有谁知道生物质能发电的历史,原理,前景吗?有的话请发给我。谢谢了
概述
生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。
生物质能发电前景
世界生物质发电起源于20世纪70年代,当时,世界性的石油危机爆发后,丹麦开始积极开发清洁的可再生能源,大力推行秸秆等生物质发电。自1990年以来,生物质发电在欧美许多国家开始大发展。
中国是一个农业大国,生物质资源十分丰富,各种农作物每年产生秸秆6亿多吨,其中可以作为能源使用的约4亿吨,全国林木总生物量约190亿吨,可获得量为9亿吨,可作为能源利用的总量约为3亿吨。如加以有效利用,开发潜力将十分巨大。
为推动生物质发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东3个秸秆发电示范项目,颁布了《可再生能源法》,并实施了生物质发电优惠上网电价等有关配套政策,从而使生物质发电,特别是秸秆发电迅速发展。
最近几年来,国家电网公司、五大发电集团等大型国有、民营以及外资企业纷纷投资参与中国生物质发电产业的建设运营。截至2007年底,国家和各省发改委已核准项目87个,总装机规模220万千瓦。全国已建成投产的生物质直燃发电项目超过15个,在建项目30多个。可以看出,中国生物质发电产业的发展正在渐入佳境。
根据国家“十一五”规划纲要提出的发展目标,未来将建设生物质发电550万千瓦装机容量,已公布的《可再生能源中长期发展规划》也确定了到2020年生物质发电装机3000万千瓦的发展目标。此外,国家已经决定,将安排资金支持可再生能源的技术研发、设备制造及检测认证等产业服务体系建设。总的说来,生物质能发电行业有着广阔的发展前景。
生物质发电发展意义
1.增加我国清洁能源比重
2.改善环境
3增加农民收入,缩小城乡差距
一、对农林生物质发电项目实行标杆上网电价政策。未采用招标确定投资人的新建农林生物质发电项目,统一执行标杆上网电价每千瓦时0.75元(含税,下同)。通过招标确定投资人的,上网电价按中标确定的价格执行,但不得高于全国农林生物质发电标杆上网电价。
二、已核准的农林生物质发电项目(招标项目除外),上网电价低于上述标准的,上调至每千瓦时0.75元;高于上述标准的国家核准的生物质发电项目仍执行原电价标准。
三、农林生物质发电上网电价在当地脱硫燃煤机组标杆上网电价以内的部分,由当地省级电网企业负担;高出部分,通过全国征收的可再生能源电价附加分摊解决。脱硫燃煤机组标杆上网电价调整后,农林生物质发电价格中由当地电网企业负担的部分要相应调整。
四、农林生物质发电企业和电网企业要真实、完整地记载和保存项目上网交易电量、价格和补贴金额等资料,接受有关部门监督检查。各级价格主管部门要加强对农林生物质上网电价执行情况和电价附加补贴结算情况的监管,确保电价政策执行到位。
具体价格看各地的政府支持以及扶持力度了。
一氧化碳分子是不饱和的亚稳态分子,在化学上就分解而言是稳定的。常温下,一氧化碳不与酸、碱等反应,但与空气混合能形成爆炸性混合物,遇明火、高温能引起燃烧、爆炸,属于易燃、易爆气体。因一氧化碳分子中碳元素的化合价是+2,能被氧化成+4价,具有还原性;且能被还原为低价态,具有氧化性。在一定条件下,一氧化碳和水蒸气等摩尔反应生成氢气和二氧化碳:CO + H2O → H2+ CO2。在工业装置中,早期的一氧化碳变换反应通常分两段进行,即高(中)温变换和低温变换。高(中)温变换用铁系作催化剂,典型水蒸汽和一氧化碳比为3左右,在温度为300~500℃、空速为2000~4000 h-1的条件下,高温变换炉出口一氧化碳含量为2%~5%;低温变换用高活性铜锌催化剂,在温度为180~280℃、空速为2000~4000 h-1的条件下,低温变换炉出口一氧化碳含量为0.2%~0.5%、二氧化碳(carbon dioxide),一种碳氧化合物,化学式为CO2,化学式量为44.0095、常温常压下是一种无色无味[2]或无色无嗅而其水溶液略有酸味的气体,也是一种常见的温室气体、还是空气的组分之一(占大气总体积的0.03%-0.04%[5])。在物理性质方面,二氧化碳的熔点为-56.6℃,沸点为-78.5℃,密度比空气密度大(标准条件下),溶于水。在化学性质方面,二氧化碳的化学性质不活泼,热稳定性很高(2000℃时仅有1.8%分解),不能燃烧,通常也不支持燃烧,属于酸性氧化物,具有酸性氧化物的通性,因与水反应生成的是碳酸,所以是碳酸的酸酐。
