建材秒知道
登录
建材号 > 铝合金 > 正文

铝合金压铸件常见缺陷及产生原因

会撒娇的小蝴蝶
飘逸的香菇
2023-01-01 10:10:38

铝合金压铸件常见缺陷及产生原因

最佳答案
自信的裙子
激动的花卷
2025-07-27 23:39:58

1、充填过程中的杂质聚集为夹层,抛光时掩盖,

当氧化或加工后就可暴露其缺陷。

2、应改变一下内浇道一试。

3、喷涂材料问题,换换涂料试试。

4、用抽真空机试试

最新回答
灵巧的鸵鸟
怕孤单的百褶裙
2025-07-27 23:39:58

缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现

产生原因:

1.炉料不清洁,回炉料使用量过多

2.浇注系统设计不良

3.合金液中的熔渣未清除干净

4.浇注操作不当,带入夹渣

5.精炼变质处理后静置时间不够

防止方法:

1.炉料应经过吹砂,回炉料的使用量适当降低

2.改进浇注系统设计,提高其挡渣能力

3.采用适当的熔剂去渣

4.浇注时应当平稳并应注意挡渣

5.精炼后浇注前合金液应静置一定时间 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔 气泡可通过X光透视或机械加工发现气孔 气泡在X光底片上呈黑色。

产生原因:

1.浇注合金不平稳,卷入气体

2.型(芯)砂中混入有机杂质(如煤屑、草根 马粪等)

3.铸型和砂芯通气不良

4.冷铁表面有缩孔

5.浇注系统设计不良

防止方法 :

1.正确掌握浇注速度,避免卷入气体。

2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量

3.改善(芯)砂的排气能力

4.正确选用及处理冷铁

5.改进浇注系统设计 缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍 断口等检查方法发现。

产生原因:

1.冒口补缩作用差

2.炉料含气量太多

3.内浇道附近过热

4.砂型水分过多,砂芯未烘干

5.合金晶粒粗大

6.铸件在铸型中的位置不当

7.浇注温度过高,浇注速度太快

防止方法:

1.从冒口补浇金属液,改进冒口设计

2.炉料应清洁无腐蚀

3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用

4.控制型砂水分,和砂芯干燥

5.采取细化品粒的措施

6.改进铸件在铸型中的位置降低浇注温度和浇注速度 缺陷特征 :

1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现

2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生

产生原因:

1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊

2.砂型(芯)退让性不良

3.铸型局部过热

4.浇注温度过高

5.自铸型中取出铸件过早

6.热处理过热或过烧,冷却速度过激

防止方法:

1.改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡

2.采取增大砂型(芯)退让性的措施

3.保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计

4.适当降低浇注温度

5.控制铸型冷却出型时间

6.铸件变形时采用热校正法

7.正确控制热处理温度,降低淬火冷却速度 压铸件缺陷中,出现最多的是气孔。

气孔特征。有光滑的表面,形状是圆形或椭圆形。表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。

(1)气体来源

1) 合金液析出气体—a与原材料有关 b与熔炼工艺有关

2) 压铸过程中卷入气体&not—a与压铸工艺参数有关 b与模具结构有关

3) 脱模剂分解产生气体&not—a与涂料本身特性有关 b与喷涂工艺有关

(2)原材料及熔炼过程产生气体分析

铝液中的气体主要是氢,约占了气体总量的85%。

熔炼温度越高,氢在铝液中溶解度越高,但在固态铝中溶解度非常低,因此在凝固过程中,氢析出形成气孔。

氢的来源:

1) 大气中水蒸气,金属液从潮湿空气中吸氢。

2) 原材料本身含氢量,合金锭表面潮湿,回炉料脏,油污。

3) 工具、熔剂潮湿。

(3)压铸过程产生气体分析  由于压室、浇注系统、型腔均与大气相通,而金属液是以高压、高速充填,如果不能实现有序、平稳的流动状态,金属液产生涡流,会把气体卷进去。

压铸工艺制定需考虑以下问题:

1) 金属液在浇注系统内能否干净、平稳地流动,不会产生分离和涡流。

2) 有没有尖角区或死亡区存在?

