胶合板是如何制成的?
由3层或多层(一般为奇数)单板组合并使相邻单板的纤维方向垂直胶合而成的一种木质人造板。特殊情况下也有制成4、6层等偶数层的。胶合板由于具有幅面大、变形小、不易翘曲、横纹抗拉强度大、施工应用方便等优点,因此在建筑、家具、车厢、造船、军工、包装及其他工业部门获得了广泛应用。
简史
约在公元前3000年以前,埃及首次用手工锯切木材方法制成单板。600多年后,他们开始用单板作贴面材料来装饰宫廷家具。公元前1世纪初,罗马人已掌握单板制造技术与胶合板制造原理。1812年,法国首先发明了单板旋切机,10年后,经过改进的旋切机已在工业生产中正式使用,性能日益完善,从而促进了胶合板工业的发展。19世纪中叶,德国建成了第一家胶合板工厂,开始大批量的工业化生产。1914年以后,胶合板已成为一种商品。第二次世界大战后,世界胶合板生产发展极为迅速,设备不断更新,产品品种增多,应用范围也日益扩大,产量大幅度提高。
中国胶合板工业始于20世纪20年代初,但工厂规模很小,设备简陋。50年代扩建和新建了一批胶合板工厂。1956年前后开始合成树脂生产,促进了胶合板工业的发展。到了70年代,开始改进生产工艺,首先着眼于中板整张化技术与设备的研究,并取得了初步成效;喷气式单板干燥机也在生产中迅速得到推广应用;合板热压开始采用无热板工艺。至80年代,出现了“涂胶—配板—垫压”半连续化生产,随着合板预压工艺的应用,适应预压工艺、具有初粘性的脲醛树脂胶也得到了开发与应用。
胶合板树种
中国胶合板工业使用的树种,可分为用于旋切单板和刨切薄木两大类。①生产旋切单板的主要树种有水曲柳、椴木、黄波罗、柞木、荷木、杨木、楸木、桢楠、桦木、枫香、枫杨、丝栗、桤木、槭木、云杉、马尾松、云南松等。②生产刨切薄木的主要树种有水曲柳、黄波罗、柞木、核桃木、梓木等。此外,胶合板生产中还采用一些南洋木材和非洲木材,其中主要树种有柳安、阿必东、克隆等。
胶合板使用的胶粘剂
胶合板工业中常用的胶粘剂有蛋白质胶和合成树脂胶。也有使用少量橡胶类胶粘剂,一般制成压敏胶粘带使用。蛋白质胶中,皮骨胶用于制造修补单板用的胶纸带,其他蛋白质胶用于胶合板制造。合成树脂胶的种类很多,但用于胶合板生产的主要有脲醛树脂胶和酚醛树脂胶,中国以脲醛树脂胶应用最多。(见木材胶粘剂)
胶合板的性质
胶合板的物理力学性质可用含水率、密度、胶合强度等说明。国际标准化组织(ISO)对普通胶合板的结构、含水率、质量三方面作出规定。结构:相邻层单板的纹理应互成直角;相对于中心层互相对称。含水率:应在12~14%之间。质量:成品应用矩形直边和明显的棱角;对于每一名义厚度,单板的最少层数应遵照有关规定。
中国胶合板国家标准规定:①含水率。Ⅰ、Ⅱ类胶合板含水率6~14%;Ⅲ、Ⅳ类胶合板8~16%。②密度。胶合板的密度大于同树种的木材;胶合时的单位压力越大,则胶合板的密度也越大;木材在高温下易产生塑性变形,热压胶合比冷压胶合压缩率越大,胶合板密度也越大。③胶合强度。Ⅰ、Ⅱ类胶合板,椴木、杨木、赤杨≥0.70兆帕;水曲柳、荷木、枫香、槭木、榆木、柞木≥0.80兆帕;桦木≥1.00兆帕;马尾松、云南松、落叶松、云杉≥0.80兆帕。Ⅲ、Ⅳ类胶合板≥0.70兆帕。
如果测定胶合强度试件的平均木材破坏率超过80%时,则其胶合强度指标值可比上面规定的指标值低0.20兆帕。符合胶合强度指标值规定的试件数等于或大于有效试件总数的80%时,该批胶合板的胶合强度判为合格品。
胶合板的用途
由于胶合板具有很多优点,因此,胶合板的应用范围十分广泛。Ⅰ类胶合板主要用于航空、船舶、车厢、混凝土模板、包装以及其他要求耐水性、耐气候性好的场所;Ⅱ类胶合板主要用于车厢、船舶、家具、包装及建筑内部装修等方面;Ⅲ类胶合板主要用于家具、包装及一般建筑用途;Ⅳ类胶合板主要用于包装及一般用途。根据工业、建筑、交通运输、纺织、电气等工业部门的特殊要求,还可生产一些供专门用途的胶合板等。
