,可保证能源的永续利用。
2、低污染性。生物质的硫含量、氮含量低、燃烧过程中生成的SOpNOi较少;生物质作为燃料时,由于它在生长时需要 的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应。
生物质能是指能够当作燃料或者工业原料,活着或刚死 去的有机物。生物质能最常见于动植物所制造的生物燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。
许多的植物都被用来生产生物质能,包括芒草、柳枝 稷、麻、玉米、杨树、柳树、甘蔗和棕榈树。一些特定采用的植物通常都不是非常重要的终端产品,但却会影响原料的处理过程。因为对能源的需求持续增长,生物质能的工业也随着水涨船高。
虽然化石燃料原本为古老的生物质能,但是因为所含的碳已经离开碳循环太久了,所以并不被认为是生物质能。燃烧化石燃料会排放二氧化碳至大气中。
在亚马孙河流域,一种富含黑色物质的“印第安黑土”一直以来被当地农民用作提高土壤肥力的特殊肥料。现代研究发现,这种黑土其实是一种生物质炭,来自古老的动植物残余,为亚马孙盆地农业文明所留遗迹。目前,这种生物质炭的潜在功能正启发科学家为应对气候变化找寻新途径。近日,一篇刊登在《自然地球科学》杂志的文章指出,全球制备和使用生物质炭的减排潜力可达到34亿至63亿吨二氧化碳当量。
随着城市化的不断发展,来源广泛的固体废弃物数量急剧增加,不仅造成环境污染,也产生大量的温室气体。其中,尤以占比最大的生物质废弃物温室效应最为严重,包括植物残体、牲畜粪便、厨余垃圾、工农业生物垃圾等。据统计,固体废弃物填埋场是美国温室气体甲烷的第三大排放源,2019年其甲烷排放量相当于2160万辆汽车全年行驶的甲烷排放量,或1200万户家庭能源消耗的碳排放。
英国德拉克斯电站鸟瞰图和具有碳捕获能力的生物质储罐。(来源:视觉中国)
目前,生物质发电是生物质垃圾利用较为普遍的方式。不过,生物质废弃物来源多样,收集和转化为电力的成本高昂,与低廉转化产品价值之间存在显著矛盾。为此,科学家积极寻找“变废为宝”的新路径,以实现对生物质废弃物大规模和多途径的利用,因此,生物质炭近年来受到越来越多的关注。
生物质炭由生物质在缺氧条件下经过高温转化而成,是一种富含碳素的多孔固体颗粒物质。大量有机废弃物都可用作制备原料。这一“古老”的新生事物能将生物质中不稳定的有机碳转化固定,还因具备多重潜在价值引起土壤学家、农学家、环境学家、生态学家、能源学家的广泛兴趣。在农业领域,土壤中添加生物质炭可以改善持水能力和养分供应,增加微生物活性,利于作物增产;在工业领域,生物质炭可以用作电池电极或催化剂,比如电池中石墨的替代品;在环境领域,生物质炭作为优良的吸附材料可以去除环境中的污染物,还可以吸附游离碳和氮化合物,减少生物质在转化过程中温室气体的排放。
此外,生物质炭的制备方法简单多样,包括高温热解、水热碳化、传统碳化等类型。制备场地也灵活多样,从大型工业到小型家庭规模,甚至在农田场地都可以制得。因此,其在应用和推广方面具有显著优势。不过,目前生物质炭的有效性取决于其物理和化学特性,而这些特性受到废弃物本身的可利用性和生产加工制造等因素的影响,对其机理还需进一步系统研究。
应该看到,对生物质废弃物等固体废弃物的转化利用无论方式优劣,都属于末端处置。在对这部分技术探索优化的同时,还应重视全生命周期管理,做好源头减量化和过程资源化,才能在“末端无害化”中达到事半功倍的效果。目前一些发达国家借助市场引导、政府调控和科技入股等方式,逐步形成固体废弃物收集、回收、加工及销售的系统产业。在我国,相关产业正处于技术攻坚和商业化应用开拓的关键阶段,需结合国内实际情况就研究方法、技术工艺、产品流通等环节建立健全标准化体系,加快构建完整产业链,推动固废处理行业早日实现减污降碳的协同目标。