3) 浇注系统是否有截面积的变化?

4) 排气槽、溢流槽位置是否正确?是否够大?是否会被堵住?气体能否有效、顺畅排出?

应用计算机模拟充填过程,就是为了分析以上现象,以作判断来选择合理的工艺参数。

(4)涂料产生气体分析  涂料性能:如发气量大对铸件气孔率有直接影响。

喷涂工艺:使用量过多,造成气体挥发量大,冲头润滑剂太多,或被烧焦,都是气体的来源。

(5)解决压铸件气孔的办法

先分析出是什么原因导致的气孔,再来取相应的措施。

1) 干燥、干净的合金料。

2) 控制熔炼温度,避免过热,进行除气处理。

3) 合理选择压铸工艺参数,特别是压射速度。调整高速切换起点。

4) 顺序填充有利于型腔气体排出,直浇道和横浇道有足够的长度(>50mm),以利于合金液平稳流动和气体有机会排出。可改变浇口厚度、浇口方向、在形成气孔的位置设置溢流槽、排气槽。溢流品截面积总和不能小于内浇口截面积总和的60%,否则排渣效果差。

5) 选择性能好的涂料及控制喷涂量。

爱听歌的小笼包
缓慢的乌龟
2025-07-27 23:39:58
铝合金压铸件有什么常见的缺陷

压铸件的缺陷特征,产生原因,防止方法 名称 流痕及花纹 网状毛翅 脆性 裂纹 缩孔缩松 特征及检查方法 外观检查:铸件表面上有与金属液流动方向一致的条纹,有明显可见的与金属基体颜色不一样无方向性的纹路,无发展趋势。 外观检查:压铸件表面上有网状发丝一样凸起或凹陷的痕迹,随压铸次数增加而不断扩大和延伸

害怕的河马
兴奋的牛排
2025-07-27 23:39:58

压铸件表面缺陷常见有:

1、铸件表面有花纹,并有金属流痕迹。

产生原因:通往铸件进口处流道太浅;压射比压太大,致使金属流速过高,引起金属液的飞溅。

调整方法:加深浇口流道;减少压射比压。

2、铸件表面有细小的凸瘤。

产生原因:表面粗糙;型腔内表面有划痕或凹坑、裂纹产生。

调整方法:抛光型腔;更换型腔或修补。

压铸件注意事项

一、考虑脱模的问题。

二、考虑铝合金压铸壁厚的问题,厚度的差距过大会对填充带来影响。

三、在结构上尽量避免出现导致模具结构复杂的结构出现,不得不使用多个抽芯或螺旋抽芯。

四、有些压铸件外观可能会有特殊的要求,如喷油。

五、设计时考虑到模具问题,如果有多个位置的抽芯位,尽量放两边,最好不要放在下位抽芯,这样时间长了铝合金压铸下抽芯会出现问题。

注意以上五点,在压铸铝合金压铸件时就能减少很多可以避免的问题发生。

着急的紫菜
懵懂的犀牛
2025-07-27 23:39:58
1、充填过程中的杂质聚集为夹层,抛光时掩盖,

当氧化或加工后就可暴露其缺陷。

2、应改变一下内浇道一试。

3、喷涂材料问题,换换涂料试试。

4、用抽真空机试试

仁爱的吐司
彪壮的大神
2025-07-27 23:39:58

其他名称:条纹。

特征:铸件表面上呈现与金属液流动方向相一致的,用手感觉得出的局部下陷光滑纹路。此缺陷无发展方向,用抛光法能去除。

产生原因:

1、两股金属流不同步充满型腔而留下的痕迹。

2、模具温度低,如锌合金模温低于150℃,铝合金模温低于180℃,都易产生这类缺陷。

3、填充速度太高。

4、涂料用量过多。

排除措施:

1、调整内浇口截面积或位置。

2、调整模具温度,增大溢流槽。

3、适当调整填充速度以改变金属液填充型腔的流态。

4、涂料使用薄而均匀。 其他名称:冷接(对接),水纹。

特征:温度较低的金属流互相对接但未熔合而出现的缝隙,呈不规则的线形,有穿透的和不穿透的两种,在外力的作用下有发展的趋势。

产生原因:

1、金属液浇注温度低或模具温度低。

2、合金成分不符合标准,流动性差。

3、金属液分股填充,熔合不良。

4、浇口不合理,流程太长。

5、填充速度低或排气不良。

6、比压偏低。

排除措施:

1、适当提高浇注温度和模具温度。

2、改变合金成分,提高流动性。

3、改进浇注系统,加大内浇口速度,改善填充条件。

4、改善排溢条件,增大溢流量。

5、提高压射速度,改善排气条件。

6、提高比压 其他名称:拉力、拉痕、粘模伤痕。

特征:顺着脱模方向,由于金属粘附,模具制造斜度太小而造成铸件表面的拉伤痕迹,严重时成为拉伤面。

产生原因:

1、型芯、型壁的铸造斜度太小或出现倒斜度。

2、型芯、型壁有压伤痕。

3、合金粘附模具。

4、铸件顶出偏斜,或型芯轴线偏斜。

5、型壁表面粗糙。

6、涂料常喷涂不到。

7、铝合金中含铁量低于0.6%。

排除措施:

1、修正模具,保证制造斜度。

2、打光压痕。

3、合理设计浇注系统,避免金属流对冲型芯、型壁,适当降低填充速度。

4、修正模具结构。

5、打光表面。

6、涂料用量薄而均匀,不能漏喷涂料。

7、适当增加含铁量至0.6~0.8%。 其他名称:缩凹、缩陷、憋气、塌边。特征:铸件平滑表面上出现的凹瘪的部分,其表面呈自然冷却状态。产生原因 1、铸件结构设计不合理,有局部厚实部位,产生热节。

2、合金收缩率大。

3、内浇口截面积太小。

4、比压低。

5、模具温度太高。

排除措施

1、改善铸件结构,使壁厚稍为均匀,厚薄相差较大的连接处应逐步缓和过渡,消除热节。

2、选择收缩率小的合金。

3、正确设置浇注系统,适当加大内浇口的截面积。

4、增大压射力。

5、适当调整模具热平衡条件,采用温控装置以及冷却等。 其他名称:鼓泡。特征:铸件表皮下,聚集气体鼓胀所形成的泡。产生原因 1、模具温度太高。

2、填充速度太高,金属流卷入气体过多。

3、涂料发气量大,用量过多,浇注前未燃尽,使挥发气体被包在铸件表层。

4、排气不顺。

5、开模过早。

6、合金熔炼温度过高。

排除措施

1、冷却模具至工作温度。

2、降低压射速度,避免涡流包气。

3、选用发气量小的涂料,用量薄而均匀,燃尽后合模。

4、清理和增设溢流槽和排气道。

5、调整留模时间。

6、修整熔炼工艺。 其他名称:空气孔、气眼。特征:卷入压铸件内部的气体所形成的形状较为规则,表面较为光滑的孔洞。产生原因 主要是包卷气体引起:

1、浇口位置选择和导流形状不当,导致金属液进入型腔产生正面撞击和产生旋涡。

2、浇道形状设计不良。

3、压室充满度不够。

4、内浇口速度太高,产生湍流。

5、排气不畅。

6、模具型腔位置太深。

7、涂料过多,填充前未燃尽。

8、炉料不干净,精炼不良。

9、机械加工余量太大。

排除措施

1、选择有利于型腔内气体排除的浇口位置和导流形状,避免金属液先封闭分型面上的排溢系统。

2、直浇道的喷嘴截面积应尽可能比内浇口截面积大。

3、提高压室充满度,尽可能选用较小的压室并采用定量浇注。

4、在满足成型良好的条件下,增大内浇口厚度以降低填充速度。

5、在型腔最后填充部位处开设溢流槽和排气道,并应避免溢流槽和排气道被金属液封闭。

6、深腔处开设排气塞,采用镶拼形式增加排气。

7、涂料用量薄而均匀,燃尽后填充,采用发气量小的涂料。

8、炉料必须处理干净、干燥,严格遵守熔炼工艺。

9、调整压射速度,慢压射速度和快压射速度的转换点。

10、降低浇注温度,增加比压。 其他名称:缩眼、缩空。特征:压铸件在冷凝过程中,由于内部补偿不足所造成的形状不规则,表面较粗糙的孔洞。产生原因 1、合金浇注温度过高。