生产工艺
胶合板的表层单板称为表板,外观质量较好的那个表板称为面板,相对于面板的另一侧表板称为背板。纹理方向与表板纹理垂直的内层单板称为芯板,而纹理方向与表板纹理平行的内层单板称长中板。单板是用旋切、刨切、锯切方法制成的薄板。
胶合板的主要生产工序有:原木截断;原木水热处理;剥皮与木段定心;单板切削加工;单板干燥;单板剪切与修整加工;涂胶与组坯;预压与热压;裁边;刮光或磨光;检验、分等及包装等。
趋势
①胶合板工业现在面临木材资源短缺、材质下降等问题。因此,今后胶合板生产势必大量利用小径材和低质材,大力开发利用速生树种,在工艺技术及设备上要有较大改革,才能适应这种变化。为实现高效利用小径材、短材、低质材,生产大幅面胶合板的目的,对单板纵接及合板纵接技术将有待进一步的改进。②以单板制成的产品主要将向装饰性方向发展。装饰贴面用的薄型单板,花色繁多的组合单板,势必将成为单板生产的主要方向,使数量有限的珍贵木材得到更高的使用价值,提高珍贵木材的出材率。
为提高铁路装载量和保证运输安全而设置于铁路车辆两侧的木柱。车立柱严禁使用腐朽、虫蛀、受伤、有横裂纹和弯曲度过大的小径原木。最好选用硬木,杨木、松木、柳木可用于短途运输或与硬木间隔使用。外插车立柱(车立柱插在车辆车箱板的外侧)的长度为3米,内插车立柱(车立柱插在车辆车箱板的内侧)的长度为2.8米。小头直径8~12厘米(用杨木时须增加1厘米)。为了保证车立柱安插的稳固性,车立柱插入车辆的柱槽后应伸出10厘米左右,并使车立柱与柱槽壁间留有2.5厘米的间隙,以便由上向下打入木楔。车立柱成对使用,其对数视被装原木的长度而定。材长不超过5米时,使用2对车立柱;5米以上不超过8米时,使用3对车立柱;8米以上,使用4~6对车立柱。使用平板车、砂石车装运木材时,每垛木材的两端必须用硬木车立柱,中间可以使用松木、杨木车立柱。
陈桂陞(1916~1990)中国著名木材学家、林业育教家。河北省滦县人,生于1916年7月2日,卒于1990年2月14日。1940年毕业于西北农学院森林系,获农学士。1945年到美国耶鲁大学研究生院学习。1946年回国后任原农林部中央林业实验所技正。从1947年开始,先后在武汉大学、华中农学院和南京林学院(现南京林业大学)任教授、森林系主任,并曾任南京林学院副院长。还担任过国家科委林业组成员,中国林学会理事、常务理事,江苏省林学会副理事长,中国林业教育研究会副会长,全国木材加工专业教材编委会主任委员。
陈桂陞是南京林学院木材工业系创始人之一。他主编的《胶合板制造学》是中国最早的林业高等院校木材加工专业教材。多次参加中国和世界重要学术会议,发表过《竹材胶合板——一种高强度新型结构材》等有影响的学术论文。作为课题负责人主持“高效节能刨花干燥机及其供热系统的研究”、“竹材胶合板的研究”和“定向刨花板的中间试验的研究”三项林业部攻关项目,前者获1988年林业部科技进步二等奖。
陈陆圻(1918~1992)中国现代森林利用专家、林业教育家。辽宁省丹东市人,生于1918年3月31日,卒于1992年9月10日。1938年毕业于奉天农业大学林学科,1940年赴日本东京大学农学部,攻读森林利用学研究生课程。1942年回国。1938~1939年和1942~1944年,先后任奉天农业大学林学科助教、副教授、教授。1946~1948年,在北平大学第四分班(即农学院)林学系、河北农学院林学系执教。1949年后,曾任河北农学院校务委员会委员,林学系教授兼系主任、教务处长,北京林学院(现北京林业大学)森林经营系副主任、森林工业系主任、教务处长、副院长、代院长、顾问等职。还担任过中国林学会第四、五、六届理事会副理事长,全国自然科学名词审定委员会委员,国务院学位委员会森林工业评议组组长,林业部第二、三届科学技术委员会常务委员、顾问,中国科学技术协会第二届委员会委员。
