建材秒知道
登录
建材号 > 密度板 > 正文

密度板是什么

殷勤的书本
稳重的果汁
2022-12-31 19:12:54

密度板是什么?

最佳答案
大胆的汽车
超帅的冬日
2025-12-03 01:40:18

家具是建筑室内不可以缺少的物件,家具对于我们每一个人来说都是非常熟悉的,但是你又对它了解多少呢。现在我们使用的家具产品大部分都是木质家具,其实木质家具按其材料组成成份分为两种实木家具和板式家具两种,不知道大家对这两种材料是否了解呢。其中这两种木质家具还有很多的分支,今天小编就要介绍板式家具材料其中之一,密度板的优缺点。

密度板是什么?

密度板是什么?日常生活中,人们通常所说的密度板,又可以称作纤维板,它是以木质纤维,抑或其他的植物纤维充当原料,再加上脲醛树脂,抑或其他恰当的胶粘剂 而制成的人造板材。既然为其名为密度板,那么它肯定是具有一定的密度的。因此根据其密度的不同,我们可以将密度板分为三类,即低密度板,中密度板及高密度板。鉴于密度板质地较软,且耐冲击力比较强,同时还比较容易再加工,因此在国外,密度板是一种制作家具特别好的材料。然而因为国内对于高密度板的要求比国际标准要低很多,因此,中国密度板的质量还应该进行进一步的提高。

主要优点

1、密度板很容易进行涂饰加工。各种涂料、油漆类均可均匀的涂在密度板上,是做油漆效果的首选基材。

2、密度板又是一种美观的装饰板材。

3、各种木皮、胶纸薄膜、饰面板、轻金属薄板、三聚氰胺板等材料均可胶贴在密度板表面上。

4、硬质密度板经冲制,钻孔,还可制成吸声板,应用于建筑的装饰工程中。

5、物理性能极好,材质均匀,不存在脱水问题。

主要缺点

1、密度板的最大的缺点就是不防潮,见水就发胀。在用密度板做踢脚板,门套板,窗台板时应该注意六面都刷漆,这样才不会变形。

2、密度板遇水膨胀率大,变形大,长时间承重变形比均质实木颗粒板大。虽然密度板的耐潮性较差,但是密度板表面光滑平整、材质细密、性能稳定、边缘牢固、容易造型,避免了腐朽、虫蛀等问题。在抗弯曲强度和冲击强度方面均优于刨花板,而且板材表面的装饰性极好,比之实木家具外观尤胜一筹。

3、密度板握钉力较差,由于密度满的纤维非常碎致使密度板握钉力比实木板、刨花板、都要差很多。

国外将密度板作为一种特别好的家具制作材料,是因为密度板表面平整光滑,而且材质细腻,性能相对稳定,板材表面的装饰性也很好,做出来的家具产品精致美观,迎合消费者的喜爱。密度板的优点有很多,因此它不仅仅是被使用在家具产品上,它还可以用于强化木地板、门板、隔墙等。看完以上这些,你是否也对密度板有兴趣呢,我相信国内也将渐渐使用它。

最新回答
温暖的凉面
冷艳的黑米
2025-12-03 01:40:18

个人觉得颗粒板比密度板好。

首先分析一下颗粒板,实木颗粒板所采用的原材料为木材或是各类木质纤维的材质加工成碎屑,再和胶水进行粘合作用,在高温高压下制作而成的一类人造板材。

实木颗粒板相比实木板材来说,密度更大,因而物理性能优越,还是所有人造板材中,最贴近天然木材的产品。

同时实木颗粒板的可加工性,可以任意进行切割、可钉可锯等,在家具生产上使用频繁。由于板材内部结构呈错落的颗粒状,并按照一定方向进行排布,因此实木颗粒板的强度抗弯性都高于其他板材。

实木颗粒板通过木材加工成碎料,再通过胶合作用,让板材的特性更加稳定。和天然的木材相比较,实木颗粒板的板面更宽,摸起来平滑细腻,不存在虫蛀节眼问题。另外板材还具有隔音效果,减少噪音的无人,保温性能也不错,不易出现霉变问题。

实木颗粒板强度很高,板材不易出现变形问题,即使在板材表面挂放厚实的衣物,板材性能丝毫不会受到影响。在欧洲家具生产中,实木颗粒板成为首选人造材料,可见它的环保性也是比较好的。

密度板其实也就是我们常说的中纤板,这类板材采用木材的纤维或是其他材料为主,经过特殊打碎处理后,进行材质的分离,再进行烘干,最后通过使用胶合剂粘结,在高温高压的作用下而制作成的人造板材。

密度板的质地较细密,因而在进行封边处理时,做工处理得非常好,不易出现板材开胶的问题。另外密度板的加工性很好,可压制成各类板材造型,但多使用在木门、衣柜产品的制作上。

但由于密度板的原材料以粉末为主,板材的含胶量会比实木颗粒板用量多,因而在环保方面,不太理想。

另外由于这一性能特点,让密度板的内部结构不大,如果长时间泡水,容易出现翘边变形问题,因而防水防潮性不佳。

所以颗粒板比密度板好,但选择哪种板作为装饰材料,还是要根据实际环境情况因素和经济因素而定。

注意事项:

