铝合金气缸如何检验
1、首先将被检验的气缸缸筒及上平面清洗,擦干。
2、其次启动发动机,待发动机运转至正常工作温度后,拆下空气滤清器。
3、最后运行时伸缩灵活,无卡死即可检验成功。
这个没有绝对的哪个好.那个不好
关键看使用要求.
因为铝合金气缸的缸筒是铝合金...极易受到外力而内凹..
内凹后.会影响活塞的运动平稳性.加速密封圈的磨损.从而影响寿命.
所以..如果你使用的环境很好.可以选铝合金的..铝合金相对便宜些..
反之.如果条件恶劣..那就使用不锈钢吧...
铝合金气缸:在环境普通的情况下,一般使用铝合金气缸就可以。
全不锈钢材质气缸:适用于特殊环境,在酸碱度高,腐蚀性比较强的环境下。
铸铁的气缸:铸铁的气缸在相同体积下比其他气缸更加重,大气缸和重型气缸都采用铸铁材质,适用于工业行情起重设备。"
在过去我们的发动机缸体都是铸铁材质的,因为铸铁件有很好的抗腐蚀性和防锈能力,同时也有很好的耐磨性,缸体强度好,有抗压不易变形等优点,所以很多大型发动机还是使用铸铁缸体被使用至今。
铝合金材质的缸体是近些年流行起来的,铝合金材质的缸体优势在于重量更低,散热效率更好, 降低车辆的重量就相当于节省燃油了,所以越来越多的小型车辆都是在使用铝合金缸体。
你所说的振动问题可能要从气缸的安装固定上去考虑可能更好一点。
1、用途不同,6061广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建筑、船舶、电车、铁道车辆、家具等。LY12可用作150度以下的工作零件和航空航天用铝合金制品,是硬铝中用量最大的。
2、合金元素不同,6061铝合金的主要合金元素是镁与硅,并形成Mg2Si。LY12为铝-铜-镁系中的典型硬铝合金。
发动机缸体铸铁和铝合金的差异,最大的差异是重量和能力不同。铸铁:耐高温不容易变形,铸铁发动机磨损后维修简单,成本低。铝合金质量轻发热快轻量化的铝发动机,能有效减轻发动机本身的重量,达到相对省油的目的。发动机用材料现在主要分为两种。一种是铝合金,另一种是铸铁。铝合金优点,气缸体质量更轻,发热更好。
质量轻量化最大的优点是操作更灵活。理论上说,如果质量轻,燃料消耗就会减少。铸铁块,唯一的优点是更结实。也就是说,对性能要求较高的车主铸铁发动机缸体,与其说是铝合金,不如说是翻新。铝合金的冷却性能很好,这一点是铸铁无法比拟的。铸铁它的抗变形能力特别强。铸铁的热负荷承受能力很大,这是铝合金材料所不能比拟的。
因此,目前一些高档汽车品牌,特别是涡轮增压发动机,该发动机的气缸材料仍然是铸铁。为了能抵抗高热量,具有很高的抗变形能力。铝合金材料的优点:重量轻是比铸铁最大的优点,减少重量会使汽车更节省燃油。在同等排量的发动机上使用铝缸发动机可以减少20公斤左右的重量。汽车本身的重量每减少10%,燃料消耗就可以减少6%到8%冷却效果好,提高生产率的同时延长服务寿命。
与铸铁相比,铝合金原材料成本高是最大的劣势在结构强度、耐蚀性和耐磨性方面,铝比铸铁差铸铁材料的优点,成本低价格低、制造工艺成熟气缸强度和耐磨性及耐蚀性优于铝合金,对发动机输出更好,铸铁材料的缺点,铸铁生产线占地面积大,环境污染大,加工工艺复杂散热性能不好,发动机重量太重,由于两者的优缺点不同,铸铁材料的汽缸可以应用得更广泛,柴油机大部分是铸铁材料。一些高级汽车发动机可以使用铝合金材料。
铝合金气缸体优点:可以减轻一半的发动机重量,能有效降低燃油消耗和提高操控表现。
铝合金气缸体缺点:铝制材料价格昂贵。
一、气缸-气缸种类
气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:
将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:
直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:
气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示:
五、SMC气缸原理图
1)缸筒
缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖
端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3)活塞
活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
4)活塞杆
活塞杆是气缸中最重要的受力零件。通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。
5)密封圈
回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。
缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。
6)气缸工作时要靠压缩空气中的油雾对活塞进行润滑。也有小部分免润滑气缸。
六、气缸-工作原理
根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。
气缸
下面是气缸理论出力的计算公式:
F:气缸理论输出力(kgf)
F′:效率为85%时的输出力(kgf)--(F′=F×85%)
D:气缸缸径(mm)
P:工作压力(kgf/cm2)
例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?