二氧化碳一般可由高温煅烧石灰石或由石灰石和稀盐酸反应制得,主要应用于冷藏易腐败的食品(固态)、作致冷剂(液态)、制造碳化软饮料(气态)和作均相反应的溶剂(超临界状态)等。
进入21世纪以来,我国面临的能源安全和环境生态保护问题日趋严峻,可再生能源已经成为能源发展战略的重要组成部分以及能源转型的重要发展方向。根据可再生能源应用的不同领域,电力系统建设正在发生结构性转变,可再生能源发电已开始成为电源建设的主流。生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。
装机容量世界第一
生物质能是重要的可再生能源,开发利用生物质能,是能源生产和消费革命的重要内容,是改善环境质量、发展循环经济的重要任务。为推进生物质能分布式开发利用,扩大市场规模,完善产业体系,加快生物质能专业化多元化产业化发展步伐。截至2020年底,全国已经投产生物质发电项目有1353个。
在国家大力鼓励和支持发展可再生能源,以及生物质能发电投资热情高涨,各类生物质发电项目纷纷建设投产等推动下,我国生物质能发电技术产业呈现出全面加速的发展态势。2020年,生物质发电新增装机543万千瓦,累计装机达2952万千瓦。我国生物质发电装机容量已经是连续三年列世界第一。
生物质发电主要包括农林生物质发电、垃圾焚烧发电和沼气发电。2020在,在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大,达到51.9%其次是农林生物质发电,累计装机容量占比为45.1%沼气发展累计装机容量占比仅为3.0%。
生物质能发电量稳定增长
近年来,我国生物质能发电量保持稳步增长态势。2020年,中国生物质年发电量达到1326亿千瓦时,同比增长19.35%。
从发电量结构来看,垃圾焚烧发电量最大,2020年中国垃圾焚烧发电量为778亿千瓦时,占比为58.6%农林生物质发电量为510亿千瓦时,占比为38.5%2020年沼气发电量为37.8亿千瓦时,占比为2.9%。
随着生物质发电快速发展,生物质发电在我国可再生能源发电中的比重呈逐年稳步上升态势。截至2020年底,我国生物质发电累计装机容量占可再生能源发电装机容量的3.2%总发电量占比上升至6.0%。生物质能发电的地位不断上升,反映生物质能发电正逐渐成为我国可再生能源利用中的新生力量。
垃圾焚烧发电量将持续增长
在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大。国内生活垃圾清运量和无害化处理率保持持续增长,对于垃圾焚烧的需求也在日益增加。为满足垃圾焚烧消纳生活垃圾的需求,随着垃圾焚烧发电市场从东部地区向中西部地区和乡镇转移,垃圾焚烧发电量将持续增长。
农林生物质发电项目利用小时数从2018年开始逐年走低,主要原因是可再生能源补贴拖欠对农林生物质发电项目影响较大。根据统计,2019年农林生物质发电利用小时数超过5000h的项目未188个,总装机为526万千瓦。据此判断约50%的项目在承受电价补贴拖欠的压力下,仍坚持项目运营。2020年农林生物质发电新增装机容量也有所下降,为217万千瓦。
山东生物质发电全国领先
总体上来看,生物质发电整体呈现东强西弱的局面。东部和南部沿海地区发展较好。
2020年,全国生物质发电量排名前五位的省份是山东、广东、江苏、浙江和安徽,发电量分别为365.5万千瓦、282.4万千瓦、242.0万千瓦、240.1万千瓦和213.8万千瓦。
2020年,全国生物质发电新增装机容量排名前五位的省份是广东、山东、江苏、浙江和安徽,分别为67.7万千瓦、64.6万千瓦、41.7万千瓦、38.9万千瓦和36.0万千瓦。
—— 更多数据请参考前瞻产业研究院《中国生物质能发电产业市场前瞻与投资战略规划分析报告》
当我们使用常规电力时,我们其实是间接的污染者,因为我们对电力的需求才产生了供给,从而间接对环境造成了污染。同时我们又是污染的受害者。