1、经常保持密度板的干爽和清洁,不要用大量的水冲洗,注意避免密度板局部长期浸水。如果密度板有了油渍和污渍,要注意及时清除,可以用家用柔和中性清洁剂加温水进行处理,最好采用与密度板配套的专用密度板清洁保护液来清洗。

不要用碱水、肥皂水等腐蚀性液体接触密度板表层,更不要用汽油等易燃物品和其他高温液体来擦拭密度板。

2、建议在门口处放置蹬蹭垫,以防带进尘粒,损伤密度板;超重物品应平稳搁放;搬运家具时请勿拖拽,以抬动为宜。

3、密度板表面的污渍及油渍请用家庭清洁剂进行清洁,切勿使用大量的水来清洗密度板。密度板表面遇有污渍,一般用不滴水的潮拖把擦干即可。若沾上巧克力、油脂、果汁、饮料等,只需用温水及中性清洁剂擦拭即可。若被口红、蜡笔、墨水等污染,可用甲醇或丙酮轻轻擦拭即可。

4、在冬季应注意增加密度板表面的湿度,用潮湿的拖布拖地,适当增大地表湿度,能够有效地解决密度板产生缝隙和开裂。如个别位置产生开裂,请及时通知销售单位,对局部进行填补处理。在填补后,适当增加地表湿度,以利于密度板复原。

5、密度板要尽量避免强烈阳光的直接照射以及高温人工光源的长时间炙烤,以免密度板表面提前干裂和老化。雨季要关好窗户,以免飘雨浸湿密度板。同时要注意室内的通风,散发室内的湿气,保持正常的室内温度也有利于密度板寿命的延长。

虚拟的溪流
顺心的钢笔
2025-12-03 01:40:18

装修时建议选择环保等级高、防潮性能好的板材,更安全、耐用,具体可参照下面的方法:

1、环保等级

根据国家标准规定,装修板材的甲醛释放量应低于0.124mg/m³,即选用的板材至少要达到国家E1级环保标准,若高于这个值,建议不要选购,若条件允许,建议选择环保等级更高的E0级或无醛级板材。

2、防潮性能

防潮性能指的是板材的“吸水膨胀率”,板材吸水膨胀率大小是决定其是否容易变形的关键因素,人造板材的吸水膨胀率检测标准是2h,选购时可将板材的小样放在水里泡两个小时,看是否会发生变形。  

陶醉的曲奇
聪明的长颈鹿
2025-12-03 01:40:18
何谓高密度印制电路板?是高功率密度逆变器(High Density Inverter)的缩写,使用微盲埋孔技术的一种线路分布密度比较高的电话板。是专为小容量用户设计的紧凑型产品。它采用模块化可并联设计,一个模块容量1000VA(高度1U),自然冷却,可以直接放入19”机架,最大可并联6个模块。该产品采用全数字信号过程控制(DSP)技术和多项专利技术,具有全范围适应负载能力和较强的短时过载能力,可以不考虑负载功率因数和峰值因数。

而印刷电路板是以绝缘材料辅以导体配线所形成的结构性元件。在制成最终产品时,其上会安装积体电路、电晶体、二极体、被动元件(如:电阻、电容、连接器等)及其他各种各样的电子零件。藉著导线连通,可以形成电子讯号连结及应有机能。因此,印制电路板是一种提供元件连结的平台,用以承接联系零件的基的。  由于印刷电路板并非一般终端产品,因此在名称的定义上略为混乱,例如:个人电脑用的母板,称为主机板而不能直接称为电路板,虽然主机板中有电路板的存在但是并不相同,因此评估产业时两者有关却不能说相同。再譬如:因为有积体电路零件装载在电路板上,因而新闻媒体称他为IC板,但实质上他也不等同于印刷电路板。在电子产品趋于多功能复杂化的前题下,积体电路元件的接点距离随之缩小,信号传送的速度则相对提高,随之而来的是接线数量的提高、点间配线的长度局部性缩短,这些就需要应用高密度线路配置及微孔技术来达成目标。配线与跨接基本上对单双面板而言有其达成的困难,因而电路板会走向多层化,又由于讯号线不断的增加,更多的电源层与接地层就为设计的必须手段,这些都促使从层印刷电路板(Multilayer Printed Circuit Board)更加普遍。 

对于高速化讯号的电性要求,电路板必须提供具有交流电特性的阻抗控制、高频传输能力、降低不必要的幅射(EMI)等。采用Stripline、Microstrip的结构,多层化就成为必要的设计。为减低讯号传送的品质问题,会采用低介电质系数、低衰减率的绝缘材料,为配合电子元件构装的小型化及阵列化,电路板也不断的提高密度以因应需求。BGA (Ball Grid Array)、CSP (Chip Scale Package)、DCA (Direct Chip Attachment)等组零件组装方式的出现,更促印刷电路板推向前所未有的高密度境界。凡直径小于150um以下的孔在业界被称为微孔(Microvia),利用这种微孔的几何结构技术所作出的电路可以提高组装、空间利用等等的效益,同时对于电子产品的小型化也有其必要性。

