建材秒知道
登录
建材号 > 密度板 > 正文

什么叫做晶须

含蓄的钢笔
忧虑的蜜蜂
2022-12-31 07:40:37

什么叫做晶须?

最佳答案
单身的冬天
迷人的冰棍
2025-12-26 00:03:31

晶须是指在人工控制条件下以单晶形式生长成的一种纤维,其直径非常小(微米数量级),不含有通常材料中存在的缺陷(晶界、位错、空穴等),其原子排列高度有序,因而其强度接近于完整晶体[1]的理论值。其机械强度等于邻接原子间力。晶须的高度取向结构不仅使其具有高强度、高模量和高伸长率,而且还具有电、光、磁、介电、导电、超导电性质。晶须的强度远高于其他短切纤维,主要用作复合材料的增强体,用于制造高强度复合材料。制造晶须的材料分金属、陶瓷和高分子材料3大类。已发现有100多种材料可制成晶须,主要是金属、氧化物、碳化物、卤化物、氮化物、石墨和高分子化合物。晶须可从过饱气相、熔体、溶液或固体生长,常生产成不同规格的纤维,其使用形态有原棉、松纤维、毡或纸。原棉(如由蓝宝石晶须构成)具有很松散的结构,长径比为500~5000∶1,松密度为0.028g/cm3。松纤维具有轻微交错的结构,长径比为10~200∶1。毡或纸状的晶须,排列杂乱,长径比为250~2500∶1。

β-SiC晶须及其作为增强增韧耐磨耐腐蚀耐高温复合材料市场前景分析。

SiC晶须是高技术关键新材料,是金属基、陶瓷基和高聚物基等先进复合材料的增强剂,用于陶瓷基、金属基和树脂基复合材料。已在陶瓷刀具、航天飞机、汽车用零部件、化工、机械及能源生产中获广泛应用。

SiC晶须目前主要应用领域在陶瓷刀具增韧。美国开发成功“SiC晶须及纳米复合喷涂”,用于耐磨耐腐蚀耐高温涂层,SiC晶须市场需求量将急剧增加,市场前景非常广阔。

碳化硅晶须具有优良的机械性能、耐热性、耐用腐蚀性以及抗高温氧化性能,该新产品与基质材料具有良好的相容性,近年来已成为各类高性能复合材料的主要增强、增韧剂之一。广泛用作金属、塑料、陶瓷的复合材料。

生产可行性预测:碳化硅晶须增强的复合材料可开发应用于航空、军事、矿冶、化工、汽车、运动器材、切削工具、喷咀、耐高温部件等领域。晶须补强氮化硅陶瓷基复合材料具有优异的物理力学性能,除了可为发动机的零部件外还可广泛应用于各种耐磨、耐高温、耐腐蚀、抗冲击场合,具有广阔的前景。在切削刀具、石材锯、纺织割刀、喷砂咀、耐高温挤压模、密封环、装甲等都有很大的市场需求。

北美的结构陶瓷市场主要组成是切削工具、耐磨零件、热力发动机零件和航空技术制品。约有37%的结构陶瓷零件是由陶瓷基体复合物制成。而其余的则是单一陶瓷制品。陶瓷基体复合材料主要用于生产切削工具、耐磨零件、插件以及航空工业用产品。对于切削工具而言,使用由TiC、强化的Si3N4和Al2O3以及由SiC晶须强化的Al2O3制成的基体复合陶瓷基体复合物制造的产品市场大部分(约41%)为耐磨产品,有些类型的陶瓷复合材料还用于雷达、发动机和飞机燃气轮机。17%的结构陶瓷应用在陶瓷刀具上。包括Al2O3、Al2O3/TiC、SiC晶须增强Al2O3、Si3N4和Sialon陶瓷。陶瓷刀具市场的发展速度得益于产业化进程的加快,SiC晶须增强Al2O3和Si3N4刀具价格下降也使陶瓷刀具更具市场竞争力。

最新回答
神勇的月亮
动人的信封
2025-12-26 00:03:31

复合材料中的增强相主要选纤维和晶须,是因为纤维和晶须有很强的抗拉强度和伸长率。比如晶须,它不含有通常材料中存在的缺陷(晶界、位错、空穴等),其原子排列高度有序,因而其强度接近于完整晶体的理论值。其机械强度等于邻接原子间力。晶须的高度取向结构不仅使其具有高强度、高模量和高伸长率。

晶须是由高纯度单晶生长而成的微纳米级的短纤维。其机械强度等于邻接原子间力产生的强度。晶须的高度取向结构不仅使其具有高强度、高模量和高伸长率,而且还具有电、光、磁、介电、导电、超导电性质。

清秀的苗条
羞涩的夕阳
2025-12-26 00:03:31
1.晶须的长径比大于十,必须是单晶,纤维不要求长径比,是多晶或非晶。

2.晶须的许多力学性能高于纤维,晶须和纤维的直径和长度不一样!晶须直径一般是纳米尺度衡算的,而纤维则是微米尺度进行表示。

3.从微观结构上讲,晶须表面基本上没有裂纹之类的缺陷,强度比纤维要高。而纤维在合成的过程中不可避免的表面要产生微裂纹,受力后容易造成应力集中,所以强度逊于晶须。

维旗保温倾力解答,希望能帮到您!

