地铁轨道所用的材料是什么
地铁轨道所用的材料是锰钢。
在城市中修建的快速、大运量、用电力牵引的轨道交通。列车在全封闭的线路上运行,位于中心城区的线路基本设在地下隧道内,中心城区以外的线路一般设在高架桥或地面上。
地铁涵盖了城市地区各种地下与地上的路权专有、高密度、高运量的城市轨道交通系统,中国台湾地铁称之为捷运。
除了地下铁以外,也包括高架铁路或路面上铺设的铁路。因此,地铁是路权专有的、无平交,这也是地铁区别于轻轨交通系统的根本性的标志。世界上最早的(也是第一条)地铁是英国伦敦的大都会地铁,始建于1863年。
扩展资料:
地铁车型由地铁所用车辆的型号。一般而言,世界各地地铁车型没有统一的标准,往往是按照某个地方的地铁所需量身定制,比如纽约地铁的A系统和B系统。在中国大陆,地铁车型往往被分为A、B、C三种型号以及L型。
地铁车站基坑按施工方法可分为明挖法、暗挖法和盖挖法施工;根据施工的顺序又可分为顺挖法和逆挖法。施工一般采用以下几种常用方法建造.
明挖顺作法:适用于建筑物比较密集,场地条件比较狭窄的基坑或沟槽,如基坑深度较大,地下水位较高,地层基本无承载力,环境保护要求较高,釆用放坡开挖难以保证基坑的安全和稳定,可施工围护桩、墙时,釆用垂直明挖法施工。
参考资料:百度百科—地图
玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是叶腊石、石英砂、石灰石、白云石、硼钙石、硼镁石七种矿石为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等,根据玻璃中碱含量的多少,可分为无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃)、中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃)和高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃)。
原料及其应用:玻璃纤维比农业生产体系纤维耐温高,不燃,抗腐,隔热、隔音性好,抗拉强度高,电绝缘性好。但性脆,耐磨性较差。用来制造增强塑料(见彩图)或增强橡胶,作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦出众其特性列举如下:
(1) 拉伸强度高,伸长小(3%)。
(2) 弹性系数高,刚性佳。
(3) 弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。
(4) 为无机纤维,具不燃性,耐化学性佳。
(5) 吸水性小。
(6) 尺度安定性,耐热性均佳。
(7) 加工性佳,可作成股、束、毡、织布等不同形态之产品。
(8) 透明可透过光线。
(9) 与树脂接着性良好之表面处理剂之开发完成。
(10) 价格便宜。
(11) 不易燃烧,高温下可熔成玻璃状小珠。
城市轨道交通具有安全、快速、准时、高效、节能、无污染和占地少的特点,能满足城市发展和环境保护的现实要求。发展城市轨道交通是解决城市公共交通问题的根本途径,也是城市可持续发展战略的必然选择。现代快速城市轨道交通系统采用全封闭车道、自动信号控制调度系统和轻型快速电动车组,行车密度大,h~ 40 km 平均旅行速度一般为30 km /h,最高运行h~ 90 km 速度为80 km /h,单向最大载客能力可达6 万人h~ 8 万人h。城市轨道交通车辆有三大关键技术:VVV F 调频调压交流传动与控制技术;轻量化车体技术;轻量化、高性能、高可靠性转向架技术。