2、铸件结构壁厚不均匀,产生热节。

3、比压太低。

4、溢流槽容量不够,溢口太薄。

5、压室充满度太小,余料(料饼)太薄,最终补缩起不到作用。

6、内浇口较小。

7、模具的局部温度偏高。

排除措施

1、遵守合金熔炼规范,合金液过热时间太长,降低浇注温度。

2、改进铸件结构,消除金属积聚部位,均匀壁厚,缓慢过渡。

3、适当提高比压。

4、加大溢流槽容量,增厚溢流口。

5、提高压室充满度,采用定量浇注。

6、适当改善浇注系统,以利压力很好地传递。 特征:铸件表面上呈现的光滑条纹,肉眼可见,但用手感觉不出的,颜色不同于基体金属的纹络,用0#砂布 稍擦几下即可去除。产生原因 1、填充速度太快。

2、涂料用量太多。

3、模具温度偏低。

排除措施

1、尽可能降低压射速度。

2、涂料用量薄而均匀。

3、提高模具温度。 特征:铸件上合金基体被破坏或断开形成细丝状的缝隙,有穿透的和不穿透的两种,有发展的趋势。裂纹可分为冷裂纹和热裂纹两种,它们的主要区别是:冷裂纹铸件开裂处金属未被氧化,热裂纹铸件开裂处 金属被氧化。

产生原因 1、铸件结构不合理,收缩受到阻碍,铸件圆角太小。

2、抽芯及顶出装置在工作中发生偏斜,受力不均匀。

3、模具温度低。

4、开模及抽芯时间太迟。

5、选用合金不当或有害杂质过高,使合金塑性下降。锌合金:铅、锡、镉、铁偏高铝合金:锌、铜、铁偏高 铜合金:锌、硅偏高镁合金:铝、硅、铁偏高

排除措施

1、改进铸件结构,减少壁厚差,增大铸造圆角。

2、修正模具结构。

3、提高模具工作温度。

4、缩短开模及抽芯时间。

5、严格控制有害杂质,调整合金成份,遵守合金熔炼规范或重新选择合金牌号。 其他名称:浇不足、轮廓不清、边角残缺。特征:金属液未充满型腔,铸件上出现填充不完整的部位。产生原因 1、合金流动不良引起:

(1)、金属液含气量高,氧化严重,以致流动性下降。

(2)、合金浇注温度及模具温度过低。

(3)、内浇口速度过低。

(4)、蓄能器内氮气压力不足。

(5)、压室充满度低。

(6)、铸件壁太薄或厚薄悬殊等设计不当。

2、浇注系统不良引起:

(1)、浇口位置、导流方式、内浇口股数选择不当。

(2)、内浇口截面积太小。

3、排气条件不良引起:

(1)、排气不畅。

(2)、涂料过多,未被烘干燃尽。

(3)、模具温度过高,型腔内气体压力较高,不易排出。

排除措施

1、改善合金的流动性:

(1)、采用正确的熔炼工艺,排除气体及非金属夹杂物。

(2)、适当提高合金浇注温度和模具温度。

(3)、提高压射速度。

(4)、补充氮气,提高有效压力。

(5)、采用定量浇注。

(6)、改进铸件结构,适当调整壁厚。

2、改进浇注系统:

(1)、正确选择浇口位置和导流方式,对非良形状铸件及大铸件采用多股内浇口为有利。

(2)、增大内浇口截面积或提高压射速度。

3、改善排气条件:

(1)、增设溢流槽和排气道,深凹型腔处可开设通气塞。

(2)、涂料使用薄而均匀,吹干燃尽后合模。

(3)、降低模具温度至工作温度。 其他名称:推杆印痕、镶块或活动块拼接印痕。特征:铸件表面由于模具型腔磕碰及推杆、镶块、活动块等零件拼接所留下的凸出和凹下的痕迹。产生原因 1、推杆调整不齐或端部磨损。

