飞机都有哪些零件?
结构件是飞机零件中最大的一种零件。这类零件主要用铝合金制造。基于制造工艺和零件重量考虑,以前主要采用铝板经铆而成(至今仍有部分零件采用此种方法制造)。现在采了全然不同的设计技术,需要将多种不同功能集成到一个结构件上。这就是集成设计技术。这种零件是用一块实体铝坯经铣削加工而成。这类零件很复杂,通常包含极小的底面和薄壁(06~2mm),呈蜂巢状。这类零件的几何形状由不同的表面及规定的曲面构成。接近飞机外部轮廓的表面也是必须是自由曲面。 图1 整体结构的Pilatus PC 9飞机主梁(提供:StarragHeckert公司) 例如,Pilatus PC 9飞机的主梁,在以前的设计中是由156个不同零件构成的。这样,就需要各种折弯设备和装配夹具。在Pilatus PC 12飞机上,这类部件采用了集成设计技术。 零件的数量减少到3个,而且是采用简单的螺栓连接(图1)。 在25年前,这家飞机公司在开发飞机时,由于没有复杂的软件工具,NC技术还处于初期阶段,只能用繁琐的编程语言,如APT、Fortran等等定义复杂的几何形状;NC机床还是采用21/rD控制,从而严重聘用制了复杂形面和几何形状的生成。 由于某种原因上述原因,为控制铝件的重量,用铝板构成机架,即将20余种不同形状的板材成型件组装和连接在一起构成一个大的结构件。零件成型过程极为复杂。工件材料要经过12次机械加工和4次热处理,由于几何形状的不一致、拉伸/断裂等,致使废品率极高。这种机架的装配需要6道工序,而且必须考虑到材料的拉伸问题。 如今,编程系统和CNC机床已经能使我们铣削加誉租工出以前无法生成的形状。以前,采用传统技术,需要20多个板材成型件才能构成的部件,现在只用2个零件。几何形状极为复杂,必须完全满足零件的所有要求。用一块实体铝坯铣制一个零件,其中98%的材料都变成了废屑。 三步完成产品加庆燃兆工 NC编程过程需要的专业知识要求最高,要求集成各种不同生产工艺:CAD/CAM、切削刀具、夹具设计和铣削技术。现在只需三道貌岸然工序就可以制造出这样一个机架部件:1)获取经过预切削并带有夹持用孔的原材料,2)铣削零件,3)手动钻出铆钉孔(利用夹具)。 零件毛刺在加工过程中完成。首件检验合格后,铣削加工过程自动进行,无需操作员干预。这样就大大简化了尺寸和裂纹的检测,与以前的制造方法相比,降低了生产成本。集成结构还对零件装配具有重大影响。整个模块(部件)可以直接装配。所制造的零件公差极为严格,具有很好的互换性。装配精度得到保证,且过程稳定,大幅度缩短了所需的装配时间。 图2 特别适合于五轴联动加工的StarragHeckert公司的STC 1000/130机床,功率为70kW时,主轴转速为24,000r/min 适用于高速铣削的机床与刀具 坯料是用水刀将厚127mm或76mm的铝板切切割到近似形状。坯料尺寸为840×665mm,重90kg或60kg。 夹具包括角度板和标准孔系及加工工件第二面的真空接合适配板。机床采用特别适用于五轴联动加工的斯达拉格海科特STC 1000/130型机床:主轴功率为70kW,在100%负载运行时最高转速达24000r/min (图2);主轴锥孔:HSK63A;机床X/Y/Z轴行程为:1700mm/1600mm1950mm;主轴可倾范围:-60/+100°;工作台是B轴。该机床采用钢板焊接结构,具有较高的刚度。 整个加工过程需要7把切削刀具和4把钻头。刀具为整体刀体,最大直径为32mm,形状配合的刀片能防止其在以高达24000r/min的转速切削时离心力可能造成的损坏。全部刀具直径都在25mm以上,中空冷却,油雾润滑。起先直径小于25mm的刀具为整体硬质合金刀,采用收缩式刀柄。刀具长度为90和220mm。 全部切削刀具连同刀柄都经过平衡,在24000r/min转时平衡质量为Q25。为保证加工过程的安全,精确定义了每把刀具的切削参数,即采用专用软件,对刀具组件进行了知识临界速度(自振)检测。零件经二次装夹完成全部加工(包括铆接孔)。为防止薄壁件在加工中的应力变形和保证严格控制的公差,面铣和周边铣削采用了高速铣削加工工艺。在总的铣削加工时间内,约60%的时间段返需要五轴联动加工,粗加工占总加工时间的40%,手动加工主要是去毛刺和钻部分铆钉孔。 