铝合金焊接缺陷
一、强的氧化能力铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。具体的保护措施是:
1、焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物;
2、焊接过程中要采用合格的保护气体进行保护;
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
二、铝的热导率和比热大,导热快尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。
三、线膨胀系数大铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。这是铝合金,尤其是高强铝合金焊接时最常见的严重缺陷之一。在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。
四、容易形成气孔
焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。
铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。清理后的母材及焊丝最好在2-3小时内焊接完毕,最多不超过24小时。TIG焊时,选用大的焊接电流配合较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以提高熔池的存在时间。Al-Li合金焊接时,加强正、背面保护,配合坡口刮削,清除概况氧化膜,可有效地防止气孔。
五、焊接接头容易软化
焊接可热处理强化的铝合金时,由于焊接热的影响,焊接接头中热影响区会出现软化,即强度降低,使基体金属近缝区部位的一些力学性能变坏。对于冷作硬化的合金也是如此,使接头性能弱化,并且焊接线能量越大,性能降低的程序也愈严重。针对此类问题,采取的措施主要是制定符合特定材料焊接的工艺,如限制焊接条件,采取适当的焊接顺序,控制预热温度和层间温度,焊后热处理等。对于焊后软化不能恢复的铝合金,最好采用退火或在固溶状态下焊接,焊后再进行热处理,若不允许进行焊后热处理,则应采用能量集中的焊接方法和小线能量焊接,以减小接头强度降低。
六、合金元素蒸发和烧损
某些铝合金含有低沸点的合金元素,这些元素在高温下容易蒸发烧损,从而改变了焊缝金属的化学成分,降低了焊接接头的性能。为了弥补这些烧损,在调整工艺的同时,常常采用含有这些沸点元素含量比母材高的焊丝或其他焊接材料。
七、铝在高温时的强度和塑性低
铝在370℃时强度仅为10Mpa,焊接时会因为不能支撑住液体金属而使焊缝成形不良,甚至形成塌陷或烧穿,为了解决这个问题,焊接铝及铝合金时常常要采用垫板。
八、焊接接头的耐腐蚀性能低于母材
热处理强化铝合金(如硬铝)接头的耐腐蚀性的降低很明显,接头组织越不均匀,耐蚀性越易降低。焊缝金属的纯度或致密性也影响接头耐蚀性能。杂质较多、晶粒粗大以及脆性相析出等,耐蚀性就会明显下降,不仅产生局部表面腐蚀而且经常出现晶间腐蚀,此外对于铝合金,焊接应力的存在也是影响耐蚀性的一个重要因素。
为了提高焊接接头的耐蚀性,主要采取以下几个措施:
1、改善接头组织成分的不均匀性。主要是通过焊接材料使焊缝合金化,细化晶粒并防止缺陷;同时调整焊接工艺以减小热影响区,并防止过热,焊后热处理。
2、消除焊接应力,如局部表面拉应力可以采用局部锤击办法来消除。
3、采取保护措施,如采取阳极氧化处理或涂层等。
九、无色泽变化,给焊接操作带来困难
铝及铝合金焊接时由固态转变为液态时,没有明显的颜色变化,因此在焊接过程中给操作者带来不少困难。因此,要求焊工掌握好焊接时的加热温度,尽量采用平焊,在引(熄)弧板上引(熄)弧等。
