铝合金门窗制作教程视频
下面我将从三个方面来为大家介绍,我会采用视频图解的方式为大家讲解。
一、断料
断料是铝合金门窗制作的第一道程序,也是最关键的。断料的时候要采用切割设备,这个一定要在专业人员的操作下进行,严格根据图纸制作。
一般来说,平开门窗采用45°角切割,其它类型根据拼接方式来选择就可以。如下图所示,就可以采取45°切割就行。
二、钻孔
我们需要在后期的相应位置钻孔,这个时候就一定要保证钻孔位置的精确性。
钻孔前应根据组装要求在对应的题材上进行严加审核,钻孔的位置,孔径一定要合适的。
三、组装
上述的两个操作进行之后就可以完成组装了。根据下图我们就可以得知,最后采用连接件或者铝角,再用螺丝钉、螺栓等等完成最后的组装就可以了。
以上就是铝合金门窗制作的简单步骤。
衡量铝合金硬度的参数有:铝合金厚度、抗拉强度、屈服强度、氧化膜厚度等。具体因素分析如下:
1.型材自身厚度:试想,一个铝合金的铝皮,只有1mm厚,轻轻的用铁锤一锤就坏掉了,就算后面的处理再好,也没有什么抗压强度、屈服强度。
2.热处理。
铝合金热处理包含:退火、淬火(固溶热处理)、时效处理。
铝合金热处理不同于钢的热处理,但同样是通过热处理的方法,可以使铝合金表面的硬度增强。大致思路也是先将铝合金淬火,然后时效处理,时效处理也就是放到自然温度下面4~6昼夜(亦可人工时效处理),铝合金的硬度和强度都会大大提高!
淬火处理是铝合金加热到450~460℃,保温一段时间,保温多久根据型材厚度决定。然后是冷却时间,控制好冷却速度,能够有效的提高铝合金的力学性能、抗腐蚀性等。
3.阳极氧化处理
通过电化学,使铝合金表面形成一层致密的氧化膜,这层氧化膜可以防止铝合金被进一步氧化,保证铝型材长期颜色新鲜,有助于提升铝合金的抗老化能力和表面硬度。
4.表面工艺处理
主要是电泳工艺和喷涂工艺,电泳工艺可以使铝型材表面镀上新的一层保护膜,增强表面抗腐蚀能力,而且能够保证50年不褪色,漆膜的硬度也很高,可耐3H以上的铝笔硬度刻画。所以就再一次的提升了铝型材表面的硬度。
综上所述,从铝型材的热处理工艺,到后面的生产加工工艺,以及成为最后的铝合金成品的过程中,可以一步一步的强化铝型材本身的硬度。这就包含型材本身的硬度,型材表面的硬度。
1、所有竖料不动,所有横料拉弯;
2、正常窗户的做法做,仅顶上的做弧形固定窗。
3,多点连接式,组合成半圆的造型。但是要求单扇宽度最低400宽。
以上1、2、的弧形部分都是由专业拉弯厂加工拉弯造型部分。其他由加工部或者工厂做。
但是,拉弯厂一般都有最低要求,比如材料最短尺寸,最小拉弯弧度等。
另外,需要拉弯的材料两边必须各多预留大约200的夹头位。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。
在时效热处理过程中,该合金组织有以下几个变化过程:
形成溶质原子偏聚区-G·P(Ⅰ)区
在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。
G·P区有序化-形成G·P(Ⅱ)区
随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。
形成过渡相θ′
随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。
形成稳定的θ相
过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。
铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到G·P(Ⅰ)区至G·P(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过G·P区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。
找专门安装铝合金窗户的师傅来将铝合金窗户的螺丝拧紧。