陈陆圻在北京林学院1978年复校及其后的建设中做了大量有益工作。他1986年6月提出的生态采运学的设想,在森林工业界引起了强烈反响。陈陆圻曾翻译苏联《森林利用学》,主编林业高等院校统编教材《森林利用学》、《日汉林业词汇》、《林业名词》,发表了《对我国如何实现林业现代化的粗浅看法》、《世界林业的发展趋势与我国林业的发展方向》、《对我国林业教育改革的几个问题的拙见》、《二十世纪的世界林业》等论文。
成俊卿(1915~1991)中国著名木材学家。四川省江津县人,生于1915年11月14日,卒于1991年11月26日。1942年于四川大学森林系毕业后,先后任原中央工业试验所木材试验室技佐、助理研究员,四川省遂宁县高级农业学校森林科主任教师。1948~1951年在美国华盛顿大学学习,获林业硕士学位。1951年回国后,任安徽大学林学系副教授。1956年10月起任中国林业科学研究院木材工业研究所研究员,并先后兼任材性研究室副主任、主任。
成俊卿在木材识别、归类和用途,木材解剖与材性和利用的关系方面进行了大量的研究工作。他编著的《中国热带和亚热带木材》,约95万言,详尽地介绍了470个树种的树木分布和商品材木材粗视及显微特征、物理力学和加工性质以及木材利用,为中国木材的识别和合理利用提出了科学依据。该书获林业部1980年科技成果一等奖。他主编的《木材学》,共178余万言,内容涉及树木生长和木材形成、细胞壁结构及各种特性、木材缺陷、材质改进,以及木材鉴别和用途等方面,是中国当前权威和有实用价值的木材学著作。该书1986年获中国林学会首届梁希奖,次年又获中国新闻出版署第四届全国优秀科技图书一等奖。
水煮(欧洲进口榉木原木放进锅炉蒸煮软化)
去皮处理(使用机器把表层去掉)
刨切(使用机器切成薄片,人工分拣)
烘干处理(烘干机器处理一件木片的时间需要半小时)
上胶水(改性三聚氰胺胶)
冷压—热压—放冷(待胶合板完全不热之后)
砂光机打磨(使胶合板表面更光滑平整)
1)定义
胶合板是将原木沿年轮方向旋切成大张单板,经干燥、涂胶后按相邻单板层木纹方向相互垂直的原则组坯、胶合而成的板材。单板层数为奇数,一般为三层至十三层,常见的有三合板、五合板、九合板、和十三合板(市场上俗称为三厘板,五厘板,九厘板,十三厘板)。最外层的正面单板称为面板,反面的称为背板,内层板称为芯板。
2)分类
一类胶合板为耐气候、耐沸水胶合板,由此及彼有耐久、耐高温,能蒸汽处理的优点;二类胶合板为耐水胶合板,能在冷水中浸渍和短时间热水浸渍;三类胶合板为耐潮胶合板,能在冷水中短时间浸渍,适于室内常温下使用。用于家具和一般建筑用途;四类胶合板为不耐潮胶合板,在室内常态下使用,一般用途胶合板用材有榉木、椴木、水曲柳、桦木、榆木、杨木等。
3)构成原则
对称原则:对称中心平面两侧的单板,无论树种单板厚度、层数、制造方法、纤维方向和单板的含水率都应该互相对应,即对称原则胶合板中心平面两侧各对应层不同方向的应力大小相等。因此,当胶合板含水率变化时,其结构稳定,不会产生变形,开裂等缺陷;反之,如果对称中心平面两侧对应层有某些差异,将会使对称中心平面两侧单板的应力不相等,使胶合板产生变形、开裂。
奇数层原则:由于胶合板的结构是相邻层单板的纤维方向互相垂,又必须符合对称原则,因此它的总层数必定是奇数。如:三层板、五层板、七层板等。
奇数层胶合板弯曲时最大的水平剪应力作用在中心单板上,使其有较大的强度。偶数层胶合板弯曲时最大的水平剪应力作用在胶层上而不是作用在单板上,易使胶层破坏,降低了胶合板强度。