现代城市轨道交通车辆的类型一般可以分为A 型、B 型、C 型和低地板轻轨车。其中,低地板轻轨车又可分为70% 低地板和100% 低地板2 种。目前,同时具有发展城市轨道交通的现实需要和经济实力的多为客流量大的大中型城市,其快速轨道交通系统发展的主流是以A 型车或B 型车为基础,基本编组单元为2M + 1T 或1M+ 1T 的电动车组立体化运行。整个轨道交通系统正朝着地下铁道、高架轻轨和近郊地面三位一体的立体化、网络化方向发展。采用VVV F 交流传动技术和轻量化耐候钢或不锈钢车体的B 型车,能够满足我国一些城市轨道交通系统的发展要求,并有一定的技术经济性,其走行部为轻量化、低噪声的无摇枕转向架。
2 转向架选型分析
2. 1 城市轨道交通对转向架的特殊要求
与干线铁路相比,城市轨道交通有以下特点:
(1) 间距短,启停频繁,对牵引和制动性能要求很高;
(2) 曲线半径小,对走行部要求高;
(3) 线路坡度大,可达30‰~ 60‰;
(4) 载重从1816 t (310 人) 到26 t (432 人),空重车重量差大;
(5) 行车密度大,最短行车间隔可达115 m in~ 2 m in,自动控制程度高;
(6) 运行环境特殊,安全可靠性要求极高;
(7) 对噪声要求严格;
(8) 需满足城市总体风格和居民的审美要求,车辆造型和色彩要求极富创造性。
对于转向架的运行稳定性、轻量化、低噪声、高可靠性、易维护及特殊的运行环境必须给予足够的重视。转向架对车辆的运行性能和行车安全至关重要,对轨道交通系统运行的经济性有重大影响。
2. 2 国内既有转向架的特点
目前,国内地铁、轻轨电动客车用转向架除国产的外,还有引进国外技术的,主要有2 种:一种是上海地铁1 号线、2 号线和广州地铁1 号线用转向架,为从欧洲整机进口的产品;另一种是北京复八线地铁用转向架,为引进韩国韩进重工技术研制生产的产品。其中,上海2 号线地铁车辆也用于我国第一条高架轻轨—— 明珠线。为便于分析比较,将各种转向架的主要技术特征和参数列于表1。
表1 现有地铁、轻轨转向架的主要技术特征和参数
注:上海地铁1 号线用转向架为橡胶弹性联轴器
2. 3 转向架的发展方向
纵观国内外情况,A 型或B 型城市轨道交通车辆走行部的发展趋势是轻量化、低噪声的无摇枕转向架,一系悬挂为橡胶弹簧,二系悬挂为空气弹簧与抗侧滚扭杆并用,牵引电机横向架悬,采用单元式基础制动装置。城市轨道交通车辆的线路条件和走行特性与干线铁路车辆有很大不同,如转向架的结构设计空间十分苛刻;采用交流传动技术,齿轮传动比很高;载客量很素的综合作用给城市轨道交通车辆转向架的设计带来大,运行环境特殊,安全可靠性要求极高,等等。这些因了特殊的困难。
3 转向架总体设计要求和主要技术参数
3. 1 转向架总体设计要求
(1) 转向架的综合性能应符合规定的限界和线路条件,能够满足地下铁道、高架线路和近郊地面大容量、快速城市轨道交通系统的运用要求。
(2) 转向架具有适宜的运行稳定性和良好的曲线通过能力。
(3) 运行平稳性指标按GB5599—1985 《铁道车辆动力学性能评定和试验鉴定规范》的规定执行:车辆在空载和满载之间的任何载荷条件及各种运营速度下,其垂向和横向平稳性指标均小于或等于215,且性能稳定。
(4) 转向架的安全性指标按GB5599—1985 《铁道车辆动力学性能评定和试验鉴定规范》的规定执行:脱轨系数Q ?P ≤1. 0;轮重减载率?P ?P ≤016;倾覆系数D ≤018。
(5) 转向架关键零部件的静强度、动强度符合有关国际标准或TB1335—1996 《铁道车辆强度设计及试验鉴定规范》的要求。
(6) 适当采取轻量化措施,转向架总重约415t(不含驱动装置)。
(7) 可靠性高,对可能的故障均采取安全措施。
(8) 可维护性好。
3. 2 转向架主要技术参数
4 转向架主要结构设计特点