造成摇晃的原因有:一种是窗户与窗框这间的缝隙太大。可以增大窗户门的尺寸,这种原因你可以直接找给你安装的人。
第二种情况是窗框松动。这个情况只有用入墙镙丝把铝合金窗框重新固定好,再在与墙面接蟹的边缘打玻璃胶,以便防水,固定时注意别把窗门卡死。但这些操作都限于专门的安装师傅来做。
而铝合金窗又分普通铝合金门窗和断桥铝合金门窗。铝合金表面经过氧化光洁闪亮。窗扇框架大,可镶较大面积的玻璃,让室内光线充足明亮,增强了室内外之间立面虚实对比,让居室更富有层次。
铝合金本身易于挤压,型材的横断面尺寸精确,加工精确度高,因此在装修中很多业主都选择采用铝合金门窗。
扩展资料:
铝合金窗户的质量鉴别:
1、看材质;
是否是断桥隔热铝型材,主型材壁厚要大于1.4mm;同一根铝合金型材色泽应一致,如色差明显,即不宜选购;检查铝合金型材表面,应无凹陷或鼓出;氧化膜厚度应达到10微米,选购时可在型材表面轻划一下,看其表面的氧化膜是否可以擦掉。
2、看装配;
反复开关多次,查看开关力是否过重;密封条是否牢固;五金件装配是否齐全;窗扇窗框搭接量是否符合要求(标准要求平开窗不小于6mm,推拉窗不于8mm)。
3、看玻璃;
是否是中空玻璃,有没有镀膜。
参考资料来源:百度百科—铝合金窗户
1.一般的铝合金纱窗,它固定在窗户轨道上的方式有两种,一种是像下图中这样的,是在轨道外框内侧的。
2.还有一种,就是下图中这种,它是直接落在轨道外框上面的,所以在要拆取纱窗时,先看纱窗框在轨道上是以哪种方式放置的。
3.但不管纱窗是以哪种方式安置在窗户轨道上的,要拆取下来的话,一般都是通过抬高纱窗框,先让下方露出足够的空隙。
4.如果纱窗框是在轨道外框上,那么直接向外便可把纱窗框取下来;如果是在轨道外框内侧,纱窗下边框明显被窗户轨道外框挡着的话,如下图。
5.这时便先尝试着把纱窗框向窗户轨道内移动,使其先跨过窗户框上的第一条轨道。
6.然后再抬起纱窗框的另一端,让其慢慢的向窗户轨道外边移出去,这样,当纱窗下边框完全移出后,就可把抬起的纱窗框放下来些,接着把纱窗的顶端斜着,纱窗就可以取下来了。
6063就是具体牌号,6063不是指系列牌号,类似6000系才是。
6063铝合金是AL-Mg-Si系中具有中等强度的可热处理强化合金,Mg和Si是主要合金元素,优选化学成分的主要工作是确定Mg和Si的百分含量(质量分数,下同)。
1.1Mg的作用和影响 Mg和Si组成强化相Mg2Si,Mg的含量愈高,Mg2Si的数量就愈多,热处理强化效果就愈大,型材的抗拉强度就愈高,但变形抗力也随之增大,合金的塑性下降,加工性能变坏,耐蚀性变坏。
1.2Si的作用和影响 Si的数量应使合金中所有的Mg都能以Mg2Si相的形式存在,以确保Mg的作用得到充分的发挥。随着Si含量增加,合金的晶粒变细,金属流动性增大,铸造性能变好,热处理强化效果增加,型材的抗拉强度提高而塑性降低,耐蚀性变坏。
含量的选择
2.1Mg2Si量的确定
2.1.1Mg2Si相在合金中的作用 Mg2Si在合金中能随着温度的变化而溶解或析出,并以不同的形态存在于合金中: (1)弥散相β’’固溶体中析出的Mg2Si相弥散质点,是一种不稳定相,会随温度的升高而长大。 (2)过渡相β’ 是β’’由长大而成的中间亚稳定相,也会随温度的升高而长大。 (3)沉淀相β是由β’ 相长大而成的稳定相,多聚集于晶界和枝晶界。 能起强化作用Mg2Si相是当其处于β’’弥散相状态的时候,将β相变成β’’相的过程就是强化过程,反之则是软化过程。
2.1.2Mg2Si量的选择 6063铝合金的热处理强化效果是随着Mg2Si量的增加而增大。当Mg2Si的量在0.71%~1.03%范围内时,其抗拉强度随Mg2Si量的增加近似线性地提高,但变形抗力也跟着提高,加工变得困难。但Mg2Si量小于0.72%时,对于挤压系数偏小(小于或等于30)的制品,抗拉强度值有达不到标准要求的危险。当Mg2Si量超过0.9%时,合金的塑性有降低趋势。 GB/T5237.1—2000标准中要求6063铝合金T5状态型材的σb≥160MPa,T6状态型材σb≥205MPa,实践证明.该合金的抗拉强度最高可达到260MPa。但大批量生产的影响因素很多,不可能确保都达到这么高。综合的考虑,型材既要强度高,能确保产品符合标准要求,又要使合金易于挤压,有利于提高生产效率。我们设计合金强度时,对于T5状态交货的型材,取200MPa为设计值。从图1可知,抗拉强度在200MPa左右时,Mg2Si量大约为0.8%,而对于T6状态的型材,我们取抗拉强度设计值为230 MPa,此时Mg2Si量就提高到0.95%。