北京作为一个国际化的城市,特别作为一个正在申办奥运会的城市,应该向世界展示北京改善环境的能力和行动。然而非常遗憾的是,北京的用电结构非常不合理,几乎没有使用绿色电力,北京每年的用电量将近300亿度,94%来自于燃煤发电。北京市近郊有九家发电厂,除了两家水力发电厂外,其余均为火力发电厂,新建的三河火电厂距市中心只有50公里。据统计1998年北京发电厂消耗原煤591.62万吨,占全市1998年消耗原煤总量2677.7万吨的20%以上;燃油38.19万吨,燃气21119万立方米,并且每年要排放二氧化碳将近1035万吨,二氧化硫及二氧化氮14.6万吨,几乎占全市工业排放总量的一半;此外,燃煤发电厂需要消耗大量水资源,冲灰水的排放及重金属汞等污染物的排放对水体造成的污染也是殛待解决的问题,这对原本就缺水的北京地区来说,无疑是十分严峻的。
北京地区的外购电基本上来自内蒙古、山西等地的火力发电,这些火力发电自然在当地也造成不可忽视的环境污染。
北京目前正在积极申请2008年奥运会主办权,并提出了响亮的绿色奥运的口号。北京市政府也表示出极大的决心要改善北京环境状况,让奥运的天空变蓝。
众所周知悉尼绿色奥运会的成功举办给我们留下了深刻的印象,他们在环境保护方面所做的努力更为世人所称道。能源保护和可更新能源的利用被他们列为环保的首要目标。在悉尼奥运村,建设者采用了太阳能技术,使奥运村成为真正的绿色村落。沿着奥运大道步向主体育场一侧,一?quot长"得像长颈鹿的太阳能塔直冲云霄。这是奥运村的供电设备,可以满足全部体育场馆的照明。
绿色北京也需要绿色能源,而且北京周边省份不乏绿色能源的供应。内蒙古地区就有着丰富的风能资源,其风能储量可达10.1 亿千瓦,从1989年到1999年,内蒙古共实施了12个风电项目,总装机容量达45375千瓦,年发电量可达1亿度。因此内蒙古风电公司完全有能力向北京提供优质可靠的绿色电力。内蒙古地区的生态环境的持续恶化是北京近年来沙尘暴加强的原因之一,如果能通过风电带动内蒙经济的发展,对改善内蒙地区的生态环境将大有裨益,无疑也将对北京环境的改善起到重大作用。因此相比悉尼奥运村太阳能的利用意义,绿色电力对北京意义的更为深远。而与北京相邻的内蒙古有着丰富的风能资源,目前其风力发电的年发电量已达到了1亿度,完全有能力向北京提供优质可靠的绿色电力。
绿色电力实际上为消费者提供了一个机会选择对环境有益的绿色能源消费,他们只需要付出比常规电力稍高一点的价格就可保护环境,也间接支持了可再生能源的发展,选择使用绿色电力的行为更是对可持续发展理念的身体力行。 大力提倡使用绿色能源,有效控制北京及周边地区新建燃煤电场,是根治环境的明智选择。
使用常规电力,意味着排放更多的温室气体和污水。
使用绿色电力,意味着享受清新的空气和清洁的水。太阳能
太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当於500万吨煤。 地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源於太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限於太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它的资源丰富,既可免费使用,又无需运输,对环境没有任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。
地热能
地热能是来自地球深处的可再生热能,它起源於地球的熔融岩浆和放射性物质的衰变,其利用可分成地热发电和直接利用两大类。 地热能的储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那麼地热能便是可再生的。地热能在世界很多地区应用相当广泛,据估计,每年从地球内部传到地面的热能相当於100PW·h。 不过,地热能的分布相对来说比较分散,开发难度较大。
风能
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。
风能是一种有巨大发展潜力的无污染可再生能源,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有著十分重要的意义。即使在已开发国家,高效洁净的风能也日益受到重视。
海洋能