图3 二次装夹时,利用一专用工件适配夹具夹持零件已加工面上的工艺搭子 结果超过预期 首先将工件用螺栓固定在夹具上,用雷尼绍测头识别零件。第一道貌岸然工序是用直径63mm 的刀头,沿Z面运动,将工件粗铣至接近最终形状。粗铣时的进给速度可达17m/min ,金属切除率达6500mm 3 /min。 第二道工序是用25mm整体硬质合金立铣刀粗铣出零件外形。由于这一轮廓面是曲面,要采用五轴联动加工才能获得一致的精加工允差。随后用直径16mm 整体硬质合金立铣刀,以9m/min的进给出量对此外形进行精加工(五轴联动)。零件的二次装夹加工也采用同一夹具。 二次装夹时,利用专用工件适配夹具夹持零件已加工面上的工艺搭子(图3)。其第一道工序仍是用63mm 的铣刀,沿Z面粗铣出零件轮廓,以下工序亦与上述第一次装夹的加工方法相同。随后的精加工极为关键。此时,零件已经变得极薄,在振动下极易损坏。为防止损坏零件,精加工时要先加工零件轮廓,再加工凹槽。最后一道工序还包括使用一把直径10mm 立铣刀将零件与工艺搭子分离。 就零件加工情况来看,对于这种新型飞机,各项结果均远远超出预期要求。所加工出的零件精度完全位于要求的严格公差范围内,具有完全的互换性。整个生产周期缩短了75%并减少了生产人员。由于采连续加工链,可以实现快速变换并简化了物流链。
螺栓:机械零件,配用螺母的圆柱形带螺纹的紧固件。由头部和螺杆(带有外螺纹的圆柱体)两部分组成的一类紧固件,需与螺母配合,用于紧固连接两个带有通孔的零件。 这种连接形式称螺栓连接。如把螺母从螺栓上旋下,又可以使这两个零件分开,故螺栓连接是属于可拆卸连接。
螺栓有很多叫法,每个人的叫法可能都不同,有人叫成螺钉,有人叫成螺栓钉,有人叫成标准件,有人叫成紧固件。虽然有这么多叫法,但意思都是一样的,都毁闭是螺栓。
螺栓是紧固件的通用说法。螺栓的原理是利用物体的斜面圆形旋转和摩擦力的物理学和数学原理,循序渐进地紧固器物机件的工具。
螺栓在日常生活当中和工业生产制造当中,是少不了的,螺栓也被称为工业之米。可见螺栓的运用之广泛。螺栓的运用范围有:电子产品,机械产品,数码产品,电力设备,机电机械产品。船舶,车辆,水利工程,甚至化学实验上也有用到螺栓。反正是超多地方都有用到螺栓的。特如数码产品上面用到的精密螺栓。DVD,照相机、眼镜、钟表、电子等使用的微型螺栓电视、电气制品、乐器、家具等之一般螺栓至于工程、建筑、桥梁则使用大型螺栓、螺帽交通器具、飞机、电车、汽车等则为大小螺栓并用。螺栓在工业上负有重要任务,只要地球上存在着工业,则螺栓之功能永远重要。
螺杆(拼音:luógǎn,英文:screw):外表面切有螺旋槽的圆柱或者切有锥面螺旋槽的圆锥。螺杆具有不同的码斗头,像中的头叫外六角螺杆。还有其他,例如大扁螺杆、内六角螺丝等等。
由挤出过程可知,螺杆是在高温、一定腐蚀、强烈磨损、大扭矩下工作的,因此,螺杆必须:
1)耐高温,高温下不变形;
2)耐磨损,寿命长;
3)耐腐蚀,物料具有腐迟余磨蚀性;
4)高强度,可承受大扭矩,高转速;
5)具有良好的切削加工性能;
6)热处理后残余应力小,热变形小等。
求采纳
航空用铝合金密度低、耐腐蚀性能好,且具有较高的比强度、比刚度,容易加工成型,有足够的使用经验,这些优点使其成为飞机结构的理想材料。从诞生以来,铝合金随着飞机设计的要求而不断发展,其性能也日益强大。例如,1954年,英国的3架“彗星”飞机先后坠毁,事故分析表明,坠机的主要原因是材料疲劳以及部分 7075-T6铝合金构件被严重腐蚀。经过探索,研究人员突破了过时效热处理问题,研制出第二代耐腐蚀铝合金,有效提升了飞机的安全水平。
如今,航空铝合金的发展已经进入第六阶段。2005年 4月 27日,世界上烂滚中最大的宽体客机空客A380在图卢兹机场成功首飞。A380能够取得成功,先进材料的应用立下了汗马功劳。其中,加拿大铝业公司和美国铝业公司就为 A380开发了新型铝合金材料。根据 A380各部件的特点,加拿大铝业公司开发出了7040-T7651、7449、2027-T3511等一系列铝合金。每种合金都具有不同的性能和特点。在A380项目中,用7085锻件制造的应急舱门,零件数量从 147个减至 40个,紧固件由 1400个减至 450个,重量减轻了 20%,成本降低了 20%〜25%,承载能备枝力和疲劳寿命也得到了显著提高。