胶合板是由木段旋切成单板或由木方刨切成薄木,再用胶粘剂胶合而成的三层或多层的板状材料,通常用奇数层单板,并使相邻层单板的纤维方向互相垂直胶合而成。胶合板是家具常用材料之一,为人造板三大板之一,亦可供飞机、船舶、火车、汽车、建筑和包装箱等作用材。一组单板通常按相邻层木纹方向互相垂直组坯胶合而成,通常其表板和内层板对称地配置在中心层或板芯的两侧。用涂胶后的单板按木纹方向纵横交错配成的板坯,在加热或不加热的条件下压制而成。层数一般为奇数,少数也有偶数。纵横方向的物理、机械性质差异较小。常用的胶合板类型有三合板、五合板等。胶合板能提高木材利用率,是节约木材的一个主要途径。
通常的长宽规格是:1220×2440mm,而厚度规格则一般有:3、5、9、12、15、18mm等。主要树种有:榉木、山樟、柳按、杨木、桉木等。为了尽量改善天然木材各向异性的特性,使胶合板特性均匀、形状稳定,一般胶合板在结构上都要遵守两个基本原则:对称;相邻层单板纤维互相垂直。对称原则就是要求胶合板对称中心平面两侧的单板,无论木材性质、单板厚度,层数、纤维方向,含水率等,都应该互相对称。在同一张胶合板中,可以使用单一树种和厚度的单板,也可以使用不同树种和厚度的单板;但对称中心平面两侧任何两层互相对称的单板树种和厚度要一样。面背板允许不是同一树种。要使胶合板的结构同时符合以上两个基本原则,它的层数就应该是奇数。所以胶合板通常都做成三层,五层、七层等奇数层数。胶合板各层的名称是:表层单板称为表板,里层的单板称为芯板;正面的表板叫面板,背面的表板叫背板;芯板中,纤维方向与表板平行的称为长芯板或中板。在组成腔台板板坯时,面板和背板必须紧面朝外。
胶合板通常指三合板或多层板,就是用相同厚度的两层或更多层木皮加胶水高温压制而成。通常用奇数层单板,并使相邻层单板的纤维方向互相垂直胶合而成。
对称原则:对称中央平面两侧的单板,不管树种单板厚度、层数、制造方法、纤维方向和单板的含水率都应该互相对应,即对称原则胶合板中央平面两侧各对应层不同方向的应力大小相等。因此,当胶合板含水率变化时,其结构不乱,不会产生变形,开裂等缺陷;反之,假如对称中央平面两侧对应层有某些差异,将会使对称中央平面两侧单板的应力不相等,使胶合板产生变形、开裂。
奇数层原则:因为胶合板的结构是相邻层单板的纤维方向互相垂,又必需符合对称原则,因此它的总层数必然是奇数。如:三层板、五层板、七层板等。
奇数层胶合板弯曲时最大的水平剪应力作用在中央单板上,使其有较大的强度。偶数层胶合板弯曲时最大的水平剪应力作用在胶层上而不是作用在单板上,易使胶层破坏,降低了胶合板强度。
一般情况下生产脲醛胶胶合板胶黏剂用量不完全一样,正常涂胶量250-280克/平方米。 脲醛胶在使用的时候,需要添加一定量的面粉。为了降低脲醛胶的生产成本,都使用胶得宝脲醛树脂添加剂,
社会经济发展越来越快,各行各业也是越来越多,对于合板制作工来说,一般需要具备胆大心细的职业素质,因为我们都知道对于合板制作来说是存在着一定的危险性的,如果不能够及时的察觉危险的话,很有可能会危及我们的生命,因此我们需要注意的是,在步入一个行业之前,一定要了解这个行业的危险系数,只有这样才可以更好的保障我们的生命安全,希望每个人都能够知道这件事。
1、合板制作工主要的工作内容是什么
一般来说合板制作工主要从事胶合板,纤维板,刨花板,以及人工板饰面加工。由此可以看出这个职业还是有着极高的专业技能要求的,因此我们需要注意的是,在生活中一定要努力学习自己的专业才行,不过我们需要注意的是对于这个职业来说操作环境是非常的恶劣的,因为我们都知道无论任何板材都是有着很粗的纤维的,长时间的工作很有可能会对我们的肺部有伤害,希望每一个人都能够了解到这件事。
2、为什么从事这个职业的年轻人越来越少
我们都知道任何职业都是需要新鲜血液来进行填充的,但是就这个职业来说,年轻人可以说是越来越少,因为现在时代在不断的进步,人们更喜欢从事互联网行业,因为互联网行业是不会存在任何风险的,希望每个人都能够找到自己喜欢的职业。