B 型城市轨道交通车辆转向架为轻量化、低噪声、无摇枕转向架。轴箱弹簧为无磨耗圆锥叠层橡胶弹簧,采用H 型钢板压型焊接构架,中央悬挂为空气弹簧直接支承车体的三无结构,采用单元式单侧闸瓦踏面制动装置,牵引电机横向架悬。转向架分为动车转向架(图1) 和拖车转向架(图2)。在动车转向架的每根车轴上装有1 台交流牵引电动机、齿轮传动箱和联轴器。动车转向架与拖车转向架相比,除轴箱弹簧的特性参数不同外,其他零部件可完全互换。
图1 动车转向架装配图
图2 拖车转向架装配图
首次采用I2DEA S 软件对转向架直接进行三维装配设计。构架、轴箱等的三维造型设计为后续的有限元强度计算打下了基础。对各零部件进行了准确的质量、转动惯量、重心和主惯性轴位置的计算,以便为转向架的动力学性能计算提供可靠的基础数据。
4. 1 轮对轴箱定位装置
轮对轴箱定位装置采用圆锥叠层橡胶弹簧(图3) ,橡胶弹簧的优点在于具有非线性刚度特性,并有隔离高频振动和降低轮轨噪声的作用。对三向弹簧参数进行优化选择,在获得转向架适宜的蛇行运动稳定性和满足传递制动力、牵引力要求的前提下,注重提高转向架的曲线通过能力。在轴箱弹簧与轴箱之间设有调整垫片,以便于落车调整。轴箱盖与构架之间设有安全吊环。
图3 轮对轴箱弹簧装配图
采用我国现行标准的H SD 型车轮,车轮滚动圆直径为<840 mm ,踏面为LM 型磨耗形踏面。远期有条件时将采用噪声优化车轮和大等效斜度圆弧踏面。车轴为非标RC3 轴,轴颈直径为<120 mm,轴颈中心距为1 930 mm 。采用<120mm ×<240mm ×160mm 双列圆柱滚子轴承,轴箱材料为铸钢,有条件时将采用铝合金。
4. 2 构架组成
构架为H 型轻量化低合金高强度钢板焊接结构,主要由2 根侧梁和2 根横梁组成(图4)。侧梁上盖板、下盖板和立板的厚度分别为12 mm 、14 mm 、10 mm,侧梁内部设有多块厚度为8 mm 的筋板。构架横梁采用直径<180 mm 、壁厚14 mm 的无缝钢管,可提高构架主体结构的可靠性。侧梁与横梁的连接处和两横梁之间设有纵向加强梁。
图4 构架装配图
构架侧梁上焊有制动缸安装座、轴箱弹簧定位座等,横梁上焊有牵引电机吊座、齿轮箱吊杆座、牵引拉杆座和横向缓冲器座等。所有关键安装座的位置精度均通过对转向架构架的整体加工获得。采用三维有限元分析法进行了构架应力和振动模态分析。计算表明,构架整体应力分布合理,不存在薄弱环节。模态分析采用了L anczo s 方法,最低阶模态振型为构架扭曲,频率为3011 H z 。正常运用情况下,转向架构架的使用寿命不低于车体寿命(30 a),在此期间内不需要对转向架进行结构修整。转向架焊接制造完工后需进行消除焊接内应力的处理。
4. 3 中央悬挂装置
中央悬挂装置采用低横向刚度、大扭转变形的空气弹簧直接支承车体的三无结构,垂向用可变阻尼节流阀减振,横向安装油压减振器,还设有非线性横向缓冲止挡和新型抗侧滚扭杆装置(图5)。动车头部转向架装设排障器和信号天线托架。当采用第三轨受电时,还需装设第三轨受流器。
图5 无摇枕型中央悬挂装配
牵引装置由中心销、牵引梁、复合弹簧和新结构Z 形牵引拉杆组成,牵引点距轨面高度为385 mm 。新结构Z 形牵引拉杆具有低的横向及垂向附加刚度,提高了车辆的横向及垂向动力学性能,实现了无磨耗、无间隙牵引。
4. 4 基础制动装置
动车、拖车转向架均采用单侧单元式踏面制动装置,制动力优先由动车的再生制动负担。每轴设1 个带弹簧停放制动器的单元制动缸,停放制动能力满足用户规定的最大限制坡道要求。此方案的优点在于,动车、拖车转向架的制动装置(除制动倍率外) 完全相同。与轴装盘形制动和轮装盘形制动相比,该转向架具有较低的簧下质量,有利于减小轮轨之间的动作用力。单元制动缸的主要技术参数见表3。