对于这类结构的电路板产品,业界曾经有过多个不同的名称来称呼这样的电路板。例如:欧美业者曾经因为制作的程序是采用序列式的建构方式,因此将这类的产品称为SBU (Sequence Build Up Process),一般翻译为“序列式增层法”。至于日本业者,则因为这类的产品所制作出来的孔结构比以往的孔都要小很多,因此称这类产品的制作技术为MVP (Micro Via Process),一般翻译为“微孔制程”。也有人因为传统的多层板被称为MLB (Multilayer Board),因此称呼这类的电路板为BUM (Build Up Multilayer Board),一般翻译为“增层式多层板”。美国的IPC电路板协会其于避免混淆的考虑,而提出将这类的产品称为HDI (High Density Intrerconnection Technology)的通用名称,如果直接翻译就变成了高密度连结技术。但是这又无法反应出电路板特征,因此多数的电路板业者就将这类的产品称为HDI板或是全中文名称“高密度互连技术”。但是因为口语顺畅性的问题,也有人直接称这类的产品为“高密度电路板”或是HDI板。

大方的雨
虚心的老虎
2025-12-03 01:40:18
Kf=Kl*Kj。

计算公式:Kf:考虑集肤效应和邻近效应的附加损耗系数,数值大小为Kf=Kl*Kj(Kl为邻近系数,Kj为集肤系数);J为导体电流密度;R:电阻,R=ρl/A为导体材料的密度。

导体是指电阻率很小且易于传导电流的物质。导体中存在大量可自由移动的带电粒子称为载流子。在外电场作用下,载流子作定向运动,形成明显的电流。金属是最常见的一类导体。金属原子最外层的价电子很容易挣脱原子核的束缚,而成为自由电子,留下的正离子(原子实)形成规则的点阵。金属中自由电子的浓度很大,所以金属导体的电导率通常比其他导体材料的大。金属导体的电阻率一般随温度降低而减小。在极低温度下,某些金属与合金的电阻率将消失而转化为“超导体”。

淡然的日记本
霸气的蚂蚁
2025-12-03 01:40:18
导体:

导体是能导电的物体,金属导体里面有自由运动的电子,导电的原因是自由电子.半导体随温度其电阻率逐渐变小,导电性能大大提高,导电原因是半导体内的空穴和电子对。

物质存在的形式多种多样,固体、液体、气体、等离子体等等。

我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷,橡胶等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。在金属中,部分电子可以脱离原子核的束缚,而在金属内部自由移动,这种电子叫做自由电子。金属导电,靠的就是自由电子。

与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体

semiconductor

电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10-5~107欧·米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

本征半导体 不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴(图 1 )。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

半导体中杂质 半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子(图3)。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。掺入受主杂质的半导体属空穴型导电,称P型半导体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。

PN结 P型半导体与N型半导体相互接触时,其交界区域称为PN结。P区中的自由空穴和N区中的自由电子要向对方区域扩散,造成正负电荷在 PN 结两侧的积累,形成电偶极层(图4 )。电偶极层中的电场方向正好阻止扩散的进行。当由于载流子数密度不等引起的扩散作用与电偶层中电场的作用达到平衡时,P区和N区之间形成一定的电势差,称为接触电势差。由于P 区中的空穴向N区扩散后与N区中的电子复合,而N区中的电子向P区扩散后与P 区中的空穴复合,这使电偶极层中自由载流子数减少而形成高阻层,故电偶极层也叫阻挡层,阻挡层的电阻值往往是组成PN结的半导体的原有阻值的几十倍乃至几百倍。

PN结具有单向导电性,半导体整流管就是利用PN结的这一特性制成的。PN结的另一重要性质是受到光照后能产生电动势,称光生伏打效应,可利用来制造光电池。半导体三极管、可控硅、PN结光敏器件和发光二极管等半导体器件均利用了PN结的特性。

什么是半导体呢?

顾名思义:导电性能介于导体与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体的发现实际上可以追溯到很久以前,

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,

1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。

半导体的这四个效应,(jianxia霍尔效应的余绩——四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的有机物半导体等。

本征半导体(intrinsic semiconductor) 没有掺杂且无晶格缺陷的纯净半导体称为本征半导体。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后成为导带(conduction band),价带中缺少一个电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子 - 空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子 - 空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。

杂质半导体(extrinsic semiconductor) 半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为n型半导体和p型半导体。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级-施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为n型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。相应地,能提供空穴载流子的杂质称为受主(acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在p型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。

清爽的毛衣
悦耳的可乐
2025-12-03 01:40:18

高密度电阻率法实际上是将电剖面方法和电测深结合起来的一种阵列电阻率勘探方法。野外测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的采集。高密度电阻率勘探技术的运用与发展,使电法勘探的智能化程度大大向前迈进了一步。高密度电阻率法相对于常规电阻率法而言,它具有以下特点:

1)电极布设是一次完成的,这不仅减少了因电极设置而引起的故障和干扰,而且为野外数据的快速和自动测量奠定了基础。

2)能有效的进行多种电极排列方式的扫描测量,可以获得较丰富的关于地电断面结构特征的地质信息。

3)野外数据采集实现了自动化或半自动化,不仅采集速度快,而且避免了由于手工操作所出现的错误。

4)对探测结果进行预处理并显示剖面曲线形态,结果直观。

5)高密度电法成本低、效率高,信息丰富,解释方便,勘探能力显著提高。

关于阵列电阻率探测的思想,早在20世纪70年代末期英国学者所设计的电测深装置系统实际上就是高密度电法最初模式。20世纪80年代中期,日本地质计测株式会社借助电极转换板实现了野外高密度电阻率法的数据采集,只是由于整体设计的不完善性,这套设备没有充分发挥高密度电阻率法的优越性。20世纪80年代后期,我国原地矿部系统率先开展了高密度电阻率法及其应用技术研究,从理论与实际结合的角度,进一步探讨并完善了方法理论及有关技术问题,研制成了约3~5种类型的仪器。到目前为止,高密度电法方法技术已经成熟,并广泛应用于工程与环境各个领域,取得了明显的地质效果和显著的社会经济效益。

一、高密度电阻率法的基本原理及系统组构

(一)基本原理

1.基本方程

高密度电阻率法仍然是以岩土体导电性差异为基础,研究在施加电场作用下地中传导电流的分布规律,在求解简单地电条件的电场分布时,通常采取解析法,即根据给定的边界条件解以下偏微分方程:

环境地球物理教程

式中:x0、y0、z0为源点坐标;x、y、z为场点坐标。当只考虑无源空间时,(3.2.1)式变为拉氏方程

环境地球物理教程

求解(3.2.2)式,实际上就是要寻找一个和该方程所描述的物理过程诸因素有关的场函数。解析法能够计算的地电模型是非常有限的。因此,在研究复杂地电模型的电场分布时,主要还是采用了各种数值模拟方法,如有限元法、有限差分法、面积分方程法。

2.三电位电极系

高密度电阻率法的电极排列原则上可以采用二极方式,即当依次对某一电极供电时,同时利用其余全部电极依次进行电位测量,然后将测量结果按需要转换成相应的电极排列方式。这虽然是一种很好的设计方案,但由于必须增设两个无穷远极,给实际工作带来很大不便。其次,当测量电极逐渐远离供电电极时,电位测量幅度变化较大,需经常改变电源,不利于自动测量方式的实现。因此,通常采用了三电位电极系。

三电位电极系是将温纳四极、偶极及微分装置按一定方式组合后所构成的一种统一测量系统,该系统在实际测量时,只须利用电极转换开关,便可将每四个相邻电极进行一次组合,从而在一个测点便可获得多种电极排列的测量参数。三电位系统的电极排列方式如图3-2-1所示,当点距设为x时,三电位系统的电极距为a=n·x,n=1、2、…,n为隔离系数。为了方便,我们将上述三种电极排列方式依次称为α排列、β排列及γ排列。显然,这里对某一测点的四个电极按规定作了三次组合。

根据上述三种电极排列的电场分布,可以很容易得出三者之间视电阻率关系式,即

环境地球物理教程

式中分别为α、β、γ三种电极排列的视电阻率。可见,三者之间具有一定的内在联系,当已知其中任意两种排列的视参数时,通过上述关系便可计算第三者。

3.视参数及其特点

(1)视电阻率参数

根据上述三电位电极系的概念,显然视电阻率参数及其计算公式依次为:=2πa,式中a为三电位电极系的电极距。正如上述,当点距为x时,a=n·x,n=1、2、…。显然,由于一条剖面地表测点总数是固定的,因此,当极距扩大时,反映不同勘探深度的测点数将依次减少。我们把三电位电极系的测量结果置于测点下方深度为a的点位上,于是,整条剖面的测量结果便可以表示成一种倒三角形的二维断面的电性分布,见图3-2-2。

图3-2-1 三种电位电极系

对于温纳四极排列,也可增设无穷远极,从而增加联合三极测深的测量方式,相应的视电阻率参数的计算公式为:=。联合三极测深的测量结果,既可用于视电阻率参数的图示,也可用于视比值参数的图示。

图3-2-2 高密度电阻率法测点分布示意图

(2)视比值参数

高密度电阻率法的野外观测结果除了可以绘相应电极排列的视电阻率断面图外,根据需要还可以绘制两种视比值参数图。其中一类比值参数是以联合三极测深的观测结果为基础,其表达式可以写成

环境地球物理教程

式中ρs(i)及ρs(i+1)分别表示剖面上相邻两点的视电阻率值,我们把计算结果示于第i点与i+1点之间。若令FA(i)=,则

环境地球物理教程

而lgFA曲线的差商为[lgFA(xi)-lgFA(xi+Δx)],令Δx=1,则lgλ即为lgFA曲线的差商,或者说lgλ描述了歧离带曲线沿剖面水平方向的变化率。图3-2-3为表征比值参数λ在反映地电结构能力方面所作的模拟实验,视电阻率断面图只反映了基底的起伏变化,而λ比值断面图却同时反映了起伏基岩中的低阻构造。

