铝合金门窗用久了发黑那是因为氧化腐蚀了,尤其是现在的雨水是酸雨,很容易腐蚀铝合金加速氧化的过程。我给你列出3个办法,你看看哪个适合你。
1,使用酒精清理。
买点高浓度酒精,用抹布浸泡以后去清理门窗,你会发现清理起来会简单得多。
2,使用白醋清理。
买一瓶白醋浸泡抹布,然后再去清理发黑的铝合金也能很快地清理干净,不过你要注意在后面用清水再清理一遍。
3,使用食用碱清理。
将家里的食用碱面溶解在热水里,用抹布蘸这个水去清理也能快速的清理氧化层,时候同样要用清水清理一遍。
科普:
铝合金表面的氧化,生成氧化铝,是致密的保护膜,它与酸、碱都反应,所以上面的醋和食用碱就是这个意思,靠化学反应清理掉的。
咱们确实把氧化铝清理干净了,但是如果不保养,那没过多久就又黑了,所以最好的办法莫过于给铝合金刷一层防护漆啊。
刷上这么一层防护漆不光美观,而且对铝合金表面形成了一个保护层,不让铝接触到氧气,所以就不会发生被氧化的现象了,一桶漆也没多少钱,刷一层呗。
金属材料的腐蚀:是指金属材料和周围介质接触时发生化学或电化学作用而引起的一种破坏现象。由于金属材料的腐蚀可造成设备的跑、冒、滴、漏,污染环境,甚至发生中毒、火灾、爆炸等恶性事故以及资源和能源的严重浪费。因此,研究金属材料的腐蚀机理,弄清腐蚀发生的原因及采取有效的防护措施,对于延长设备寿命、降低成本、提高劳动生产力都具有十分重大的意义。
金属腐蚀的分类:按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。不管是化学腐蚀还是电化学腐蚀,金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。
化学腐蚀
化学腐蚀是指金属与非电解质直接发生化学作用而引起的破坏其腐蚀过程是一种纯氧化和还原的纯化学反应,即腐蚀介质直接同金属表面的原子相互作用而形成腐蚀产物。反应进行过程中没有电流产生,其过程符合化学动力学规律。
电化学腐蚀
电化学腐蚀是金属与电解质溶液发生化学作用而引起的破坏。反应过程同时有阳极失去电子,阴极获得电子以及电子的流动,其历程服从电化学的基本规律。
电化学腐蚀又根据其电解质溶液酸碱性的不同分为吸氢腐蚀和析氢腐蚀。
金属材料的主要防腐措施
(1)改善金属的本质
根据不同的用途选择不同的材料组成耐蚀合金,或在金属中添加合金元素,提高其耐蚀性,可以防止或减缓金属的腐蚀。如,在钢中加入镍制成不锈钢可以增强防腐蚀的能力。
(2)形成保护层在金属表面覆盖各种保护层,把被保护金属气腐蚀性质隔开,是防止金属腐蚀的有效方法。工业窿辅使用的保护层有非金属保护层和金属保护层两大类,通常采用以下方法形成保护层:
1)金属的磷化处理:钢铁制品去油、除锈后,放入特定组成的磷酸盐溶液中浸泡,即可在金属表面形成一层不溶于水的磷酸盐薄膜,这种过程叫做磷化处理。磷化膜呈暗灰色至黑灰色,厚度一般为5至20微米,在大气中有较好的耐蚀性。膜是微孔结构,对油漆等的吸附能力强,如用作油漆底层,耐腐蚀性可进一步提高。
2)金属的氧化处理:将钢铁制品加到Na0H和NaN02,的混合溶液中,加热处理,其表面即可形成一层厚度约为0.51.5微米的蓝色氧化膜(主要成分Fe3O4),以达到钢铁防腐蚀的目的,此过程称为发蓝处理,简称发蓝。这种氧化膜具有较大的弹性和润滑性,不影响零件的精度。故精密仪器和光学仪器的部件,弹簧钢、薄钢片、细钢丝等常用发蓝处理。
3)非金属涂层:用塑料喷涂金属表面,比喷漆效果更佳。塑料覆盖层致密光洁。色泽艳丽,兼具防蚀与装饰的双重功能。搪瓷是含SiO2量较高的玻璃瓷釉,有极好的耐腐蚀性能,因此作为耐腐蚀非金属涂层,广泛用于石油化工、医药、仪器等工业部门和日常生活用品中。
4)金属保护层:这是以一种金属镀在被保护的另一种金属制品表面上所形成的保护镀层,前一种金属称为镀层金属。金属镀层的形成,除电镀、化学镀外,还有热浸镀、热喷镀、渗镀、真空镀等方法。