2、模具型腔、滑块拼接部分和其活动部分配合欠佳。

3、推杆面积太小。

排除措施

1、调整推杆至正确位置。

2、紧固镶块或其他活动部分,消除不应有的凹凸部分。

3、加大推杆面积或增加个数。 其他名称:网状痕迹、网状花纹、龟裂毛刺。特征:由于模具型腔表面产生热疲劳而形成的铸件表面上的网状凸起痕迹和金属刺。产生原因 1、模具型腔表面龟裂造成的痕迹,内浇口区域附近的热传导最集中,摩擦阻力最大,经受熔融金属的冲蚀最 强,冷热交变最剧,最易产生热裂,形成龟裂。

2、模具材料不当或热处理工艺不正确。

3、模具冷热温差变化大。

4、合金液浇注温度过高,模具预热不够。

5、模具型腔表面粗糙度Ra太大。

6、金属流速过高及正面冲刷型壁。

排除措施

1、正确选用模具材料及合理的热处理工艺。

2、模具在压铸前必须预热到工作温度范围。

3、尽可能降低合金浇注温度。

4、提高模具型腔表面质量,降低Ra数值。

5、镶块定期退火,消除应力。

6、正确设计浇注系统,在满足成型良好的条件下,尽可能用较小的压射速度。 其他名称:油斑、黑色斑点。特征:铸件表面上呈现的不同于基体金属的斑点,一般由涂料碳化物形成。产生原因 1、涂料不纯或用量过多。

2、涂料中含石墨过多。

排除措施

1、涂料使用应薄而均匀,不能堆积,要用压缩空气吹散。

2、减少涂料中的石墨含量或选用无石墨水基涂料。 特征:充型过程中由于模具温度或合金液温度太低,在近似于欠压条件下铸件表面形成的细小麻点状分布区 域。产生原因 1、填充时金属分散成密集液滴,高速撞击型壁。