图3-2-3 模型上方视电阻率及视比值参数断面等值线图

另一类比值参数是直接利用三电位电极系的测量结果并将其加以组合而构成的,考虑到三电位电极系中三种视参数的分布规律,我们选择并设计了以偶极和微分两种电极排列的测量结果为基础的一类比值参数,该比值参数的计算公式如下:

环境地球物理教程

式分别为β和γ电极排列的视电阻率值。由于这两种电极排列在同一地电体上所获视参数总是具有相反的变化规律,因此用该参数所绘的比值断面图,在反映地电结构的分布形态方面远较相应排列的视电阻率断面图要清晰和明确得多。

图3-2-4是对所谓地下石林模型所进行的正演模拟结果,模型的电性分布已如图示。其中温纳四极排列的拟断面图几乎没有反映,而由偶极和微分排列的所构成的T比值断面图则清楚地反映了上述模型的地电分布。

(二)系统组构

高密度电阻率勘探系统一般是由两部分组成的,即野外数据采集系统和资料的实时处理系统。目前国内仪器主要还是按分离方式设计的,为了真正达到资料的实时处理,有的单位已开始研制以便携微机为基础的高密度电阻率测量系统。

野外数据采集部分包括电极系、程控式电极转换开关和微机工程电测仪。现场测量时,只需将全部电极(60,120,180,…)布设在一定间隔的测点上,然后用多芯电缆将其连接到程控式电极转换开关。程控式电极转换开关是一种由单片机控制的开关组,按设定程序实现电极的自动和有序换接。测量信号由转换开关送入微机工程电测仪并将测量结果依次存入随机存储器。

图3-2-4 模型上方视电阻率及视比值参数断面等值线图

当将微机工程电测仪中存储的野外数据与PC机通讯后,便可根据需要按给定程序对原始资料进行处理并将处理结果以某种图件方式输出。

二、野外工作方法技术

(一)高密度电阻率法的野外工作

1.测区的选择和测网的布设

1)测区的选择 地球物理工作的测区一般是由地质任务确定的,测区选择所应遵循的原则大体上都是一样的。

2)测网的布设 测网布设除了建立测区的坐标系统外,还包含了技术人员试图以多大的网度和怎样的工作模式去解决所给出的工程地质问题。对于高密度电阻率法而言,野外数据采集方式主要有两种,一种是地表剖面数据采集方式;一种是井中电阻率成像的数据采集方式,而后者又包含单孔和跨孔方式两种。两种方式的应用效果,特别是后一种方式和测网的布设关系密切。

2.装置的选择和极距的确定

装置的选择 高密度电阻率法采用了三电位电极系,电极排列方式有温纳四极排列、联合三极排列、偶极排列和微分排列等。上述电极排列既可联合使用,也可根据需要单独使用。此外,当进行单孔或跨孔电阻率成像的数据采集时,二极法供收方式往往成为最经常使用的电极排列。

极距的确定 极距取决于地质对象的埋藏深度。高密度电阻率法的探测深度与电测深的探测深度理论上是一致的。在三电位电极系的极距设计为a=n·Δx,其中n为隔离系数,可以由1改变到15或更大,也可任选,Δx为点距。显然a=1/3AB,它和勘探深度之间存在某种系数关系。

测点分布 高密度电阻率法由于地表电极总数是固定的,因此,随着隔离系数的增大,测点数便逐渐减少,当N=1~15变化时,对于60路电极而言,一条剖面的测点总数可由下式计算:

环境地球物理教程

显然,n=1时N=57。当n=15,α=Δx时,最下层的剖面长度为L15=15·Δx。图3-2-5为高密度电阻率法的测点分布图。测点在断面上的分布呈倒三角形状。

图3-2-5 测点分布示意图

(二)高密度电阻率法的测量系统

高密度电阻率测量方法已经比较成熟,其测量系统的基本原理是一致的,仪器系统包括程控式电极转换开关和数字式电阻率仪。国内外这方面的仪器很多,例如日本的OYO公司、瑞典的ABEM公司、法国的IRIS公司、美国的AGI公司等生产的仪器设备、国内仪器主要有吉林大学、中国地质大学、重庆地质仪器厂等单位生产的高密度电法仪。各种仪器的使用大同小异,而且不同仪器设备都有详细的说明书,这里不作介绍。

三、高密度电阻率法的资料处理及解释

高密度电阻率测量采用了阵列的测量方式,数据量大大地增加,基于计算机的数据处理和解释成为高密度电法的非常重要部分。目前商业的数据处理和正反演解释的软件很多,例如Res2dinv、ElecPROF等。数据处理的内容大致相同,解释方法也基本一致,在这里作简单的介绍。

(一)资料处理

1.资料处理方法

(1)统计处理方法

统计处理包含滑动平均、计算统计参数(均值、方差)、计算电极调整系数、视参数分级。统计处理结果一般采用灰度图来表示,由于它表征了地电断面每一测点视电阻率的相对变化,因此该图在反映地电结构特征方面将具有更为直观和形象的特点。