(3)电化学保护
电化学保护是金属腐蚀防护的重要方法之一,其原理是利用外部电流使被腐蚀金属电位发生变化从而减缓或抑制金属腐蚀。电化学保护可分为阳极保护和阴极保护两种方法。
阳极保护
是向金属表面通入足够的阳极电流,使金属发生阳极极化即电位变正并处于钝化状态,金属
溶解大为减缓。
阴极保护是向腐蚀金属表面通入足够的阴极电流,使金属发生阴极极化,即电位变负以阻止金属溶解。
(4)缓蚀剂法
缓蚀剂法是一种常用的防腐蚀措施,在腐蚀环境中加入少量缓蚀剂就能和金属表面发生物理
化学作用,从而显著降低金属材料的腐蚀。由于缓蚀剂在使用过程中无须专门设备,无须改变金属构件的性质,因而具有经济、适应性强等优点,广泛应用于酸洗冷却水系统、油田注水等。
铝铸件的损坏主要发生在表面,铝合金材料表面增强具有重要的经济价值。铸造铝合金表面耐腐蚀性能的改善通过微弧氧化、电沉积、多弧离子镀、化学复合镀和化学转化膜等电化学方法来实现。铸造铝合金可以通过电化学方法获得改性层,其目的是赋予表面耐腐蚀性、耐磨性、装饰性以及其他特性。1微弧氧化陶瓷层微弧氧化(Microarcoxidation,MAO)又称微等离子体氧化(Microplasmaoxidation,MPO),是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,生长出以基体金属氧化物为主的陶瓷膜层。由于在微弧氧化过程中,化学氧化、电化学氧化、等离子体氧化同时存在,微弧氧化工艺将工作区域引入到高压放电区域,极大地提高了膜层的综合性能。微弧氧化膜层与基体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。该技术操作简单和易于实现膜层功能调节,而且工艺不复杂,不造成环境污染,是一项全新的绿色环保型材料表面处理技术,在航空航天、机械、电子、装饰等领域具有广阔的应用前景。合金元素Cu、Mg有利于微弧氧化的进行,而Si元素则有碍于微弧氧化。侯朝辉等[1]对含硅量为8%~12%的ZL系列铸铝合金的微弧氧化工艺条件、膜层结构以及成膜过程进行了研究。结果表明:铸铝合金在水玻璃复合体系中进行微弧氧化,可以得到一层细腻、均匀、较厚、显微硬度较高的陶瓷氧化膜;微弧氧化电解液体系中,水玻璃能够使铸铝合金的微弧氧化顺利进行;Na2WO4和EDTA二钠复配可提高膜层硬度;该研究条件下获取ZL109合金微弧氧化膜的工艺条件为NaOH:2~4g/L,水玻璃:5~7mL/L,Na2WO4:2~4g/L,EDTA二钠:2~4g/L,微弧氧化电流密度30~40A/dm2,溶液温度30~40℃,强搅拌。此外,龚建飞等[2]也对ZL109的微弧氧化进行了研究,获得了致密层厚度76μm以上,显微硬度HV1600均匀氧化陶瓷膜层。ADC12压铸铝合金广泛应用于汽车、摩托车和仪器等行业的活塞、带轮等零部件和结构件。张金彬等[3]研究了ADC12铝合金表面微等离子体氧化法制备黑色陶瓷膜的电解液成分和电参数等对膜层性能的影响,结果表明,磷酸钠浓度较低,表面粗糙,浓度过高易析盐和膜层崩落,最佳浓度为12~15g/L;添加剂M1和M2组分中的金属元素氧化物K在膜层中的比重越大,膜层黑色饱和度越高越稳定,其最佳浓度分别为10.0~11.0g/L和15.0~18.0g/L;使膜层黑色均匀的最佳pH值为8.0~9.0;形成饱和深黑色的最佳电流密度为3.0~4.0A/dm2;采用最佳的电解液配方制备的黑色膜层厚度在20~30μm,硬度HV500~700,黑色饱和度在0.8~1.0。 王宗仁等[4]将等离子体增强的电化学表面陶瓷化(PECC技术)工艺应用在Y112压铸铝合金表面强化处理上,使其表面生成α-Al2O3和γ-Al2O3相的陶瓷膜。据称该膜性能均优于特富隆技术涂层。