2.1.3Mg含量的确定 Mg2Si的量一经确定,Mg含量可按下式计算: Mg%=(1.73×Mg2Si%)/2.73
2.1.4Si含量的确定 Si的含量必须满足所有Mg都形成Mg2Si的要求。由于Mg2Si中Mg和Si的相对原子质量之比为Mg/Si=1.73 ,所以基本Si量为Si基=Mg/1.73。 但是实践证明,若按Si基进行配料时,生产出来的合金其抗拉强度往往偏低而不合格。显然是合金中Mg2Si数量不足所致。原因是合金中的Fe、Mn等杂质元素抢夺了Si,例如Fe可以与Si形成ALFeSi化合物。所以,合金中必须要有过剩的Si以补充Si的损失。合金中有过剩的Si还会对提高抗拉强度起补充作用。合金抗拉强度的提高是Mg2Si和过剩Si贡献之和。当合金中Fe含量偏高时,Si还能降低Fe的不利影响。但是由于Si会降低合金的塑性和耐蚀性,所以Si过应有合理的控制。我厂根据实际经验认为过剩Si量选择在0.09% ~0.13%范围内是比较好的。 合金中Si含量应是:Si%=(Si基+Si过)%
控制范围
3.1Mg的控制范围 Mg是易燃金属,熔炼操作时会有烧损。在确定Mg的控制范围时要考虑烧损所带来的误差,但不能放得太宽,以免合金性能失控。我们根据经验和本厂配料、熔炼和化验水平,将Mg的波动范围控制在0.04%之内,T5型材取0.47%~0.50%,T6型材取0.57%~0.60%。
3.2Si的控制范围 当Mg的范围确定后,Si的控制范围可用Mg/Si比来确定。因为该厂控制Si过为0.09%~0.13%,所以Mg/Si应控制在1.18~1.32之间。
3.36063铝合金T5和T6状态型材化学成分的选择范围。若要变更合金成分时,比如想将Mg2Si量增加到0.95%,以便有利于生产T6型材时,可沿过Si上下限区间将Mg上移至0.6%左右的位置即可。此时Si约为0.46%,Si过为0.11%,Mg/Si为1.
化学成分
硅Si:0.20-0.6
铁Fe: 0.35
铜Cu:0.10
锰Mn:0.10
镁Mg:0.45-0.9
铬Cr:0.10
锌Zn:0.10
钛Ti:0.10
铝Al:余量
其他:
单个:0.05 合计:0.15
力学性能
编辑
力学性能:
抗拉强度 σb (MPa):≥205
伸长应力 σp0.2 (MPa):≥170
伸长率 δ5 (%):≥7
注 :棒材室温纵向力学性能
试样尺寸:直径≤12.5
表面腐蚀现象
硅引起6063铝合金型材腐蚀的行为完全是可以预防和控制的,只要对原材料的进货、合金成分进行有效控制,保证镁、硅比例在1.3~1.7范围内,并且对各工序的参数进行严格控制,避免硅产生偏析和游离,尽量使硅和镁形成有益的Mg2Si强化相。
如果发现有这种硅腐蚀点现象,在表面处理时就应该特别注意,在脱脂除油过程中,尽量使用弱碱性槽液,如果条件不允许,也应该在酸性除油液中浸泡的时间尽量缩短(合格的铝合金型材在酸性脱脂液中放20~30min无问题,而有问题的型材上只能放置1~3min),而且以后的洗水pH值要高一些(pH>4,控制Cl-含量),在碱腐蚀过程中尽量延长腐蚀时间,在中和出光时要使用硝酸出光液,在硫酸阳极氧化时应尽快通电氧化处理,这样,由硅引起的暗灰色腐蚀点就不明显,可满足使用要求。
现货规格
编辑
6063板材现货规格:0.3mm-350mm(厚度)
6063棒材现货规格:3.0mm-500mm(直径)
6063线材现货规格:0.1mm-20mm(线径)
国标是1.2-1.4厚。薄品牌门窗最薄都会做到1.4厚。小作坊的产品为了节省成本就会低于这个标准。所以选择的时候注意测量一下。