4. 5 齿轮传动装置采用斜齿轮一级减速,以使传动平稳,降低传动噪声。为降低簧下质量,齿轮箱材料采用高强度铸造铝合金。采用刚性可移式鼓形齿联轴器或TD 型挠性板式联轴器(图6)。齿轮箱采用具有双面密封效果的机械式迷宫密封,免维护,无磨损。传动装置的传动比等主要技术参数将依据列车基本单元的配置和牵引电机的选择来确定。
图6 牵引电机传动装置
4. 6 其他装置
5 转向架动力学性能参数优化
铁道车辆是一个复杂的多体动力学系统,不但有各个部件之间的相互作用力和相对运动关系,还有轮轨之间复杂的相互作用关系。在转向架设计过程中,笔者与北方交通大学合作,利用德国铁路专用软件S IM 2 PA CK 建立了车辆系统的多体动力学模型,对影响车辆动力学性能的转向架主要参数进行了优化计算。包括:一系圆锥橡胶弹簧的三向刚度、二系横向减振器阻尼、抗蛇行减振器阻尼、抗侧滚扭杆刚度和车轮踏面斜度的变化等。车辆系统的每种参数对车辆的动态响应、蛇行运动稳定性和曲线通过性能三个方面的影响是不同的,而且,提高车辆蛇行运动临界速度和改善车辆曲线通过性能这两者对悬挂参数的要求是有矛盾的。因此,车辆悬挂系统的结构设计和参数选择,只能按实际运用条件进行综合考虑。这些条件包括最高运营速度、曲线半径和超高以及线路不平顺等。通过多方案的参数优化选择,转向架蛇行运动的计算临界速度为220 km /h,动车、拖车的运行平稳性指标小于2. 5,曲线通过能力和运行安全性指标满足有关标准的要求。
6 结论与建议
立足于国内技术,研制出具有国际先进水平的转向架,对我国城市轨道交通的发展具有重大意义。转向架的结构设计受车辆限界、地板高度、车辆宽度和轴重等的严格限制。通过B 型城市轨道交通车辆转向架的设计,笔者有以下几点体会:
(1) 虽然完成了转向架的设计和理论分析计算,但结构设计的合理性、关键零部件的疲劳强度以及运行性能仍有待于进一步试验和长期的运用考验。
(2) 对于采用VVV F 交流传动的A 型和B 型城市轨道交通车辆来说,踏面单元制动是较理想的基础制动方式。
(3) 车轮直径大小及其辐板形式不仅影响轮轨之滑防空转控制传感器、接地电刷装置和固体轮缘润滑间的相互作用,也关系到转向架传动装置的设计和牵引电机的选择。应尽快研制车轮直径和辐板形式合理的噪声优化车轮。
(4) 有关单位应研制专门适用于城市轨道交通车辆的大等效斜度圆弧踏面,以提高城市轨道交通系统运营的经济性。
(5) 城市轨道交通车辆转向架的研制是一个复杂的系统工程。转向架的设计与线路、限界条件、传动技术的发展以及转向架基础零部件的技术水平密切相关。
(6) B 型城市轨道交通车辆转向架的基本结构和技术完全可以用于A 型车,只需根据A 型车铝合金车体的设计特点对转向架固定轴距和空气弹簧上支承面高度进行适当调整即可。
http://hzjdw.com/vThesis/ViewThesis.asp?ThesisID=NewMaker0764
城市轨道交通的主要技术特性
⒈城市轨道交通有较大的运输能力
城市轨道交通由于高密度运转,列车行车时间间隔短,行车速度高,列车编组辆数多而具有较大的运输能力。单向高峰每小时的运输能力最大可达到6万~8万人次(市郊铁道);地铁达到3万~6万人次,甚至达到8万人次;轻轨1万~3万人次,有轨电车能达到1万人次,城市轨道交通的运输能力远远超过公共汽车。据文献统计,地下铁道每公里线路年客运量可达100万人次以上,最高达到1200万人次,如莫斯科地铁、东京地铁、北京地铁等。城市轨道交通能在短时间内输送较大的客流,据统计,地铁在早高峰时1h能通过全日客流的17%~20%,3h能通过全日客流的31%。
⒉城市轨道交通具有较高的准时性