将P、D连接,找出F、F′上的点,得:
F=2800kgf;F′=2300kgf
在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。
例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?
●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)
●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。
七、原因分析
在汽缸运行过程中,汽缸渗漏和汽缸变形是最为常见的设备问题,汽缸结合面的严密性直接影响机组的安全经济运行,检修 研刮汽缸的结合面,使其达到严密,是汽缸检修的重要工作,在处理结合面漏汽的过程中,要仔细分析形成的原因,根据变形的程度和间隙的大小,可以综合的运用 各种方法,以达到结合面严密的要求。原因如下:
1.汽缸是铸造而成的,汽缸出厂后都要经过时效处理,就是要存放一些时间,使汽缸在住铸造过程中所产生的内应力完全 消除。如果时效时间短,那么加工好的汽缸在以后的运行中还会变形,这就是为什么有的汽缸在第一次泄漏处理后还会在以后的运行中还有漏汽发生。因为汽缸还在 不断的变形。
2.汽缸在运行时受力的情况很复杂,除了受汽缸内外气体的压力差和装在其中的各零部件的重量等静载荷外,还要承受蒸汽流出静叶时对静止部分的反作用力,以及各种连接管道冷热状态下对汽缸的作用力,在这些力的相互作用下,汽缸发生塑性变形造成泄漏。
3.汽缸的负荷增减过快,特别是快速的启动、停机和工况变化时温度变化大、暖缸的方式不正确、停机检修时打开保温层过早等,在汽缸中和发兰上产生很大的热应力和热变形。
4.汽缸在机械加工的过程中或经过补焊后产生了应力,但没有对汽缸进行回火处理加以消除,致使汽缸存在较大的残余应力,在运行中产生永久的变形。
5.在安装或检修的过程中,由于检修工艺和检修技术的原因,使内缸、汽缸隔板、隔板套及汽封套的膨胀间隙不合适,或是挂耳压板的膨胀间隙不合适,运行后产生巨大的膨胀力使汽缸变形。
6.使用的汽缸密封剂质量不好、杂质过多或是型号不对;汽缸密封剂内若有坚硬的杂质颗粒就会使密封面难以紧密的结合。VIF900高温汽缸密封剂是最新汽轮机汽缸密封材料,高、中、低压缸可通用,避免了型号选择不当而造成的汽缸泄漏。
7.汽缸螺栓的紧力不足或是螺栓的 材质不合格。汽缸结合面的严密性主要靠螺栓的紧力来实现的。机组的起停或是增减负荷时产生的热应力和高温会造成螺栓的应力松弛,如果应力不足,螺栓的预紧 力就会逐渐减小。如果汽缸的螺栓材质不好,螺栓在长时间的运行当中,在热应力和汽缸膨胀力的作用下被拉长,发生塑性变形或断裂,紧力就会不足,使汽缸发生 泄漏的现象。
8.汽缸螺栓紧固的顺序不正确。一般的汽缸螺栓在紧固时是从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最 大的地方紧固,这样就会把变形最大的处的间隙向汽缸前后的自由端转移,最后间隙渐渐消失。如果是从两边向中间紧,间隙就会集中于中部,汽缸结合面形成弓型 间隙,引起蒸汽泄漏。
八、处理方法
汽缸结合面产生变形和泄漏的原因不同,而且出现的部位和变形泄漏的程度不也不同,首先要用长平尺和塞尺检查汽缸结合面的变形情况,在检修中要根据泄漏的原因和变形程度采取相应的检修措施。具体方法如下:
1.汽缸变形较大或漏汽严重的结合面,采用研刮结合面的方法
如果上缸结合面变形在0.05mm范围内,以上缸结合面为基准面,在下缸结合面涂红丹或是压印蓝纸,根据痕迹研刮下 缸。如果上缸的结合面变形量大,在上缸涂红丹,用大平尺研出痕迹,把上缸研平。或是采取机械加工的方法把上缸结合面找平,再以上缸为基准研刮下缸结合面。 汽缸结合面的研刮一般有两种方法:
(1)是不紧结合面的螺栓,用千斤顶微微推动上缸前后移动,根据下缸结合面红丹的着色情况来研刮。这种方法适合结构刚性强的高压缸。