霸气的香氛
怕孤独的流沙
2025-12-26 00:03:31
1.碳酸钙晶须在聚丙烯(PP)改性中的应用

聚丙烯具有相对密度低、强度高、绝缘性能优良等良好的综合性能,然而在应用中有韧性差、成型收缩率大、耐寒性差等缺点。聚丙烯可以掺混碳酸钙、滑石粉、硅灰石、玻纤等无机填料,以此达到提高弯曲强度、冲击强度以及尺寸稳定性等改性目的,从而替代价格昂贵的工程塑料,用于汽车、化工、家电等高附加值领域。

2. 碳酸钙晶须对PP加工性能的影响

用晶须填充PP时的扭矩值普遍低于填充轻质碳酸钙的试样。因此,用碳酸钙晶须填充的聚丙烯熔体容易流动,因此可以在加工温度、挤出速率上有更大的选择余地,实现更加高效的生产。

3. 碳酸钙晶须对PP力学性能的影响

由于晶须的尺寸极小,又是高纯材料,故没有(或很少)内部结构缺陷,因而强度远高于一般尺寸的同种材料。事实上新制备的晶须,由于没有表面蚀坑或裂纹,其强度接近晶体的理论强度。因此将它掺到塑料中时,具有优良的增强效果,弯曲弹性模量、弯曲强度、尺寸稳定性等大大提高。滑石粉虽然价格低廉,但由于是直径为1μm-5μm的片状结构,因此增强效果不如碳酸钙晶须和玻纤好;碳酸钙晶须增强PP材料的拉伸、弯曲强度比玻纤增强稍差,但冲击强度要好于玻纤增强。此外,晶须增强PP材料的表面比玻纤要光滑得多。

无论选择何种填料以及是否通过偶联剂处理,无机填料的引入均会使体系的拉伸强度下降,但是碳酸钙晶须对力学性能的影响优于普通轻质碳酸钙,经偶联剂处理后还可进一步改善性能。

4. 碳酸钙晶须对PP冲击性能的影响

未经偶联剂处理时,无论填充填料,都使冲击性能有劣化的趋势,但填充晶须时,冲击强度高于填充轻质碳酸钙的试样,说明晶须与轻质碳酸钙相比有一定的增韧作用。究其原因,Becher P.F.认为:当试样内部宏观裂纹前端或微裂纹发展到含有晶须的微区时,必须将其拔出或折断才能继续扩展,所以基体内的晶须有阻止裂纹扩展,加速能量逸散的作用,并因此达到增韧的目的。而轻质碳酸钙的颗粒为纺锤体或四方体,不能在裂纹发展过程中形成类似的结构,所以增韧效果较差。

将晶须用偶联剂处理后,冲击性能明显提高,说明偶联剂可以有效的改善填料与基体之间的界面状况,增强了界面粘接强度,达到更好的增韧效果。

碳酸钙晶须填充试样的冲击强度略高于钛酸钾晶须填充试样,原因是碳酸钙晶须的均匀性较好造成的。可见低成本的碳酸钙晶须在工业中的应用前景非常广泛。

天真的篮球
现实的衬衫
2025-12-26 00:03:31
硫酸钙晶须,别名:石膏晶须,石膏纤维;英文名称:Calcium Sulfate Whisker,缩写:CSW;化学式:CaSO4。国际商品名:ONODA-GPF。硫酸钙晶须是以石膏为原材料, 通过人为控制, 以单晶形式生长的,具有均匀的横截面、完整的外形、完善的内部结构的纤维状(须状)单晶体。其基本性能指标如下表:平均直径1-8�0�8m平均长度50-200�0�8m平均长径比10~200CaSO4含量≥98%白度≥98%熔点1450℃折光指数1.585水溶性(22℃)<1200ppm密度2.69ɡ/㎝3松散密度0.1-0.4ɡ/㎝3抗张强度20.5Gpa抗张模量178 Gpa莫氏硬度3-4PH值6-7 硫酸钙晶须有二水(CaSO4·2H2O)、半水(CaSO4·0.5H2O)和无水(CaSO4)之分。其制备方法目前主要有水压热法和常压酸化法。硫酸钙晶须具有高强度、高模量、高韧性、高绝缘性、耐磨耗、耐高温、耐酸碱、抗腐蚀、红外线反射性良好、易于表面处理、易与聚合物复合、无毒等诸多优良的理化性能。硫酸钙晶须集增强纤维和超细无机填料二者的优势于一体,可用于树脂、塑料、橡胶、涂料、油漆、造纸、沥青、磨擦和密封材料中作补强增韧剂或功能型填料;又可直接作为过滤材料、保温材料、耐火隔热材料、红外线反射材料和包覆电线的高绝缘材料。硫酸钙晶须在20世纪70年代由日、美、德等国着手研究,20世纪80年代开始逐步应用。我国也紧随其后,并在21世纪初进行了工业化生产,其中沈阳立昂新材料有限责任公司为国内最早工业化生产的企业,洛阳亮东非金属材料科技开发有限公司为国内工业化生产产能最大的企业。总之,硫酸钙晶须由于其性能优良,价格低廉而具有极好的性能价格比,是一种应用领域较广、市场前景极为广阔的新型材料。也是目前国际上备受关注、极有发展前途的无机盐晶须材料。