2、内浇口厚度偏小。

排除措施

1、正确设计浇注系统,避免金属液产生喷溅,改善排气条件,避免液流卷入过多气体,降低内浇口速度并提 高模具温度。

2、适当调整内浇口厚度。 其他名称:披缝。特征:铸件边缘上出现的金属薄片。产生原因 1、压射前机器的锁模力调整不佳。

2、模具及滑块损坏,闭锁元件失效。

3、模具镶块及滑块磨损。

4、模具强度不够造成变形。

5、分型面上杂物未清理干净

6、投影面积计算不正确,超过锁模力。

7、压射速度过高,形成压力冲击峰过高。

排除措施

1、检查合模力或增压情况,调整压射增压机构,使压射增压峰值降低。

2、检查模具滑块损坏程度并修整,确保闭锁元件起到作用。

3、检查磨损情况并修复。

4、正确计算模具强度。

5、清除分型面上的杂物。

6、正确计算调整锁模力。

7、适当调整压射速度。 其他名称:隔皮。特征:铸件上局部存在有明显的金属层次。产生原因 1、模具刚性不够,在金属液填充过程中,模板产生抖动。

2、压室冲头与压室配合不好,在压射中前进速度不平稳。

3、浇注系统设计不当。

排除措施

1、加强模具刚度,紧固模具部件。

2、调整压射冲头与压室,保证配合良好。

3、合理设计内浇口。 特征:铸件表层上呈现松散不紧实的宏观组织。产生原因 1、模具温度过低。

2、合金浇注温度过低。

3、比压小。

4、涂料过多。

排除措施

1、提高模具温度至工作温度。

2、适当提高合金浇注温度。

3、提高比压。

4、涂料薄而均匀。 其他名称:错缝。特征:铸件的一部分与另一部分在分型面上错开,发生相对位移(对螺纹称错扣)。产生原因 1、模具镶块位移。

2、模具导向件磨损。

3、两半模的镶块制造误差。

排除措施

1、调整镶块,加以紧固。

2、更换导柱导套。

3、进行修整,消除误差。 其他名称:扭曲、翘曲。特征:铸件的几何形状与设计要求不符的整体变形。产生原因 1、铸件结构设计不良,引起不均匀的收缩。

2、开模过早,铸件刚性不够。

3、铸造斜度太小。

4、取置铸件的操作不当。

5、推杆位置布置不当。

排除措施

1、改进铸件结构,使壁厚均匀。

2、确定最佳开模时间,加强铸件刚性。

3、放大铸造斜度。

4、取放铸件应小心,轻取轻放。

5、铸件的堆放应用专用箱,去除浇口方法应恰当。

6、有的变形铸件可经整形消除。 特征:铸件表面因碰击而造成的伤痕。产生原因 1、去浇口、清理、校正和搬运流转过程中不小心碰伤。

排除措施

1、清理铸件要小心,存放及运输铸件,不应堆叠或互相碰击,采用专用存放运输运输箱。 其他名称:氧化夹杂、夹渣。特征:铸件基体内存在有硬度高于金属基体的细小质点或块状物,使加工困难,刀具磨损严重,加工后铸件 上常常显示出不同亮度的硬质点。产生原因 合金中混入或析出比基体金属硬的金属或非金属物质,如AL2O3及游离硅等。

1、氧化铝(AL2O3)。

(1)、铝合金未精练好。

(2)、浇注时混入了氧化物。

2、由铝、铁、锰、硅组成的复杂化合物,主要上由MnAL3在熔池较冷处形成,然后以MnAL3为核心使Fe析出, 又有硅等参加反应形成化合物。

3、游离硅混入物

(1)、铝硅合金含硅量高。

(2)、铝硅合金在半液态浇注,存在了游离硅。

排除措施

1、熔炼时要减少不必要的搅动和过热,保持合金液的纯净,铝合金液长期在炉内保温时,应周期性精炼去 气。

2、铝合金中含有钛、锰、铁等组元时,应勿使偏析并保持洁净,用干燥的精炼剂精炼,但在铝合金含有镁 时,要注意补偿。

3、铝合金中含铜、铁量多时,应使含硅量降低到10.5%以下,适当提高浇注温度以先使硅析出。 特征:铸件基本金属晶粒过于粗大或细小,使铸件易断裂或碰碎。产生原因 1、合金液过热过大或保温时间过长。