(2)是紧结合面的螺栓,根据塞尺的检查结合面的严密性,测出数值及压出的痕迹,修刮结合面,这种方法可以排除汽缸垂弧对间隙的影响。
2.采用适当的汽缸密封材料
汽轮机汽缸密封剂产品质量参差不齐;在选择汽轮机汽缸密封剂时,就要选在行业内有口碑,产品质量有保证的正规生产厂家,以保证检修处理后汽缸的严密性。
3.局部补焊的方法
由于汽缸结合面被蒸汽冲刷或腐蚀出沟痕,选用适当的焊条把沟痕添平,用平板或平尺研出痕迹,研刮焊道和结合面在同一 平面内。汽缸结合面变形较大或是漏汽严重时,在下缸的结合面补焊一条或两条10—20mm宽的密消除间隙封带,然后用平尺或是扣上缸测量,并涂红丹研刮, 直到消除间隙。此操作的工艺也很简单,焊前预热汽缸至150℃,然后在室温下进行分段退焊或跳焊。选用奥氏体焊条,如A407、A412,焊后用石棉布覆 盖保温缓冷。待冷却室温后进行打磨修刮。
4.汽缸结合面的涂镀或喷涂
当汽缸结合面大面积漏汽,间隙在0.50mm左右时,为了减少研刮的工作量,可用涂镀的工艺。用汽缸做阳极,涂具做 阴极,在汽缸的结合面上反复涂刷电解溶液,涂层的厚度要根据汽缸结合面间隙的大小而定,涂层的种类要根据汽缸的材料和修刮的工艺而定。喷涂就是用专用的高 温火焰喷枪把金属粉末加热至熔化或达到塑性状态后喷射于处理过的汽缸表面,形成一层具有所需性能的涂层方法。其特点就是设备简单,操作方便涂层牢固,喷涂 后汽缸温度仅为70℃—80℃不会使汽缸产生变形,而且可获得耐热,耐磨,抗腐蚀的涂层。注意的是在涂渡和喷涂前都要对缸面进行打磨、除油、拉毛,在涂渡 和喷涂后要对涂层进行研刮,保证结合面的严密。
5.结合面加垫的方法
如果结合面的局部间隙泄漏不是很大,可用80—100目的铜网经热处理使其硬度降低,然后剪成适当的形状,铺在结合 面的漏汽处,再配以汽缸密封剂。如果结合面的间隙较大,泄漏严重,可在上下结合面开宽50mm深5mm的槽,中间镶嵌IGr18Ni9Ti的齿形垫,齿形 垫的厚度一般比槽的深度大0.05—0.08mm左右,并可用同等形状的不锈钢垫片做以调整。
6.控制螺栓应力的方法
如果汽缸结合面的变形较小,而且很均匀,可在有间隙处更换新的螺栓,或是适当的加大螺栓的预紧力。按从中间向两边同 时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固螺栓。理论上来说,控制螺栓的预紧力可用公式d/L≤A来计算,但由于此计算的数据与测量的手段还 在研究当中,多在螺栓的允许的最大应力内根据经验而定。
九、汽缸的应用领域
印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
1、气缸体:气缸体是发动机最基础的零部件,其它的各种零部件都直接或者间接安装在它的上面。
气缸体的材质分为两种,一种是铸铁的,一般使用灰铸铁铸造,现在的发动机为了增强气缸体 强度和耐磨性,还采用了含镍、铬、钼、磷等元素的优质灰铸铁。而一些高强化的柴油机会使用更高级的球墨铸铁或蠕墨铸铁铸造。铸铁气缸体的强度、刚度、耐磨性以及吸收振动的能力都是非常优秀的,最大的缺点就是重量大。
而现在小型车上使用的汽油发动机,更多的采用铝合金气缸体,或者是铝镁合金气缸体。它们使用铝合金或者铝镁合金铸造而成,最大的优点就是重量轻、散热好,但是气缸体的强度、刚度、耐磨性以及吸收振动的能力却不如铸铁气缸体。所以,那些整天吹嘘铝合金发动机更优秀的网络喷子可以休矣。
2、气缸盖:气缸盖与气缸体的工作条件及结构复杂性有许多共同之处,所以二者一般使用同样的材质铸造,也是灰铸铁或者合金铸铁。有些汽油机为了提高散热性能及减轻发动机重量,会使用铝合金来铸造气缸盖。但是铝合金强度低,使用中易变形,只能应用在汽油机上,柴油机还是使用强度更高的铸铁铸造。
3、气缸套:气缸套是镶嵌在气缸体上的,活塞与活塞环在其中上下运动,所以它必须非常耐磨。因此,它一般都采用耐磨性好的高级铸铁制造,比如珠光体铸铁、合金铸铁、高磷铸铁、含硼铸铁等。需要注意的是:不论是铸铁发动机还是铝合金发动机,气缸套都是铸铁铸造的,铝合金发动机也必须镶嵌一个铸铁的气缸套。现在有一种更先进的技术,就是在铝合金气缸体上直接使用金属喷涂技术,喷涂一层致密耐磨的铁质涂层,然后再使用激光淬火,增强硬度和耐磨性,这样可以大大减轻发动机的重量和体积。不过这样的发动机是不能维修的,如果出现了爆缸的故障,只能直接更换发动机了。