(2)比值换算方法

比值换算是想改善测量结果对地电结构的分辨能力,如前面内容中我们给出了两种比值参数并讨论了它们的基本特性,λ参数对局部低阻体分辨能力强,而T参数对局部高阻体的分辨能力强。

(3)滤波处理方法

三电位电极系中,偶极和微分排列所测视参数曲线随极距的加大,曲线由单峰变为双峰;绘成断面图时,除了和地质对象赋存空间相对应的主异常外,一般还会出现强大的伴随异常。为了消除或减弱三电位系视电阻率曲线中的这种振荡成分的影响,从而简化异常形态、增加推断解释的准确性,可以采用数字滤波的方法,并把这种滤波器称为扩展偏置滤波器。

扩展偏置滤波器具有四个非零的权系数:0.12,0.38,0.38,0.12。在滤波计算中,无论隔离系数为几的剖面测量结果,我们总是把滤波系数置于四个活动电极所对应的点位上,在电极之间的点位上插入和点位数相当的零系数。例如n=2,滤波器的长度为7,相应的权系数依次为0.12,0.00,0.38,0.00,0.38,0.00,0.12。图3-2-6为二维地电模型正演模拟曲线的滤波处理结果,由图可见,未经滤波的剖面曲线(点划线)随隔离系数的增大,曲线形态复杂,经过滤波处理的剖面曲线(实线),形态大为简化,伴随异常的幅度减小并远离主极值。

图3-2-6 二维模型正演模拟曲线的滤波处理

2.处理软件系统

高密度电阻率法是在野外高密度、大批量数据采集的基础上,利用三种电阻率参数和两种比值参数来提取地质信息,从而使电法勘探在工程与环境地质调查中的应用效果得到显著的改善和提高,资料处理系统有以下特点:

1)系统采用模块化结构。不同功能形成独立模块,各模块有机统一,既可联合使用也可单独使用。

2)可同时对多条测线、多参数测量结果进行处理,处理后可获得测量范围内不同深度的电性分布。

3)处理后所形成的图件形象、直观、丰富,并且可在任何打印机或绘图仪上输出。

4)采用混合语言编写,程序结构合理、功能齐全、人机对话方便。

高密度电阻率法资料处理系统共包括三个主模块:处理(Process)模块、电测深定量解释(Inversion)模块、绘图(Graph)模块。处理模块中通常包含数据圆滑模块、比值换算、滤波、统计参数计算或处理;反演解释模块包括各种装置的测量结果的反演计算;绘图模块是将处理结果或反演结果以最直观的方式显示出来,包括等值线、剖面曲线、彩色或灰度图等。

(二)正演模拟

高密度电阻率法在现场采集到大量关于地电断面结构特征的地质信息,这些信息以数字形式保存在计算机中,并按给定程序进行处理,把有关地质信息提取出来。由于这些信息与多种因素有关,因此在通常情况下,视参数的异常分布与地质断面之间总是存在着比较复杂的关系。为了研究高密度电阻率法对各种典型地电结构的勘探能力,除采用物理模拟外,还进行了大量数值模拟,如有限元法、有限差分法、面积分方程法。考虑到上述数字模拟的基本原理和算法已有较多文献作了详细介绍,本文简要地介绍有限元技术。

1.正演模型的数学表示

物理上的定常态问题,如弹性力学中的平衡问题,无粘性流体的无旋运动、亚声速流,位势场包括静电磁场、引力场等问题可以归结为椭圆型微分方程。最简单的就是拉普拉斯方程。高密度电阻率方法采用的是直流电场进行地下探测,他满足二维拉普拉斯方程。即

环境地球物理教程

上式是齐次方程。考虑供电位置,则有

环境地球物理教程

从数学上,椭圆问题还有更一般的变系数方程,即

环境地球物理教程

这里,β=β(x,y)>0,f=f(x,y)是给定的系数分布。

椭圆方程的主要定解问题是边值问题,即要求定出未知的边界条件。方程(3.2.8)是二阶的椭圆方程,需要给出一个边界条件为下列三类形式之一,而且在边界的不同区段上可以取不同类的条件。

第一类:给定函数值u=u

第二类:给定外法向导数值,如β==q

第三类:给定函数及外法向导数的线性组合的值,如+ηu=q,η≥0

这时,u、q、β、η均为边界上给定的分布,β就是方程(3.2.8)中的系数在边界上所取的值,β>0。

显然,第二类是第三类条件的特殊情况,相当于η=0。此外,由于β>0,第一类虽然不能包括在第三类之内,当它可以看为第三类边界条件:

环境地球物理教程

当β→∞的极限情况时:

环境地球物理教程

一般说来,边界条件可表示为Γ0:u=和Γ′0:+ηu=q

即∂Ω分解为互补的两个部分Γ0,Γ′0,其上分别为第一类和第三类边界条件。椭圆方程的数值解法分为两部。首先是把它离散化,变为一组代数方程。然后解代数方程。下面介绍有限元方法解这类问题。