1.型材湾曲扭拧、波浪 由于模孔设计不合理,挤压速度过快,模孔润滑不适当,导路不合适或未安装导路等原因引起。 2.气泡与起皮 由于挤压筒内径磨损超差,挤压垫与筒间隙过大;挤压筒和挤压垫粘有油污水分等;锭坯表面有气孔、砂眼、油污且锭坯表面过于粗糙;挤压筒温度和锭坯温度过高,填充过快;挤压时模具抹油等原因引起。 3.挤压裂纹 由于挤压锭坯温度过高,挤压速度太快;锭坯均匀化处理不好;模具设计不合理,以致中心与边缘流速差过大等原因造成。 4.麻点或麻面 由于筒和锭坯温度太高,挤压速度过快或不均匀;模子工作带粘有金属、不光洁;模具工作台带硬度不够或工作带内宽;锭坯过长等原因引起。 5.划痕与凸棱 由于模具工作带有缺陷或有棱;模具空刀有尖棱、不光滑;工作台面有异物、不清洁;锭坯中硬性夹杂物堵于模孔等原因引起。 6.尺寸不合格 由于模具设计错误或制造缺陷;修模不当;挤压时锭坯温升过高,挤压速度变化太大;锭坯长度计算不准确而不够定尺长度等原因引起。 7.成层 由于锭坯表面有油污、灰尘;锭坯表面质量不好,有较大的偏析瘤;在模子表面上留有残料;锭 坯本身有分层、气泡等原因引起。 8.缩尾 由于挤压残料留得太短,挤压垫片涂油或不干净,锭坯表面不清洁,制品切层长度不够,挤压终了时突然提高挤压速度等原因引起。 9.性能不合格 由于挤压温度过低,型材达不到淬火温度;人工时效制度不合适;仪表失控、炉温过高或过低;锭坯组织不均匀,冷却风量不足等原因引起。 10. 挤压横纹 由于模具设计不合理,相同部位的工作带不等长;挤压速度控制不当;挤压机运行不平稳等原因引起。 长沙正业金属材料有限公司
依据南京欧能机械铝合金专用压铸模温机多年经验来看,
压铸模温机的作用就是使温度Jo和Jm保持恒定,在生产或停止时防止温差Jo-m扩大或缩小。
模具的温度在金属溶液的热量散发,充型以及铸件凝固过程中都是关键的因素。
一、模具温度过高时
1.热变形或粘模导致取件困难
2.喷涂的脱模剂不能在型腔表面生成保护膜,增加了脱模剂的消耗
3.压铸模具磨损导致压铸周期延长
4.动模和定模的温差导致模具变形
5.精度降低、结疤、缩孔、缩松增大
二、模具温度过低时
1.因为收缩导致取件困难,粘模
2.脱模剂性能降低
3.导致冷隔或充型不足这类缺陷
4.热冲击增加导致模具磨损
5.压铸件表面嵌有冷豆或流痕
6.精度降低
三、压铸模温机的实用性
在开机过程,生产过程,冷却过程中都有重要的作用。
开机过程
以下通过“压铸铝合金电梯踏板”的例子来说明一下:
在压铸铝合金电梯踏板时,如果首次开机时没有使用压铸模温机,而直接用铝水预热的话,前面压铸十几模的废品,模具的温度才能提高到产品需要的工作温度。
严重影响了工作效率。
按这产品一模300元左右的价格计算,在预热的过程中就损失了4000~5000元。
模具开机预热时,使用压铸模温机可以减少压制产品的废品率。
生产过程
因为压铸模中热量基本来自于液态金属,生产停止哪怕只有几个压射周期,不借助模温控制,模温也会急剧下降,铸件废品率马上大幅上升。
冷却过程
压铸模温机除了预热的作用外,还具备冷却功能。并且温度控制精度达到±1℃,完全可以替代原始简单的水冷却法,压铸出更好的产品。
欧能机械压铸模温机凭着稳定的性能、可靠的品质,已成为广大压铸厂家的首选品牌。
(二)铝合金型材挤压方面温度过高(筒,棒,模三温)增加变形热上升(20-60度),进而增加了筒内壁和工作带同铝材的摩擦,增加了铝同其他金属(铁)的粘性,模具工作带粘的铝金属颗粒越多,铝材表面粗糙,麻面就越严重。挤压速度过快(表现为型材尾部不良重于型材头端)增加了金属的流动速度导致热变形增高及模具死区(下模工作带周围存铝区,流动性差,多为铝棒表层铝,杂质及镁硅Mg2Si硬质结晶颗粒多)增大,依附在型材表面的死区杂质变多。
所以,合金不干净,有水有油脂,精炼不好,就会造成合金含气过多,铸件出现气孔;
2、合金在料缸中卷起,使铸件有气孔;
3、合金在模具中紊流,无法排除模具中的空气,造成铸件气孔;
4、合金在模具上和脱模剂反应,产生气孔,不能完全排出模具,造成铸件气孔;
5、合金热节处收缩,产生收缩孔!