铝型材阳极氧化膜厚分几级?
分4级
AA10平均膜厚≥10μm 局部膜厚≥8μm
AA15平均膜厚≥15μm 局部膜厚≥12μm
AA20平均膜厚≥20μm 局部膜厚≥16μm
AA25平均膜厚≥25μm 局部膜厚≥20μm
1、耐腐蚀氧化铝膜是致密的透明的保护膜,氧化铝的化学性质稳定,非常耐腐蚀。而纯铝的氧化膜甚至比铝型材的氧化膜更加耐腐蚀。
2、硬度高
阳极氧化工业铝型材表面的氧化膜比铝材基体本身要高,起到保护铝型材的作用。并且氧化膜还起到耐磨的作用,表面多孔的氧化膜具有吸附润滑剂的能力,时工业铝型材表面更加耐磨。
3、绝缘性
工业铝型材阳极氧化膜不属于金属物质,氧化铝不导电,是一种良好的绝缘材料。特别适用于一些电子、电气设备厂家。
4、绝热性
阳极氧化膜的导热系数大大低于铝型材基体,氧化铝膜可以耐高温最高1500℃,而铝型材基体最多只能承受660度的高温。
5、吸附力
工业铝型材的阳极氧化膜为多孔结构,具有很强的吸附能力,所以给孔内填充各种颜料、润滑剂、树脂等可进一步提高铝制品的防护、绝缘、耐磨和装饰性能。
铝合金阳极氧化厚度,表面上形成氧化铝薄层,其厚度为5~30微米,硬质阳极氧化膜可达25~150微米。
阳极氧化后的铝或其合金,提高了其硬度和耐磨性,可达250~500千克/平方毫米,良好的耐热性,硬质阳极氧化膜熔点高达2320K,优良的绝缘性,耐击穿电压高达2000V,增强了抗腐蚀性能,在ω=0.03NaCl盐雾中经几千小时不腐蚀。
氧化膜薄层中具有大量的微孔,可吸附各种润滑剂,适合制造发动机气缸或其他耐磨零件;膜微孔吸附能力强可着色成各种美观艳丽的色彩。
有色金属或其合金(如铝、镁及其合金等)都可进行阳极氧化处理,这种方法广泛用于机械零件,飞机汽车部件,精密仪器及无线电器材,日用品和建筑装饰等方面。
扩展资料
阳极氧化与导电氧化的区别:
1、阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程而导电氧化(又叫化学氧化)不需要通电,只需要在药水里浸泡就行了,它是一种纯化学反应。
2、阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。
3、阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨;导电氧化生成的膜仅仅0.01—0.15微米,耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。
4、氧化膜本来都是不导电的,但因为导电氧化生成的膜实在是很薄,所以就是导电的。
参考资料:百度百科-阳极氧化
1.挂具的导电不良,松挂或者掉齿。
2.工件的材料不一样,铝合金在出镗之后其实在内部的微观结构有很大的不一样,经过热轧的金属有一定的微观织构,产生了各项异性,一块金属在不同方向上的电导是不一样的,所以会导致不同的电流密度,造成膜厚不一。
3.电力线的分布上,一个工件的形状不一样在不同位置的电力线分布也不一样,所以在不同位置的电流密度也不一样,所以膜厚不一.这个可以通过象形阳极或者辅助阴极来解决。
阳极氧化液的温度对膜厚均匀性有重要的影响,温度高会使得阳极氧化膜的溶解速度加快,氧化膜较薄,反之,氧化膜较厚。阳极氧化反应要在较低的温度下进行,生产中是通过用冷水与槽液热交换来完成的,氧化槽上端的槽液通过热交换器之后抽回氧化槽,抽回槽液与原槽液有温差,由于氧化槽的体积比较大,槽液的循环不够,抽回槽液的分配不均匀,会使得氧化槽液产生温度差。以卧式生产线为例,同根型材两端膜厚不同,可能是因为槽液两端有温度差,同挂料上下膜厚不同,可能是因为槽液上下有温度差。
同根铝型材上的几个面,甚至凹槽内,膜是否均匀,与对应的阴极面积有较大的关系。阴极面积大,使得分布于铝型材各部位的电流密度均匀,因而膜厚也均匀。在卧式线生产中有时会出现同挂料每根型材相同部位膜厚偏低的现象,这很有可能是因为与该部位相对应的阴极板出现了松动,甚至是脱落,使得阴极面积减少,导致膜厚偏低。
在实际生产过程中,还有其他的原因也会导致氧化膜膜厚的不均匀,例如夹具与型材接触不良,接触面积过小,会使得氧化膜不完整或无氧化膜。另外硫酸浓度大范围变动会使得不同槽料的氧化膜膜厚不一样 ,硫酸浓度大范围改变会使得计算氧化膜厚度的经验公式(δ=kIt)中的k不准确,因此得到的氧化膜膜厚也就不一致。在生产中只要将上述问题一一解决,就能保证氧化膜膜厚均匀。