金玲等[5]对ZL109合金和SiCp/ZL109复合材料表面进行微弧氧化,研究发现,ZL109合金和SiCp/ZL109复合材料都可以进行表面微弧氧化,其微弧氧化层由两层结构组成,分别为疏松层和致密层。ZL109合金微弧氧化层主要由不同结构的Al2O3相组成,SiCp/ZL109复合材料微弧氧化层由Al2O3和MgAl13O40组成。交流电源恒流条件下铝合金表面微弧氧化-黑化一体化处理[6]研究显示,钒酸盐对微弧氧化陶瓷膜的黑化效果具有决定性作用;黑色陶瓷膜色泽稳定,具有较高的显微硬度,并能对基体金属提供有效的腐蚀防护;黑色陶瓷膜主要元素组成包括O、Al、Si、V和P,膜中化合物主要以无定形态和/或微晶态形式存在,只发现少量的γ-Al2O3和ε-Al2O3晶体;黑色陶瓷膜为较为疏松的单层结构,其表面在微观尺度上粗糙不平,存在较为密集的尺寸为μm量级的微孔,并有明显的高温烧结痕迹和微裂纹;黑色陶瓷膜的微观结构与其形成机制有关。ZL101铸造铝2硅合金微弧氧化陶瓷膜[7]生长分为3个阶段,氧化初期,电流密度较高,但膜层生长较慢。在膜快速生长阶段,膜生长速率达到极大值;膜生长进入平稳期后,基本保持恒定,样品的外部尺寸不再增加,膜逐渐转向基体内部生长;合金化元素硅的影响主要表现为氧化初期对膜生长的阻碍作用;铸造铝合金经过微弧氧化处理后,腐蚀电流大幅下降,极化电阻增加了几个数量级;较薄的微弧氧化膜同样大幅度提高了铝-硅合金的耐蚀性。中性盐雾腐蚀试验法研究高强度铸造铝合金ZL205微弧氧化陶瓷膜[8]的结果表明,微弧氧化处理能显著提高ZL205的耐腐蚀性能,随着厚度的增加,陶瓷膜的耐腐蚀性能提高,但在厚度达到一定值后,陶瓷膜的耐腐蚀性能提高不明显;随着厚度的增加,微弧氧化膜的表面形貌和相结构都发生变化,从而导致微弧氧化膜的耐腐蚀性能发生变化。2电沉积层电沉积(electrodeposition)是金属或合金从其化合物水溶液、非水溶液或熔盐中电化学沉积的过程。是金属电解冶炼、电解精炼、电镀、电铸过程的基础。这些过程在一定的电解质和操作条件下进行,金属电沉积的难易程度以及沉积物的形态与沉积金属的性质有关,也依赖于电解质的组成、pH值、温度、电流密度等因素。吴向清等[9]利用电化学方法对ZL105铝合金表面电沉积Ni2SiC复合镀层的耐蚀性能进行了研究。结果表明,Ni2SiC复合镀层的表面形貌与纯Ni镀层截然不同,耐蚀性能优于纯Ni镀层,经过300℃×2h热处理后,耐蚀性能进一步得到提高。3多弧离子镀层多弧离子镀是真空室中,利用气体放电或被蒸发物质部分离化,在气体离子或被蒸发物质粒子轰击作用的同时,将蒸发物或反应物沉积在基片上。离子镀把辉光放电现象、等离子体技术和真空蒸发三者有机结合起来,不仅能明显地改进了膜质量,而且还扩大了薄膜的应用范围。其优点是薄膜附着力强,绕射性好,膜材广泛等。离子镀种类很多,蒸发远加热方式有电阻加热、电子束加热、等离子电子束加热、高频感应加热等。多弧离子镀采用的是弧光放电,而并不是传统离子镀的辉光放电进行沉积。简单的说,多弧离子镀的原理就是把阴极靶作为蒸发源,通过靶与阳极壳体之间的弧光放电,使靶材蒸发,从而在空间中形成等离子体,对基体进行沉积。在ZL201铝合金表面多弧离子镀Ti-Cr-N涂层,并在Ti-Cr-N涂层上制备一层脂类薄膜[10]。结果表明:Ti-Cr-N涂层中的Cr以固溶体的方式存在于TiN晶体中,没有形成单独的CrN相;涂层可以有效提高ZL201铝合金的抗盐雾腐蚀的能力。 4化学复合镀层在镀覆溶液中加入非水溶性的固体微粒,使其与主体金属共同沉积形成镀层的工艺称之为复合镀。若采用电镀的工艺则称之为复合电镀;若采用化学镀的工艺则称之为复合化学镀。所得镀层称为复合镀层。原则上,凡可镀覆的金属均可作为主体金属,但研究和应用较多的是镍、铬、钴、金、银、铜等几种金属。作为固体微粒主要有两类,一类是提高镀层耐磨性的高硬度、高熔点的微粒;一类是提高镀层自润滑特性的固体润滑剂微粒。