大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏著巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水裏,不像在陆地和空中那样容易散失。
海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在於海洋之中,分述如下:
潮汐与潮流能来源於月球、太阳引力,其他海洋能均来源於太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存著温差热能,其能量与温差的大小和水量成正比。
潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比。
河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。
生物能
生物质是指由光合作用而产生的各种有机体,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源於植物的光合作用。在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当於全世界每年耗能量的10倍。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林?品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。
氢能
氢能是一种二次能源,因为它是通过一定的方法利用其他能源制取的,而不像煤、石油和天然气等可以直接从地下开采,这种能源总有枯竭的一天,而氢能若能从中生产,则可望能抒解能源危机的警戒。
在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。燃料电池即是将氢与氧直接通过电化学反应产生电与水,一个步骤就可发电,发电较传统方式有效率。商品化后,这样的发电系统不但适合一般家庭使用,其副产品所产生的热水,大约在摄氏40到60度间,相当适合家庭洗澡与厨房利用,一举两得。
如果用煤、石油和天然气等燃烧所产生的热或所转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等於把无穷无尽的、分散的太阳能转变成了高度集中的乾净能源了,其意义十分重大。
发电效率高不是生物质能发电的优点,是西安交通大学19年3月的课程考试。
生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。
世界生物质发电起源于20世纪70年代,当时,世界性的石油危机爆发后,丹麦开始积极开发清洁的可再生能源,大力推行秸秆等生物质发电。
使用百度网盘免费分享给你,链接: https://pan.baidu.com/s/1f5rHowDFX0O8B7LiIXM1Xw
提取码: ajdq《夜色中的地球》是Apple TV+出品,汤姆·希德勒斯顿担任旁白的大自然纪录片,共6集。影片用尖端摄影技术捕捉动物的夜行生活,以夜间全彩画面拍下动物的各种行为。在新技术的镜头下,夜晚不再是灰暗模糊的,而是像白天一样清晰。
关于地底所蕴藏的石油,到底有多少这个问题,完全不像我们数一把米有多少颗、测量一桶水有多重这么简单,因为一把米、一桶水就摆在那,它们是能够完全界定出数量边界来,但是地底下的石油,包括煤炭、天然气、金属矿藏在内,虽然我们在一定程度上能够研究推测出它们的产生来源和过程,但是由于地下岩层结构的复杂性、地质运动的不可预测性、包容矿藏边界的不可确定性,同时再加上勘测技术的有限性,我们并不能完全精确地掌握、也不可能全面地掌握所有矿藏的埋藏地点、形状特征以及边界区域,这就如同我们在一间黑屋子里来摸索里面到底撒了多少米粒一样的道理。
所以,人类对地球石油储量的预测,是基于一定 历史 时期,在一定的科学技术水平的大背景下,根据所探测到的资源量和对地质结构、地质运动的特点,综合起来进行的判断,随着科学技术水平的发展,这种判断是带有不断修正和动态变化特征的一个过程。比如,在上世纪初,美国研究机构预测地球上的石油仅能供人类使用10年。到了上世纪中叶,科学家们又说仅能供人类使用50年。而到现在,有关研究机构预测地球上剩余的石油探明储量为1.7万亿桶(2300亿吨左右),同时预测地球上石油的总储量为1万亿吨,按照目前石油每年开采量约50亿吨、已探明的石油储量中的40%能够被开采来计算,地球上的石油还可以供人类使用18年左右。