3、为什么这个职业不被人们所认可
我们都知道现在的时代是一个高速发展的时代,因此人们对于外界信息的接受能力也是越来越强,这个职业需要经常在车间进行工作,每天见不到太阳也是非常的辛苦的,因此对于工厂里面的人来说可能会存在着一些歧视。
以刨花或纤维材料为板芯,两面胶贴单板的一种人造板。通常所说的复合板主要指用定向刨花板作板芯,单板作表层的结构用人造板(图1)。复合板不仅可提高木材综合利用率和扩大人造板使用范围,还可充分利用低等级木材和采伐、加工剩余物,满足社会各种需求及缓和木材供应短缺的矛盾。20世纪70年代初,美国开始对该产品作系统的研究和开发利用。
生产方法
按生产工艺可分为一次成板和二次成板两种。前者是将施胶后的刨花直接在单板上铺装成型、组合成坯后在压机中一次压制成板。这种生产工艺是将单板生产、刨花铺装、组坯热压连成一条生产线,使生产工艺简化。后者是先将刨花压制成刨花板,再在其两面覆贴单板,经热压制成复合板。这种生产工艺是将单板和刨花板在不同生产线上分别加工,然后再组坯热压成板。虽然二次成板生产工艺较一次者复杂,但二次成板生产工艺灵活性大,产品品种多样,且生产成本低,因此复合板的生产以二次成板生产工艺为主。
图1结构设计
复合板的一个主要功能是替代胶合板,它的厚度随用途不同而变化。作为结构板,最普通的厚度是12.7毫米,包括每面一张厚度为2.54毫米的单板,这样的复合板由60%的刨花板和40%的单板组成。厚度为9.5毫米的薄型复合板,单板和刨花板大约各占一半。厚度为19毫米的厚复合板,单板约占1/3,刨花板约占2/3(图2)。
图2复合板以表板纹理方向为纵向,以垂直于表板纹理方向的为横向。为了改善复合板的横向强度,板芯刨花定向排列方向应与表板纹理方向垂直。这种结构形式的复合板,产品的刚性、尺寸稳定性、工艺性能等均相似于结构胶合板,实际使用时,可代替结构胶合板。试验表明,复合板用在住宅建筑中,可以满足屋顶板、地板对强度和耐久性的要求。
性能
复合板的物理性能及力学性能主要取决于复合的原材料性能、复合板的结构设计和工艺设计。表板质量和树种是决定纵向弹性模量和纵向静曲强度的主要因素。其纵向力学强度和刚度接近或大于同厚度的胶合板,但它的横向力学强度和刚度比胶合板小。由于纵向强度是板的主方向强度,按多数用途来说,复合板的物理力学性能略优于胶合板。二者物理力学性能的比较见右表。作为结构用途的复合胶合板,其力学性能一般用静曲强度和静曲弹性模量、冲击强度、剪切强度、抗压强度、抗拉强度、握钉力,以及蠕变等表示。建筑用人造板,重要的质量指标是尺寸稳定性。用定向刨花板作板芯的复合板,由于刨花排列方向与表层单板纹理方向成90°角排列,使复合板有类似于胶合板的尺寸稳定性。复合板耐久性的主要要求是在施工期间的气候及建筑物使用期间的温度和湿度影响下,不致产生具有毁坏性的强度损失,酚醛树脂胶粘的复合板为3层结构,表板为黄杉和落叶松单板,板芯为定向刨花板;胶合板由4层单板组成,单板树种为黄杉或落叶松等,厚度3.18毫米。
复合板是属于具有可在室外使用的耐久性材料。
优点和用途
主要优点是:①提高木材利用率,全部原木可得到合理和充分利用。普通胶合板的木材利用率约40%,如果建厂时对原料进行科学预测及合理利用的规划,则复合板的木材利用率接近100%,便成为一种无废料生产。②建厂投资及生产成本低,劳动生产率高。生产复合板的成本比胶合板降低5%,劳动生产率可提高140%。建厂投资只有胶合板的81%。③用二次成板工艺生产复合板的同时,又可生产胶合板和刨花板,生产灵活性大,市场适应性好。④复合板是人造板的组合产品,其物理力学性能可按用途需要进行结构和工艺设计,因而产品适用范围广。复合板除用作家具、建筑物装修外,还可用作结构材料,替代胶合板作屋顶板、地板、护墙板、混凝土用模板等。