在铸铝表面制备Ni-P-金刚石化学复合镀层[11],结果表明,硫酸高铈能促进金刚石微粒进入镀层,随硫酸高铈含量增加镀液稳定性大幅提高后趋于平稳,Ni-P-金刚石复合镀层耐磨性优于Ni-P镀层,添加2mg/L硫酸高铈后进一步显著提高,与Ni-P镀层相比,复合镀层耐蚀性差,添加硫酸高铈后有所改善。5化学转化膜化学转化膜是使金属与特定的腐蚀液相接触,在一定条件下发生化学反应,在金属表面形成一层附着力良好的、难溶的生成物膜层。这些膜层,或者能保护基体金属不受水和其它腐蚀介质的影响,或者能提高有机涂膜的附着性和耐老化性,或者能赋予表面其它性能。化学转化膜由于是基体金属直接参与成膜反应而生成,因而与基体的结合力比电镀层和化学镀层大的多。几乎所有的金属都可以在选定的介质中通过转化处理,得到不同应用目的的化学转化膜,但目前工业上应用较多的是钢铁、铝、锌、铜、镁及其合金。化学转化膜同金属上别的覆盖层(例如金属的电沉积层)不一样,它的生成必须有基底金属的直接参与,与介质中阴离子生成自身转化的产物(MmAn),因此也可以说化学转化膜的形成实际上可看作是受控的金属腐蚀的过程。化学转化膜按膜的主要组成物的类型分为:氧化物膜,磷酸盐膜,铬酸盐膜,草酸盐膜等。铝合金在大气环境下容易发生晶间腐蚀而破坏。目前应用的高强度铸造铝合金一般含有硅、铜、镁等元素,这些元素的加入增加了合金的腐蚀敏感性。其次是表面硬度低,容易磨损,外表光泽不能保持长久,所以要求有较高的保护措施。其中在铝合金表面上生成化学转化膜具有设备简单、成本低、投资省等优点。彭靓等[12]采用铬酸盐法在Y112合金上生成化学转化膜,实验结果表明,该转化膜具有高的耐腐蚀性,并具有美观的金黄色外表面。以锰酸盐和锆盐为主盐,在铝合金表面化学氧化得到的化学氧化膜[13]的腐蚀电位比铝合金试样的腐蚀电位正0.45V左右,腐蚀电流密度仅0.286μA/cm2;交流阻抗谱图低频端的阻抗值比铝合金试样的值大一个数量级;铝合金化学氧化膜外观呈金黄色,具有规则排列的柱状生长结构。 葛圣松等[14]用无铬化学方法在铸铝合金表面制得黑色转化膜,利用点滴试验评价了膜的耐蚀性能。分别采用扫描电镜及电子探针观察膜的形貌、测定其组成元素,最后提出了黑色膜的形成机理和耐蚀机理。6结语铸造铝合金的表面耐腐蚀性处理可以通过电化学方法得以改善。现有的研究多停留在试样上,应用研究较少。在实际应用中,单独用一种工艺技术就能提高铸造铝合金的防护性、装饰性和功能性问题比较少见,有必要对现有的改性技术综合考虑,对此开展系统的研究。铸造铝合金的表面耐腐蚀性改善和耐磨性改善的综合研究更有意义。
铝合金和不锈钢连接可能会发生电偶腐蚀。
理论上来说,只要是不同种类的金属发生接触,因为不同金属间存在的电极电位的差异,一旦存在电解液,形成回路,就会产生自催化式的电偶腐蚀,阳极金属被腐蚀。在铝合金和不锈钢的搭配中(假定是奥氏体不锈钢),铝合金是阳极金属。所以要避免采用多种金属,或者用绝缘的物质隔绝回路。
扩展资料:
影响电偶腐蚀速度的因素主要有:
1、所形成的电偶间的电极电位差
2、腐蚀介质的电导;
3、金属表面的极化和由于阴、阳极反应生成表面膜或腐蚀产物的影响;
4、电偶间的空间布置(几何因素)。电偶腐蚀速度,在数量上服从法拉第电解定律。两金属之间的电极电位差愈大、电流愈大,则腐蚀愈快。电路中的各种电阻则按欧姆定律影响电偶腐蚀电流,介质的电导率高,则加速电偶腐蚀。
防止措施
电偶腐蚀的主要防止措施有:
1、选择在工作环境下电极电位尽量接近(最好不超过50毫伏)的金属作为相接触的电偶对;
2、减小较正电极电位金属的面积,尽量使电极电位较负的金属表面积增大;
3、尽量使相接触的金属电绝缘,并使介质电阻增大;
4、充分利用防护层,或设法外加保护电位。选择防护方法时应考虑面积律的影响,以及腐蚀产物的影响等。
参考资料来源:百度百科-电偶腐蚀