2、激烈过冷,结晶过细。

3、铝合金中杂质锌、铁等含量太多。

4、铝合金中含铜量超出规定范围。

排除措施

1、合金不宜过热,避免合金长时间保温。

2、提高模具温度,降低浇注温度。

3、严格控制合金化学成分。

4、保持坩埚涂料层完整良好。 特征:压铸件经试验产生漏水、漏气或渗水。产生原因 1、压力不足。

2、浇注系统设计不合理或铸件结构不合理。

3、合金选择不当。

4、排气不良。

排除措施

1、提高比压。

2、改进浇注系统和排气系统。

3、选用良好合金。

4、尽量避免加工。

5、铸件进行浸渍处理。 特征:经化学分析,铸件合金元素不符要求或杂质太多。产生原因 1、配料不正确。

2、原材料及回炉料未加分析即行投入使用。

排除措施

1、炉料应经化学分析后才能配用。

2、炉料应严格管理,新旧料要按一定比例配用。

3、严格遵守熔炼工艺。

4、熔炼工具应刷涂料。 特征:铸件合金的机械强度、延伸率低于要求标准。产生原因 1、合金化学成分不符标准。

2、铸件内部有气孔、缩孔、夹渣等。

3、对试样处理方法不对等。

4、铸件结构不合理,限制了铸件达到标准。

5、熔炼工艺不当。

排除措施

1、配料熔化要严格控制化学成分及杂质含量。

2、严格遵守熔炼工艺。

3、按要求做试样,在生产中要定期对铸件进行工艺性试验。

4、严格控制合金熔炼温度和浇注温度,尽量消除合金形成氧化物的各种因素。

神勇的水杯
冷艳的烤鸡
2025-07-27 23:39:58

冷裂常出现在铸件受拉伸的部位,那些壁厚差别大、形状复杂的铸件,尤其是大而薄的铸件易发生冷裂纹。凡是能增加铸造应力、降低铸造强度和塑性的因素都将促使冷裂纹的发展。

热裂纹是一种普通又很难完全消除的铸造缺陷,除Al-Si合金外,几乎在所有的工业变形铝合金中都能发现。关于热裂纹的形成机理主要有强度理论、液膜理论和裂纹形成理论3种。其中,强度理论比较通用,该理论从对合金高温力学性能的研究结果出发,认为所有合金在固相线温度之上的固液区内都存在着一个强度极低、延伸率极小的“脆性温度区间”,合金在这个区间冷却时,当收缩而产生的应力如果超过了此时金属的强度,或者由应力而引起的变形超过了金属的塑性,就会导致热裂纹的产生。

在生产过程中一般不存在纯粹的热裂纹或冷裂纹,大部分都先产生热裂纹,然后在冷却过程中由热裂纹发展成为冷裂纹。

 铸造裂纹产生的本质原因

在凝固末期,铸件绝大部分已凝固成固态,但其强度和塑性较低,当铸件的收缩受到铸型、型芯和浇注系统等的机械阻碍时,将在铸件内部产生铸造应力,若铸造应力的大小超过了铸件在该温度下的强度极限,即产生热裂纹。而冷裂纹是在铸件凝固后冷却到弹性状态时,因局部铸造应力大于合金极限强度而引起的开裂。总结可知,产生铸造裂纹的本质原因是由于组织内应力与外部机械应力太大,超过材料塑性变形能力,引起金属组织不连续而开裂。

防止铸造裂纹产生的措施

铸造裂纹的影响因素归纳起来主要与熔体质量、铸造设备、铸造工艺条件和晶粒组织有关。因此可从这四个方面入手,采取对应措施来防止铸造裂纹的产生。

  保证熔体的质量

  减少熔体中杂质的含量

对7050合金铸造工艺进行了研究,提出对化学成分的优化,可以提高合金的成型性,减少铸锭开裂。

杂质含量高时,合金组织中晶格畸变量增大,内应力增大,抵抗塑性变形能力大大下降,导致合金易于开裂。对于铝及铝合金,Fe、Si是其主要杂质元素。它们主要以FeAl3和游离硅存在。当硅大于铁,形成β-FeSiAl5(或Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3SiAl12)相[6]。当铁和硅的比例不当时,会引起铸件产生裂纹。

此外,其它杂质元素也需相应控制。当合金中存在钠时,在凝固过程中,钠吸附在枝晶表面或晶界,热加工时,晶体上的钠形成液态吸附层,产生脆性开裂,即“钠脆”。碱金属钠(除高硅合金外)一般应控制在5×10-4%以下,甚至更低,达2×10-4%以下。像K、Sn等低熔点杂质元素少量存在也会使合金性能变脆,易于开裂。这主要是由于低熔点杂质元素在凝固时后结晶,往往包在晶界周围,导致凝固收缩时受拉应力而沿晶开裂。所以需对铝液中的杂质含量进行合理调配,控制其含量。

 减少熔体的含气量和夹杂物含量

铝及铝合金熔炼、保温时,空气和炉气中的N2、O2、H2O、CO2、H2、CO和CmHn等要与熔体在界面相互作用,产生化合、分解、溶解和扩散等过程,最终使熔体产生氧化和吸气。其氧化生成物有A12O3、SiO2、MnO和MgO等,其中Al2O3是主要的氧化夹杂物[7]。其中,对于非金属夹杂要求其数量少而小,其单个颗粒应少于10μm而对于特殊要求的航空、航天材料、双零箔等制品的非金属夹杂的单个颗粒应小于5μm。

由于熔体吸收的气体中H2占85%以上[8],且氢在熔体中的溶解度随温度的降低而减小,因而在熔体结晶凝固时有大量气体析出,未及时逸出的便在铸锭中形成气孔。夹杂物和气孔都可削弱晶粒间的联结,造成应力集中,使铸锭的塑性和强度下降,从而导致铸造裂纹。一般来说,普通制品要求的产品氢含量控制在0.15~0.2mL/(100g Al)以下,而对于特殊要求的航空、航天材料、双零箔等氢含量应控制在0.1 mL/(100g Al)以下。