4、活塞:不论是铸铁发动机还是铝合金发动机,它们使用的活塞基本都是铝合金铸造的。使用较为广泛的是硅铝合金,它有较小的膨胀系数和密度,耐磨性也不错。少数负荷较大的柴油机使用了高温强度和导热性较好的铜镍镁铝合金活塞。现在也有部分柴油机使用铸铁活塞,它是性能极为优异,耐热性好,与气缸体膨胀系数一致,可以减小装配间隙。在早期的锡柴6DL-2柴油机上就使用了铸铁活塞,发动机运行的极为平稳。
5、活塞环:活塞环直接与气缸壁接触,并且高速上下运动,所以要求它有较好的耐磨性。一般活塞环都使用优质灰铸铁、合金铸铁或者球墨铸铁铸造,并且在摩擦表面做多孔镀铬或者喷钼处理,以增强耐磨性以及润滑性能。
6、活塞销:活塞销是连接活塞与连杆的,它在工作过程中要承受很大的连续冲击载荷,因此对它的 强度和耐磨性要求都是非常高的。一般采用低碳钢或者低碳合金钢锻造而成,比如20Cr、20MnV等。表面要做渗碳或者氰化处理,这样就可以获得较高的表面硬度,耐磨性好,强度高,同时又有较软的芯部,耐冲击性能较好。
7、连杆:连杆是连接活塞与曲轴的,把活塞的往复直线运动转换为曲轴的旋转运动,并把活塞受到的力传递给曲轴。它在工作中要承受交变的弯曲载荷。一般采用40Cr等中碳合金钢锻造而成,并进行表面喷丸处理,以提高耐疲劳强度。
8、曲轴:曲轴是发动机最重要的机件之一,它是发动机动力输出元件,在工作时承受周期变化的气体压力、往复惯性力和离心力等,工况极为复杂,因此对它的材质要求也是极高的。曲轴一般采用优质中碳钢或者中碳合金钢锻造,大型柴油机一般是由球墨铸铁铸造,表面再经喷丸强化、淬火处理。还有些曲轴表面要做氮化处理,以提高耐疲劳强度。
9、凸轮轴:凸轮轴是配气机构中最主要的零部件之一,它的工作条件与曲轴类似,一般使用优质碳素结构钢或者合金结构钢锻造而成,在凸轮表面在进行高频淬火或者渗碳淬火处理,以提高耐磨性和表面硬度。现在也有些车型使用合金铸铁或者球墨铸铁铸造凸轮轴。
10、气门:气门是发动机配气机构中的零部件,用来控制空气进入气缸,并将燃烧后的废气排出发动机。它最大的特点就是要承受燃烧高温,因此气门一般都采用耐热钢来制造,比如硅铬钢、硅铬钼钢、硅铬锰钢等。有些气门表面还会堆焊或者等离子喷涂一层钨钴合金,以提高耐蚀性和耐高温性能。此外,为了增强散热,有些气门内部还装有金属钠,钠受热熔化后在内部流动,将气门头部的热量带给气门杆部并散发出去。
11、气门座圈:气门座圈与气门配合工作,它是镶嵌在气缸盖上面的。它的工作条件与气门类似,一般采用与气门同样的 材质制作,比如耐热合金钢或者合金铸铁等。
12、气门弹簧:气门弹簧的作用是使气门自动回位关闭,并保证气门与气门座的座合压力。此外,还要吸收气门在开闭过程中的惯性力。它一般采用优质冷拔弹簧钢丝卷制而成,并经过热处理,表面再进行抛光或喷丸处理。
13、气门室盖:气门室盖是用来密封气门室的,防止气门室机油飞溅。它一般采用薄钢板冲压而成,也有些车型使用铝合金气门室盖,它们的功能都是一样的,并没有高低之分。有些车型为了加强保温,会使用散热较差的塑料或者树脂材料来制造气门室盖。
14、油底壳:油底壳是安装在发动机最下面,用来盛放机油。它一般采用薄钢板冲压而成,也有些车型使用铝合金铸造,相对来说,铝合金铸造的油底壳散热性更好一些,但是耐冲击、耐撞能力较差,受到撞击就会破损,不像薄钢板油底壳,受到撞击可能只是变形,但不会破损漏油。
以上就是发动机中主要零部件的材质分布情况。其实发动机使用的材料不仅仅是这些,还有其它的各种橡胶件(如各种油封等)、合金件(比如各部位轴瓦、铜套等)等,发动机附属件上还有铜、锡、树脂、塑料等各种金属非金属材料。总之,发动机并非一种材料组成,而是由许许多多材料组合而成的。这些材料的质量,在很大程度上就决定了发动机质量的高低。我们经常说日系发动机质量好,很大程度上就是它们的材料工艺更好。