到80年代末,国际上复合板产量所以没有得到迅速增长,是因为在建厂时,当地原料很难适应单板及刨花的恰当比例,不易真正做到无废料生产。
以木材和木质材料为原材料,经机械或(和)化学方法加工后,其产品仍保留木材基本特性的产业部门。在森林工业系统中,木材工业和林产化学工业同为采伐运输(见森林采运)工业的后续工业。木材具有重量轻、强度高、弹性好,色调丰富、纹理美观、加工容易等优点,迄今世界各国都将木材作为重要工业原材料。木材工业能源消耗低,环境污染少,资源有再生性,其产品对国家经济建设和人民生活有密切的关系,因而在国民经济中占有重要地位。按其产品性质可大致分为锯材、人造板、木制品等3个工业门类。前两类属材料性生产,为其他工业部门提供原材料,后一类工业的产品则直接进入使用领域。
木材工业的发展,是以社会需求为动力,以木材资源的消涨变化为基础,以各种新工具、新设备、新技术和木材学不断进步,所有这些共同作用,促进了木材工业的发展。
中国木材工业
分简史、现状、生产技术和展望4部分记述。
简史
远在石器时代,中国出现了石斧,已经“以石为刃,刳木为舟”;青铜器时代出现了铜锯的雏形,开始有了沿长度方向截割木材的工具;春秋时期墨斗、角尺的发明,使木材加工技术进入了营造工程时期;后历秦、汉,降至唐、宋,木工工具日见完备,在木结构建筑中,已能应用锯剖、气干、拼接、包封等较为复杂的技术制造木柱,并开始对木材进行蒸煮、干燥等处理,以提高木结构稳定性;明代家具制造,更以其结构精巧、造型简朴典雅达到很高水平,至今仍驰誉海内外。这一段漫长的历史时期,从发生、发展到成熟所经历的时代,是中国木材加工的手工业阶段。现存的许多木结构建筑及木制品,成为中国传统文化中重要组成部分之一。而历代所留下的著述如《鲁班经》、《营造法式》(北宋李诫著)等,都已成为中国木材加工技术史上的重要文献。
19世纪末,中国上海、青岛、福州、哈尔滨等城市设立专业制材厂,20世纪初出现胶合板厂,中国木材工业开始进入机械化时代。50年代后,木材工业走上有计划的发展道路。50年代中期,中国开始生产合成树脂胶粘剂,为木材工业产品的提高和发展提供了物质条件,从此纤维板、刨花板、层积材、改良木以及表面装饰材料先后出现,标志了以木材综合利用为中心的中国木材工业开始进入现代化时期。
现状
中国木材工业从1949年后本着依靠自己资源为主,建立木材生产基地与木材工业体系的原则,逐步改造旧企业和建立新企业,主要产品有较大增长(以下数字不包括台湾省),从1950年到1988年,锯材从年产344万立方米增加到2621万立方米;胶合板从年产1.69万立方米增加到82.7万立方米;刨花板、纤维板从50年代中期开始研究,随后建厂生产,1988年产量已分别达到48.3立方米和148.4万立方米。三聚氰胺装饰等贴面板从50年代末开始至1988年产量已达3000万平方米。由于纤维板、刨花板及装饰板等产品于50年代末相继实现了工业化生产,中国木材工业就初步形成了独立和完整的体系。
现代木材工业加工技术的科学研究,在国际上始于20世纪20年代初。通过科学实验,在以木材学为基础,吸收了物理、化学、生物,以及热力学、机械工程学等学科的理论与方法,整理、分析了木材加工长期实践经验,加以发展和提高,逐步形成了一门高度综合的木材工艺学。随着木材工业不断发展,出现了许多新产品、新工艺,木材工艺学也按产品类别和工艺性质建立了相应的分支学科,如制材学、木制品生产工艺学、人造板制造学,以及木材切削学、木材干燥学、木材胶合工艺学等,已成为趋于完整的一个技术学科体系。1958年中国林业科学研究院组建了木材工业研究所,其后地方性木材工业研究机构亦陆续在北京、上海、哈尔滨等地成立。