着急的钢笔
潇洒的面包
2025-12-26 00:03:31
氧化铝陶瓷增韧方法有哪几种?

氧化铝陶瓷具有耐腐蚀、耐高温、耐磨损、质量轻、成本低等优点,是目前世界上生产量最大、应用面最广的工业陶瓷材料

氧化铝增韧陶瓷

在航天航空等斟防尖端技术领域和机械、冶金、化工等一般工业领域均有着广阔的应用前景,但其最致命的力学弱点便是其本身的脆性,这是由这类材料的结构特点所决定的。陶瓷材料中的化学键以共价键和离子键为主,这两类化学键都具有强的方向性和较高的结合强度,这就使得结构中难以发生显著的位错运动。因而限制了其实际应用范围的进一步推广。因此,陶瓷特别是氧化铝陶瓷的韧化变成了近年来结构陶瓷材料研究的核心课题。

氧化铝陶瓷的增韧方法:

一、氧化锆增韧

对氧化铝陶瓷的增韧是目前使用最多的增韧方法是纳米氧化增韧。当氧化铝中加入纯Zr02,粒子形成ZrO2增韧氧化铝陶瓷时,当添加含量适当时,可使韧性显著提高。其韧化效果主要来源于以下机理:1.使氧化铝晶粒基体细化。2. 氧化锆相变韧化。3.显微裂纹韧化。4. 裂纹转向与分叉。

使用高纯氧化铝陶瓷与ZrO2增韧氧化铝陶瓷力学性能对比:

99%氧化铝陶瓷 氧化锆增韧氧化铝陶瓷

密度 3.85 3.93

抗折强度 350MPa480MPa

抗压强度 3600MPa 3300MPa

硬度 1900HV 1600HV

抗冲击强度 5MPam1/2 7MPam1/2

二、晶须、纤维增韧

晶须是具有一定长径比(直径0.1—1.8 um,长35-l50um),且缺陷少的陶瓷单晶。具有很高的强度,是一种非常好的陶瓷基复合材料的增韧增强体;纤维长度较陶瓷晶须长数倍,也是一种很好的陶瓷增韧体,同时两者可复合实用。用SiC、Si3N4等晶须或C、SiC等长纤维对氧化铝陶瓷进行复合增韧。晶须或纤维的加入可以增加断裂表面,即增加了裂纹的扩展通道。当裂纹扩展的剩余能量渗入到纤维(晶须),发生纤维(晶须)的拔出、脱粘和断裂时,导致断裂能被消耗或裂纹扩展方向发生偏转等,从而使复合材料韧性得到提高。但当晶须、纤维含量较高时,由于其拱桥效应而使致密化变得困难,从而引起密度的下降和性能下降。

三、颗粒增韧

在氧化铝材料中加入一定粒度的具有高弹性模量的颗粒(如SiC、TiC、TiN等)可以在材料断裂时促使裂纹发生偏转和分又,消耗断裂能,从而提高韧性。尽管颗粒增韧效果不如晶须、纤维,但用颗粒作为增韧剂制作颗粒增韧陶瓷基复合材料,其原料混合均匀化及烧结致密化都比纤维、品须复合材料简便易行。纳米颗粒复相陶瓷是在陶瓷基体中引入纳米级的第二相增强粒子,通常小于0.3um,可使材料的室温和高温性能大幅度提高,特别是强度值,上升幅度更大。

四、 氧化铝自增韧

采用纳米氧化粉末制备的陶瓷不加增塑剂仍旧在低温下显出极好的超塑性。纳米氧化铝对改善陶瓷晶粒的形状、品界特性等起到了很好的效果。通过合理选择成分及工艺,使一部分氧化铝晶粒在烧结中原位发育成具有较高长径比的柱状晶粒,从而获得晶须的一种增韧机制。这也称为原位增韧,这种技术消除了基体相与增强相界面的不相容性,保证了基体相与增强相的热力学稳定,并使界面干净,结合良好。

另外,控制显微结构;改变晶粒形状、粒径、品界特性、气孔率等提高其断裂韧性;使用亚微细且各向分布均匀氧化铝;提高氧化铝粉纯度,改善组织结构。这些都是增加氧化铝陶瓷韧性的有效手段。