铝合金门窗厂家,数选用出材率高的产品也就是壁厚比较薄(1.0以下,0.4-0.8)的产品以降低造价。部分厂家生产1.2mm-1.3mm厚的就低于国标,国标规定厚度应大于或等于1.4mm,其使用的安全性和抗击性等都有保障。
断桥铝型材通常分为60系列(6厘米)、70系列(7厘米),而断桥铝铝合金门窗的质量好坏不是看选用什么系列的型材,主要取决于断桥铝合金门窗的材质、壁厚、隔热条、加工工艺等。
扩展资料
铝合金门窗型材特点
抗腐蚀性
铝型材的密度只有2.7g/cm3,约为钢、铜或黄铜的密度(分别为7.83g/ cm3,8.93g/ cm3),的1/3。在大多数环境条件下,包括在空气、水(或盐水)、石油化学和很多化学体系中,铝能显示优良的抗腐蚀性。
电导率
铝型材由于它的优良电导率而常被选用。在重量相等的基础上,铝的电导率近于铜的1/2。
热导量率
铝合金的热导量率大约是铜的50-60%,这对制造热交换器、蒸发器、加热电器、炊事用具,以及汽车的缸盖与散热器皆为有利。
非铁磁性
铝型材是非铁磁性的,这对电气工业和电子工业而言是一重要特性。铝型材是不能自燃的,这对涉及装卸或接触易燃易爆材料的应用来说是重要的。
铝合金在生产过程中,容易出现缩孔、砂眼、气孔和夹渣等铸造缺陷。如果用电焊、氩焊等设备来修补,由于放热量大,容易产生热变形等副作用,无法满足补焊要求。
缺陷修复:
冷焊修复机是利用高频电火花瞬间放电、无热堆焊原理来修复铸件缺陷。由于冷焊热影响区域小,不会造成基材退火变形,不产生裂纹、没有硬点、硬化现象。
而且熔接强度高,补材与基体同时熔化后的再凝固,结合牢固,可进行磨、铣、锉等加工,致密不脱落。冷焊修复机是修补铝合金气孔、砂眼等细小缺陷的理想方法。
扩展资料:
为了获得各种形状与规格的优质精密铸件,用于铸造的铝合金一般具有以下特性。
1、有填充狭槽窄缝部分的良好流动性。
2、有比一般金属低的熔点,但能满足极大部分情况的要求。
3、导热性能好,熔融铝的热量能快速向铸模传递,铸造周期较短。
4、熔体中的氢气和其他有害气体可通过处理得到有效的控制。
5、铝合金铸造时,没有热脆开裂和撕裂的倾向。
6、化学稳定性好,抗蚀性能强。
7、不易产生表面缺陷,铸件表面有良好的表面光洁度和光泽,而且易于进行表面处理。
8、铸造铝合金的加工性能好,可用压模、硬模、生砂和干砂模、熔模石膏型铸造模进行铸造生产,也可用真空铸造、低压和高压铸造、挤压铸造、半固态铸造、离心铸造等方法成形,生产不同用途、不同品种规格、不同性能的各种铸件。
铸造铝合金在轿车上是得到了广泛应用,如发动机的缸盖、进气歧管、活塞、轮毂、转向助力器壳体等。
参考资料来源:百度百科——铝合金
一、有无颜色
铝合金是工业中应用最广泛的一类有色金属结构材料,钛镁合金没有颜色。
二、应用领域
铝合金在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。
钛镁合金一般运用在航天航空领域,应用领域比较局限。
三、组成不同
钛镁合金就是在钛元素中加入铝、镁元素的合金,以钛为基,添加适量的铝元素和镁元素。
铝合金是氧化铝在电解中得到的。
四、理化性质不同
钛镁合金:其突出特点是密度小、强度高。具有很好的耐蚀性,良好的塑性和较高的强度;机械性能好,韧性和抗蚀性能很好。但是钛合金的工艺性能差,切削加工困难。 在热加工中,非常容易吸收氢氧氮碳等杂质。
铝合金:铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。
扩展资料:铝合金的主要产品:
一、铝合金型材
通过挤压加工获得的铝及铝合金材料,所得产品可以为板、棒及各种异形型材,可以广泛应用于建筑、交通、运输、航空航天等领域的新型材料。
二、铝塑板
铝塑板是由经过表面处理并用涂层烤漆的3003铝锰合金、5005铝镁合金板材作为表面,PE塑料作为芯层,高分子粘结膜经过一系列工艺加工复合而成的新型材料。
参考资料:百度百科-钛镁合金
百度百科-铝合金