石油是主要由烃类有机化合物(占比80-90%)以及少量的硫化物、氧化物、氮化物和沥青物质所构成的黏稠液体。而关于石油是如何形成的这个话题,长期以来科学界有两种截然不同的声音,一种是有机物生成说,另一种是无机物生成说。
有机物生成说:简单来说,就是大量富含有机质的动植物残骸被埋入地下,在漫长的地质作用下,与周围的岩石、泥沙等构成了有机质淤泥,并且与外界环境相隔离,在沉积作用和厌氧细菌的作用下,有机质逐渐被分解,形成包含许多有机质的小油滴,逐步向地层深入沉积和聚集,随着地层深度的增加,温度和压力逐渐提高,小油滴的活性越来越强,沿着岩石缝隙最终聚集到底部砂岩层中,形成贮油层。
有机质油滴在高压高温环境,部分烃类有机物会发生碳链断裂,形成分子量较小的气态物质,从而在油层的上部形成天然气。而周围“阻挡”油体流动的岩层在高压环境下,会有部分油滴压入岩石,形成贮油层的边界,或者生成油页岩。
无机物生成说:其主要观点是,形成石油的有机质,并不是来源于动物和植物的残骸,而是来自于地球本身,说到底就是自然环境中所富含的无机碳和氢。支撑无机物生成说的论断,又可以分为两个途径,一是来源于地球内部的岩浆,地球内部碳和氢无素,在高达3000摄氏度的岩浆环境中,会通过化学反应生成甲基态物质,随着岩浆的上涌流动,温度不断降低,在此过程中又生成甲烷和其它气态或者液态烃类有机物,在压力的作用下,这些烃类有机物最终在多孔隙的沉积岩中富含,最终形成石油。
还有一种途径就是来源于地球内部的碳化物。地球形成之初,内部富含大量的碳和铁元素,在地下高温高压环境中,形成了碳化铁这种金属碳化物。地球上形成海洋之后,大量的水渗入地壳之下,碳化铁与高温水之间发生化学反应,形成了碳氢化合物,最后也被地下巨大的压力压进沉积岩中,形成了石油。
虽然从石油的主要组分来看,上述两种论断都可以解释得通,但是,如果将目前所发现的石油与其所在岩层的地质条件、以及地球的地质活动联系起来,我们不难发现,石油矿藏一般都是规模很大,存在于大规模的沉积岩层中,而这些大规模的沉积岩在地球上的分布是非常不均衡的,而无机物生成说并不能完美地解释这种区域分布的巨大差异性。所以,石油有机物生成说已经成为科学界关于石油起源的主流观点。
按照以上石油的起源假说,无论是有机物还是无机物生成说,石油的形成都需要漫长的地质作用过程,少则几千万年、多则上亿年。而人类对石油开发利用的速率,与石油生成所需要的时间相比,的确是“入不敷出”,所以,即使地球上的石油储量再多,按照这种开发利用速率,迟早会有用尽的那一天。而之所以不同时期专家们都会有“多少年之后石油会用尽”,偏偏多少年后还是这种说法,并不是说石油用不完或者总量不变,而是另有原因,我想主要有以下几个方面:
一是勘探技术的进步。石油本来就摆在那里,关键是你发现了没有。随着石油勘探(特别是海洋勘探)、钻井技术的不断进步,随着时间的推移,人们势必会在更多的地方发现油田的存在,而这些地方在几十年前是实现不了有效勘探的。这样,探明石油储量的增加,为人们延长开发利用时间奠定了基础。
二是开采技术的进步。石油被探明存在了,在一定的科学技术水平下并不意味着这些石油都能够被开采,只有那些储量大、开采难度不高、开采成本低的才会首先被开采,现在能够被开采的石油也仅占到探明储量的30-40%。随着开采技术的进步,那些原本难以开采的石油、或者没有开采完的石油,就有可能重新被开采出来,这无形中也延长了开采时限。
三是一些石油的衍生矿藏也相继被开采利用。比如天然气、页岩油、可燃冰等等,这些开采出来的产品,通过一定的生产加工工艺,也都可以达到或者超过石油作为燃料、化工原料的用途,从而拓宽了石油类产品的供应和利用范围。
四是新能源的替代。在全球能源紧缺的大背景下,风能、太阳能、核能、生物质能、地热能、水能等新型能源、清洁能源在一次能源消费中的比重越来越大,石油的消耗占比呈现下降趋势,在一定程度上使得石油的开采利用年限得到提升。
从现有人类对能源需求日益增加的趋势来看,如果按照现有对石油的开采利用程度,地球上的石油终究会有耗尽的一天。只不过随着勘探和开采技术的进步、能源结构的调整和利用效率的提高,石油的使用年限在不断地被拉长而已。