各省林业科学研究所大部设有木材加工的科研部门(见中国森林工业科学研究机构)。全国林业高等院校和农业院校的林学系,大都有部分教师及科研人员从事木材材性与加工技术的研究工作。有些学校还设有林产工业或木材工业的研究机构。物资部门亦先后在北京、上海和天津等城市建立了以实用和经济为主的木工研究单位,与木材加工有密切关系的家具研究所,在轻工业系统中,遍及全国各省、自治区、直辖市。建材工业部门则设有建材人造板研究所。木材工业建设工程的勘察设计,由林产工业设计院和各省林业勘察设计机构(见中国森林工业勘察设计机构)担任。中国林业机械公司所属林机厂和为数众多的木工机械厂具有制造木材工业成套生产设备能力。林业部在北京设有林业机械研究所,原第一机械工业部在福州设有木工机械研究所。1980年,中国林学会在福州成立了中国木材工业学会(见中国森林工业学术团体),为开展群众性的学术交流建立了组织。
木材工业生产技术
木材是一种非均质的各向异性的材料,在树木生长过程中又往往发生许多天然缺陷如节子、裂纹等以及遭受生物侵害所造成的缺陷如虫眼、腐朽等(见木材生物危害缺陷)。木材就带着这些缺陷进入生产过程,造成加工上许多复杂问题。制材属于初级加工,不提供直接使用的成品,所以缺陷对生产所产生的影响并不显著。胶合板工业由于木材的天然缺陷,使提高制造过程连续化自动化程度的难度加大。木制品由实体木材为主要单元材料所组成,结构比较复杂的木制品如家具等,其自动化程度的提高就更为困难。纤维板、刨花板系先将木材制成纤维或刨花,材质不均及各种缺陷虽已基本排除,但木材丰富的色调和美观的花纹也随之消失,以致产品表面不得不进行加工处理,这是木材工业的一个特殊性。木材工业产品除锯材外,极少是由单一技术加工,大都需用综合性技术,其中木材切削、木材干燥和木材胶合为基本加工技术。
木材切削
木材机械加工主要是改变木材规格、形状的过程,完成这一加工过程主要是经过木材切削。木材切削包括:锯、刨、铣、旋(车削)、钻、砂磨等多种方式。制材工业主要用锯切;绝大部分单板用旋切方法制造;木制品生产则几种切削方式全都使用。砂磨似不属于切削加工方式,但如将砂磨工具上的砂粒看作刀刃,则实质上是一种密集型的多刃切削法。木材切削加工又可分为有屑切削与无屑切削两种类型,大部分切削加工均属有屑切削,单板旋切、刨切、剪切则为无屑切削。由于木材的组成、纹理、年轮等影响,使铣削加工有顺铣、逆铣之分。由于锯切进料时纹理对刀刃切削方向不同而有纵剖、横截之别。木材含水率对切削加工也产生影响,大部分加工件需干材切削,而单板制造、工艺木片生产则需湿材切削,这是木材切削与其他材料切削的不同之处。
木材干燥
木材在树木生长期间就饱含水分,但为改善其使用性能,又必须通过干燥将一部分或大部分水分从木材中排除。因此,木材干燥是木材加工工艺中必不可少的重要环节,也是木材工业中一项重要生产技术,这是与金属等无机材料加工完全不同的一个方面。通常所说木材干燥,系指成材干燥,其他如单板、刨花、木纤维等材料的干燥,分别为胶合板、刨花板、纤维板制造工艺的组成部分。
木材干燥过程的起始状态与终了状态与蒸发水分所耗热量的关系等问题的研究,为干燥静力学的内容;讨论木材含水率梯度与干燥过程中所形成的温度梯度对干燥速度的关系及干燥势对干燥过程的作用等方面的问题构成干燥动力学;研究干燥过程中传热、传质、干燥阻力及干燥介质状态参数与干燥速度之关系等内容为干燥热物理学。以上述内容为基础,结合空气动力学的应用,以达到加快干燥速度和提高干燥质量的目的为干燥技术。对不同树种、规格、最终用途的被干燥木材,根据干燥技术所制订的操作条件和程序为干燥基准。由此可见,木材干燥学是一门实践性极强的学科。
木材胶合