城市轨道交通由于在专用行车道上运行,不受其他交通工具干扰,不产生线路堵塞现象并且不受气候影响,是全天候的交通工具,列车能按运行图运行,具有可信赖的准时性。
⒊城市轨道交通具有较高的速达性
与常规公共交通相比,城市轨道交通由于运行在专用行车道上,不受其他交通工具干扰,车辆有较高的运行速度,有较高的启、制动加速度,多数采用高站台,列车停站时间短,上下车迅速方便,而且换乘方便,从而可以使乘客较快地到达目的地,缩短了出行时间。
⒋城市轨道交通具有较高的舒适性
与常规公共交通相比,城市轨道交通由于运行在不受其他交通工具干扰的线路上,城市轨道车辆具有较好的运行特性,车辆、车站等装有空调、引导装置、自动售票等直接为乘客服务的设备,城市轨道交通具有较好的乘车条件,其舒适性优于公共电车、公共汽车。
2.它在极大程度上方便了乘客出行,使居民享受更高品质的生活。轻轨也更符合绿色交通的标准,轨道延伸之处的大规模市政配套设施建设,更有利于环境综合治理。
3.轻轨的特点是速度快、运量大、污染小而且安全性高,从运量来区分,地铁的运输量最大,单向每小时可运送4万至6万人次,轻轨可运送2万至3万人次,有轨电车的运量最小,只有1万人次。城市轨道交通中的“轻轨”与“地铁”相对应,城市公交系统中的有轨电车、导轨胶轮列车与城市轨道交通轻轨列车在技术上完全不同,因此不属于轻轨系统。城市轨道交通中的轻轨指的是在轨距为1435毫米国际标准双轨上运行的列车,列车运行利用自动化信号系统。
碳纤维复合材料为何如此广受轨道交通行业的欢迎?本文由博实碳纤维小编带大家来解读一下。
一、轻量化、高强度
随着对车辆的轻量化要求越来越高,选择一款好的减重材料势在必行。碳纤维是一种密度极小的纤维材料,比铝的密度还要小,且不到钢的1/4 ,其比强度及比模量在现有工程材料中是最高的。与采用钢、铝合金等传统金属材料相比,碳纤维复合材料应用于地铁车辆的车体、司机室、设备舱分别减重30%以上,转向架构架减重40%,整车减重13%。
二、可设计性强
碳纤维制品是通过碳纤维预浸料层叠热压而成的,在制作过程中可以通过调整铺层合理设计达到最优的力学效果,从而达到客户所需要求。
三、抗震吸能效果好
碳纤维材料具有吸能抗震的特性,不仅能够阻止杂散电流的影向,还保证了行驶过程中的平稳性,此外碳纤维还具有吸声的效果,减少噪音的影响。
四、耐腐蚀性能优异
碳纤维是一种非金属材料,化学活性低,能够对抗酸碱盐等腐蚀。因此不仅能够延长结构的使用寿命,并且基本上不需要采用防腐、防锈等措施,从而可以减少不必要的维修。
五、防火性能好
碳纤维材料具有优异的防火性能,减少了轨道交通发生火灾的的意外情况。碳纤维复合材料对扩展裂纹的敏感度很低,即使出现损伤,也不致被立即破坏,安全性更高。
目前碳纤维复合材料因为价格和生产工艺的制约,在轨道交通行业应用并不算多。但是随着社会的发展,碳纤维一定会在轨道交通的应用中大放异彩。
(1)城市轨道交通具有较强的运输能力。城市轨道交通由于具有高密度运转、行车时间间隔短、行车速度高、刘车编组辆数多的特点而具有较强的运输能力。单峰每小时的运输能力最大可达到6万~8万人次(市郊铁道),地铁为4万~6万轻轨为1万~4万人次,有轨电车能达到1万人次,城市轨道交通的运输能力远远公共汽车。据相关文献统计,地下铁道每千米线路年客运量可达100万人次以上,达到1 200万人次,如莫斯科地铁、东京地铁、北京地铁等。城市轨道交通能在知内输送较大的客流,据统计,地铁在早高峰时1 h内能通过全日客流的17%~3 h内能通过全日客流的31%。
(2)城市轨道交通具有较高的准时性。城市轨道交通由于在专用行车道上运行其他交通工具的干扰,不产生线路堵塞现象并且不受气候影响,是全天候的交通工车能按运行图运行,具有可信赖的准时性。