2.二维有限元法

对于二维场问题,位函数Φ(x,y)几何上是一个曲面,如图3-2-7,在XOY平面上围成的域是二维平面域。有限元法就是要找到一个分片线性且连续的平面来近似该曲面。

图3-2-7 位函数的曲面及在XOY平面上的投影

图3-2-8 曲面剖分示意图

为找到这样的函数,首先将所给的区域剖分,因该域是平面域,常用的剖分方法是三角形剖分,即是把二维平面域分割成相互连接的许多三角形,如图3-2-8。相邻两三角形有一对公共顶点及一个公共边,在曲线边界上用直线段近似曲线边。每个三角形称为单元,单元的顶点称为节点,每个节点上的Φ1值称为节点参数。

在单元上可近似的视Φ(x,y)为线性变化,即在单元上场是均匀变化的。因此每个单元上的曲面可近似的用过Pi,Pj,Pn三点的平面来表示。

例如,二维场问题的能量泛函可表示为

环境地球物理教程

式中ρ为介质的物性参数,它是x,y的函数,有限元法求解就是使泛函取极值。

(1)步骤

第一步——区域剖分

这里用三角形剖分,一般规定为:

图3-2-9 单元节点示意图

1)边界为曲线时用三角形一个边近似。

2)有内部介质分界线时,不容许三角单元跨越界线。

3)不容许三角单元顶点落在其他三角单元之上。

4)分割时避免出现太尖,太钝的三角单元。

5)在u变化大的地方,三角元可密些,反之可稀些。

各单元的顶点称为节点(图3-2-9),节点和三角单元按一定顺序编号,这里按逆时针编号,即i、j、m,其坐标为(xi,yi),(xj,yj),(xm,ym),其节点函数值为ui,uj,um。除第一类边界条件给定的边界节点上的函数外,其余节点上的函数值均为待求量。

这样就把连续函数u(x,y)的求解问题离散成节点上函数值的求解问题。

第二步——线性插值

设各单元内函数u(x,y)是线性的,即

环境地球物理教程

其中a,b,c是待求系数,由节点函数值决定,把单元三节点及函数值代入(3.2.10)式得方程

环境地球物理教程

解方程得系数

环境地球物理教程

其中

环境地球物理教程

Δ是三角单元的面积,它只与三角单元节点坐标有关。

第三步——单元分析

取其中任意单元e,在单元e上的能量泛函可表示成

环境地球物理教程

式中ρe为单元e中的物性参数。

为把泛函离散化,首先导出上式中的两个偏导数,即(3.2.10)式对x,y求偏导数。并把(3.2.11)的结果代入得

环境地球物理教程

可见,仅与节点坐标及节点函数值有关,且在单元e内为常数,可提到积分号外。

环境地球物理教程

由此可知,Je(u)是节点函数值ui,uj,um的函数,这就把三维连续函数离散化了。即把一个泛函问题化为多元函数问题,把泛函求极值问题化为多元函数求极值问题。

通过Je(u)取极值来确定节点参数,其过程是Je(u)对ui,uj,um求偏导数。

环境地球物理教程

其中

环境地球物理教程

将(3.2.14)式改写成矩阵形式

环境地球物理教程

[k]e为单元系数矩阵,由于krs=ksr,因此,[k]e是对称矩阵,{u}e为由单元节点函数值组成的列向量。

由于i,j,m节点以外的节点均不属于单元e,即je(u)中不含ur,因此

环境地球物理教程

为了解单元e中的系数在整体系数矩阵中的位置,把矩阵扩成整个区域D上的所有节点,即扩成总体系数矩阵形式

环境地球物理教程

扩展后的矩阵是n阶方阵,n为节点总数,{u}是由全部节点函数组成,即包括已知节点和未知节点。

第四步——总体合成

由分片积分可知,在整个区域中,泛函J(u)由各单元的Je(u)累加合成:J(u)=,其中E为单元总数。故J(u)也是节点函数值u1,u2,u3,…,un的多元函数,可写成:J(u)=J(u1,u2…,un)

因此,泛函的求极值问题就化为多元函数的求极值问题。即

环境地球物理教程

该式告诉我们分别求出各单元关于ur的偏导数就可以得到(3.2.16)式的矩阵形式。将每个矩阵中的对应元素加起来就可以得到合成的总体矩阵。

环境地球物理教程

简记成

环境地球物理教程

[k]称为总体系数矩阵,它是由许多对称矩阵合成,所以它是对称的,且是正定矩阵。另外,由于非零元素只在三角单元三顶点的编号所对应的行和列的九个位置上,其他均为零,所以[k]矩阵为稀疏矩阵。若编号合适它还是带状矩阵。

第五步——解线性方程组

解方程(3.2.16)实际上是一个线性方程组的求解问题,解之可得到节点上的函数值。注意n个节点参数中,有个别是已知的节点参数,如在边界上的节点,此时,需将这些节点移到等式的右侧,然后解移项降阶后的方程组。因为系数矩阵是对称、正定和稀疏的,它的求解在计算机上是容易实现的,有一套成熟的方法。

有限元法求解的近似程度与剖分单元的长度(三角剖分的边长)有关,长度越大误差越大,反之单元越小精度越高。

综上所述,有限元法的基本思路就是把给定的区域剖分成许多单元,在单元上写出函数的线性表达式,而后综合成整个域上分段(片)线性的近似表达式,将变分问题化为求节点参数的线性方程组,进而求得场的解。