任何工业产品的生产过程中,凡是以零、部件组成的成品,都有一个接合问题。木材工业产品的接合,从利用摩擦力、机械力的榫接、钉接、螺栓接合、铰链接合发展到胶接,使接合形式由点的接合发展为线及面的接合,使制品的力学强度和刚度显著提高。合成树脂胶粘剂的出现,促使胶合技术进步和胶合质量提高,终于导致人造板工业体系的形成。所以木材胶合是对木材工业发展有重要影响的一项基本加工技术。现正开展的无胶胶合技术的研究,实质上是利用木质纤维素材料自身所含有的物质,经过一定条件的处理使之活化而产生胶粘作用的“自身胶合”,并非真正无胶胶合。
木材切削、木材干燥和木材胶合是木材加工的三项基本技术,木材工业的绝大部分产品在生产过程中必须用到这三项技术。木材对于切削、干燥和胶合等加工操作的抵抗能力和适应程度,统称为木材的工艺性质。
展望
中国木材工业所需原料供应结构,随着客观资源情况的变化,将从传统的以天然林木材转变为以人工林、速生林木材为主;从传统的大径材转变为中、小径材及间伐材为主;从传统的少数常用树种转变为速生树种、多树种和多种植物资源为主;从传统的实体木材转变为人造板等复合材料为主。同时,随着产品消费结构的改变,以及新技术革命带来的巨大影响,木材工业也将发生巨大的变化。
产品结构的改变
①胶合板工业中的单板将成为一种商品,并以单板的再加工形成一个新的工业门类。它将包括装饰用单板如刨切单板、组合薄木、层积薄木以及属于卷材形成的微薄木、增强性成卷薄木,也包括单板再加工所得产品如单板层积材等。②胶合木的生产,今后主要以小料纵接、横拼、层积胶合而成。将成为和人造板材并列的人造成材,从而使人造木材产品系列趋于完整。③为了使劣质材优化利用和充分利用,木材改性材料的数量、品种都将进一步增加。④非木材人造板将有较大发展。
生产工艺的变革
①工艺技术的改革。制材工业在提高质量的基础上,仍将以提高出材率为主要任务,继续进行减少切屑消耗的努力,向少切屑、无切屑锯切技术发展。木制品工业如家具工业为适应市场的变化,生产方式将逐渐演变为以小批量、多品种为主,现有生产线也将为柔性制造系统所取代,从而引起家具生产工艺的全面变革。人造板工业在大幅度增加品种的过程中,现有生产工艺也将因此发生变化。以无卡轴为特征的新一代单板旋切机已在中国制成,向往已久的无木心旋切技术已有可能性。“无胶”胶合技术在80年代中期开始在中国进行研究并已取得初步成就。这些技术的变革对木材工业将产生重大影响。刨花定向技术的进一步提高,将达到纤维在板坯表面按照天然木材的纹理或根据设计的图案花纹排列的水平,使人造板表面获得更高的装饰效果。②高技术的应用。计算机作为工业控制用于制材工业已有一定基础,今后进一步发展并与其他高技术如激光锯切等相配合,有可能在精密锯切或无屑锯切方面取得突破。人造板工业中的计算机应用亦已起步,并已在部分工厂用于控制热压机操作。迄今为止,以单板剪切工序的应用所取得的效益最为显著。计算机今后的进一步推广,必须首先研究传感技术和研制相应的仪器设备,更要提高执行元件的制造水平。③生物技术应用于木材工业已有较长的历史。过去主要是研究生物对木材及木制品的破坏性及其防治方法,是从消极方面去考察其破坏作用。现正转向积极方面的研究,如木质素的生物降解、纤维的生物分离。试验证明用生物分离纤维可提高纤维得率和质量,降低能源消耗。可以预料,生物技术在木材工业中的应用前景广阔,一门新的加工技术行将形成。
产品设计技术的强化
这是商品经济中产品竞争能力的源泉。木材工业中许多部门都必须发展这项技术,它的内容包括产品功能设计、外形艺术设计、产品结构设计、生产过程的工艺设计、设备设计、生产线设计等。木制品工业生产方式向多品种小批量、短周期转变后,客观上就不能不加强产品设计工作。人造板工业通过原材料的不同,颗粒形状的变化,规格差异以及改性措施的相互结合,复合材料产品品种将成千上万地涌现,更需要借助产品设计来完成。因此,展望未来,产品设计技术必将得到强化和发展。
见世界森林工业。