(3)城市轨道交通具有较高的违达性。与常规公共交通相比,车辆有较高的度,有较高的启、制动加速度,多数采用高站台,列车停站时间短,上下车迅速方且换乘方便,从而可以使乘客较快地到达目的地,缩短出行时间。
(4)城市轨道交通具有较高的舒适性。与常规公共交通相比,车辆、车站等调、引导装置、自动售票等直接为乘客服务的设备,因而具有较好的乘车条件, 其优于公共电车和汽车。
中小微企业融资一直是各方关注的焦点问题。稳住中小微企业就是稳住了经济的“半壁江山”,稳住了就业,稳住了民生。今年的政府工作报告再次强调要加强金融对实体经济的有效支持。并具体提出,用好普惠小微贷款支持工具,增加支农支小再贷款,优化监管考核,推动普惠小微贷款明显增长、信用贷款和首贷户比重继续提升。引导金融机构准确把握信贷政策,继续对受疫情影响严重的行业企业给予融资支持,避免出现行业性限贷、抽贷、断贷。发挥好政策性、开发性金融作用。推进涉企信用信息共享,加快税务、海关、电力等单位与金融机构信息联通,扩大政府性融资担保对小微企业的覆盖面,努力营造良好融资生态,进一步推动解决实体经济特别是中小微企业融资难题。
地铁系统
地铁系统是适用于大城市城区、客流需求较大的骨干线路,采用全封闭线路、专用轨道、专用信号且独立运营。线路通常设在地下隧道内,有时也延伸到地面或设在高架桥上。
市域快轨系统
市域快轨系统在新标准中指采用钢轮钢轨体系的市域轨道交通系统。同时考虑到城市轨道交通系统的经济性,也提出了运输能力应大于等于1万人次每小时的技术指标要求。
轻轨系统
轻轨系统是指采用钢轮钢轨体系的中运能的、以地上敷设为主的城市轨道交通系统。本标准主要考虑敷设方式和运能等级来区分线路是否属于轻轨系统。
中低速磁浮交通系统
磁浮系统指利用电磁力实现列车与轨道间的无接触悬浮导向的系统。本标准所称的中低速磁浮交通系统是以最高设计速度划分的,在标准推荐的速度范围内,无论采用长短定子,均为中低速磁浮交通系统。而高速磁浮系统由于常应用于城市之间所以并未纳入城市轨道交通范畴。
跨座式单轨系统
单轨系统是一种车辆与特制的轨道梁组合成一体运行的中运能或低运能胶轮—导轨系统。跨坐式单轨为单轨的一种,是通过单根轨道支持、稳定和导向,车体采用橡胶轮胎骑在轨道梁上运行的轨道交通制式。
悬挂式单轨系统
悬挂式单轨系统也是单轨的一种。与跨坐式单轨系统的区别在于所依靠的轨道位于列车的上方。特点是所占空间很小,能有效利用道路中央隔离带和城市低空,适于建筑物密度大的狭窄街区。
自导向轨道系统
自导向轨道系统属于胶轮-导轨系统,一般用在高架线上为多。走行轮为胶轮,走行在桥梁面上,起支承作用;导向轮也是胶轮,依靠导向板或导向槽对车辆起导向和稳定作用。为了控制车辆轴重,保障胶轮运行安全,故采用小车辆、短列车,自动导向。
有轨电车系统
有轨电车系统是一种以低运能为主的城市轨道交通系统,包括采用钢轮钢轨,单厢、模块化或铰接式车辆的有轨电车和采用胶轮车辆的导轨式有轨电车系统。本标准主要从驾驶模式、运输能力、路权形式、敷设方式、车辆选型和列车最大长度方面来区分有轨电车系统和轻轨系统。除此之外,是否采用司机瞭望驾驶也是区分有轨电车系统和轻轨系统的技术特征之一。
导轨式胶轮系统
导轨式胶轮系统是随着新技术的发展涌现出来的新的轨道交通方式,以高架敷设为主,是基于传统胶轮导轨系统进行小型化研发而产生的新型的低运能胶轮导轨轨道交通系统。从支持国家自主创新、产业发展,并考虑到产品具有新能源汽车技术和低运能等特点,将此类系统单独分类。
电子导向胶轮系统
电子导向胶轮系统指电子控制的导向式胶轮系统。与机械导向式(导轨式)胶轮系统在车辆结构、路轨结构、功能配置等方面均有较大区别。一般采用可编组铰接胶轮车辆通过车厢主动协同控制在预定的轨迹线上(一般是道路上)运行,由橡胶车轮主动导向、承载和走行。