(2)实例——正演地表及地下剖面上的电位值

电位满足拉氏方程Δu=0,边界条件=0,属自然边界条件,此外,电阻率界面也属自然边界条件,都不需单独处理,这是有限元法的优点。

图3.2.10剖分三角元,给节点与三角元编号。节点5、6、8、9、11、12的电位是待求的,其他节点电位已知。

单元节点编号如下:

①(1,4,5),②(1,5,2),③(2,5,6),④(2,6,3),⑤(4,7,8),⑥(4,8,5),⑦(5,8,9),⑧(5,9,6),⑨(7,11,10),⑩(7,11,8),⑪(8,11,9),⑫(11,12,9),⑬(10,13,14),⑭(10,14,11),⑮(11,14,15),⑯(11,15,12)

节点的坐标如下:1(0,0),2(0,1),3(0,2),4(1,0),5(1,1),6(1,2),7(2,0),8(2,1),9(2,2),10(3,0),11(3,1),12(3,2),13(3,3),14(4,0),15(4,1)

边界节点电位值为:

u1=u2=u3=0,u13=u14=u15=100,u4=25,u7=50,u10=75,节点5,6,8,9,11,12为未知节点。

除单元7与单元11的电性ρ=0.1外,其余单元ρ=1。

其次按(3.2.14),(3.2.15)形成单元系数矩阵,再按(3.2.16),(3.2.17)式形成总体系数矩阵和线性方程组,并将边界条件代入,作移项降元处理,列出未知节点5,6,8,9,11,12的六元一次方程组。

环境地球物理教程

解得:

环境地球物理教程

如将单元7与单元11的电性改为ρ=10,同理可求得

环境地球物理教程

这两组结果[图3-2-10(c),图3-2-10(d)]的解释是,良导体内(ρ=0.1)电位降低,因而计算的左侧值较理论值(均匀导体ρ=1时)偏大,而右侧值偏小;相反,在不良导体内(ρ=10)电位增大,因而左侧值较理论值偏小,而右侧值偏大。

图3-2-10 有限元方法计算模型和剖分方法图

(三)高密度电阻率反演

20世纪80年代中期以来,随着阵列电探采集系统的出现和发展,借鉴医学电阻抗CT、地震波和电磁波CT,一些学者相继把CT技术引入到电法勘探之中,用以研究稳定电流场中电阻率的变化。这方面的方法很多,本节拟对高密度电阻率法的测量数据利用佐迪方法进行成像反演的基本思路及其数字实验结果进行讨论。

1.佐迪(Zohdy)方法简介

佐迪方法是基于施伦贝斜和温纳测深数据的解释而提出的,它实际是一种最小二乘优化法,即通过不断调整初始模型至使实际测深曲线和模型测深曲线之差达到最小,最终的模型参数即为反演结果。

佐迪方法的基本思想是:首先假设地层的层数和测深曲线上的点数一样多。在初始模型中,第一层的电阻率就采用曲线上第一个点的视电阻率,第二层就采用第二个点的视电阻率,整条曲线依此类推。每一层的平均深度采用测得相应电阻率的电极距再乘以某一常数。

用初始模型得到一条理论测深曲线,将该曲线与野外实测曲线进行比较,如果所用常数是正确的,则两条曲线“同相”,但幅值一般不会相同。然后进行迭代处理以调整模型各层的电阻率,直至实测曲线和模型曲线的均方根误差减至最小,图3-2-11给出了该方法的基本步骤。

图3-2-11 电测深曲线佐迪反演示意图

2.计算方法

1)初始模型的选取:首先把一半无限空间分割成由90个水平单元和30个垂直单元组成的矩形网格见图3-2-12,用网格中间均匀部分模拟拟断面,把断面上的数据点的视电阻率值作为相应单元的电阻率,每个单元中点的深度等于n·a,对实测拟断面范围外的边线网格单元,则赋以拟断面上离它最近的水平或垂直单元的实测电阻率值。

2)正演计算(可采用有限元或有限差分等)。

3)反演修改:对初始模型,经2.5维有限元计算后,便得到了理论拟断面,将其与野外实测数据比较,用(3.2.18)式调整该模型每个网格单元的电阻率,整个过程交替重复直至均方根误差降至预定水平。为提高数据质量,在对实测值与计算值进行拟合时,两者均取对数,即均方根差:

图3-2-12 有限元网格剖分及模型断面示意图

环境地球物理教程

式中:N为测点总数;ρ0(j)为第j点实测电阻率值;ρi(j)为i次迭代后第j 发计算电阻率值。

3.数字模拟实验

为验证方法的有效性,除了对实际观测结果进行了试算外,还进行了大量数字模拟实验,图3-2-13为断层和低阻块体的地电模型数字实验结果。图中(a)为模型正演计算结果;(b)为经过6次迭代反演后电阻率分布图像。由图可见,反演修改后分辨率大大提高,除了地电结构形态得到较大改善外,电阻率已经非常接近真实模型。

图3-2-13 反演方法数字模型实验结果图