合金家族之二:钛合金
钛及钛合金材料密度低、比强度高(目前金属材料中最高)、耐腐蚀、耐高温、无磁、组织性能和稳定性好,可以与复合材料结构直接连接,而且两者之间的热膨胀系数相近,不易产生电化学腐蚀,具有优良的综合性能。因此,钛合金在航空领域得到越来越广泛的应用。洛克希德公司的“黑鸟”高空高速战略侦察机 SR-71,飞行速度超过 3马赫,在高速飞行时,机体表面温度将超过常规铝合金蒙皮的极限,如果用钢制造,飞机重量会大大增加,影响飞行速度和升限等性能。因此,SR-71的机身大量采用了钛合金,总重达 30多吨,占飞机结构重量的 93%。随着人们对飞机性能要求的不断提高,民用飞机的钛合金用量也在逐渐增加。早期波音 707上的钛合金部件用量仅占结构总重量的 02%,到最新的波音 787,占比高达 15%。
此外,钛合金也是制造航空发动机的主要材料。早期美国 F-4战斗机使用的 J79发动机,钛合金的用量只有50千克,不到总重量的2%。而现在大多数航空发动机的钛用量已经达到发动机总重量的25%〜30%。如波音 747、767的发动机 JT9D,其用钛量为总重量的 25%;空客A320的V2500发动机,其用钛量为总重量的 31%。钛合金的另一大用途是作为螺栓、铆钉等紧固件材料。这些紧固件虽小,但用量却很大,使用钛合金紧固件可以大大减轻重量。据估算,C-5大型运输机有 70%的紧固件为钛合金紧固件,飞机因此而减重 1吨左右。现在钛合金 3D打印技术已用于飞机制造。钛合金3D打印技术由于摆脱了传统的模具制造这一显著延长研发时间的环节,可以制造高精度、高性能、高柔性和快速制造结构十分复杂的金属零件,因而为先进飞机结构的快速研发提供了有力的技术手段。
合金家族之三:超高强度钢
超高强度钢在强度、刚性、韧性以及价格等方面具有很多优势,且拥有在承受极高载荷条件下保持高寿命和高可靠性的特点,在航空领域得到广泛使用。例如,飞机的起落架要承受冲击等复杂载荷,而且载饥山荷巨大,同时还要求起落架舱容积尽可能小,超高强度钢绝对强度大、稳定性好,因此成为起落架的首选材料。
20世纪 60年代,美国成功开发了 300M超高强度钢。300M钢的抗拉强度高,达到 1860MPa以上。它的横向塑性高,断裂韧性好,与同强度低合金超高强度钢相比,300M钢的抗疲劳性能更好,在介质中的裂纹扩展速率低。这些特点使得 300M钢成为大型飞机起落架的主要材料。1992年,美国又开发了 AreMet100。AreMet100与 300M的强度级别相同,但耐腐蚀性能和耐应力腐蚀性能较 300M钢有较大提高,是目前综合性能最好的超高强度钢。F-22、F/A-18E/F就使用了AreMet100作为飞机起落架的主要材料。
航天航空常用的金属材料大多是合金,合金是以某一金属元素为基,添加一种以上金属元素或非金属元素(视性能要求而定),经冶炼、加工而成的材料。
比如,碳素钢、低合金钢和合金钢、高温合金、钛合金、铝合金、镁合金等。纯金属很少直接应用,因此金属材料绝大多数是以合金的形式出现。
航空材料是研制生产航空产品的物质保障,也是使航空产品达到人们期望的性能、使用寿命与可靠性的技术基础。由于航空材料的基础地位,以及其对航空产品贡献率的不断提高,航空材料与航空发动机、信息技术成为并列的三大航空关键技术之一,也是对航空产品发展有重要影闷团响的六项技术之一。
扩展资料:
航天航空材料的特殊性:
1、轻质高强、高温耐蚀:
航空蚂汪橘产品特殊的工作环境对航空材料提出“轻质高强、高温耐蚀”的特殊要求。航空工业有一句口号叫做“为每一克减重而奋斗”,反映了减重对于航空产品的重大经济意义。而且材料减重对飞机减重的贡献也越来越大,所以轻质高强是航空材料必须满足的首要性能要求。
“高温耐蚀”的“高温”是指航空材料要能耐受较高的工作温度。对于机身材料,气动力加热效应使机身表面温度升高,需要结构材料具有好的高温强度;对于发动机材料,要求涡轮盘和涡轮叶片材料要有好的高温强度和耐高温腐蚀性能。“耐蚀”是指航空材料要有优良的抗腐蚀,主要是指抗应力腐蚀、腐蚀疲劳的能力。
2、高的质量要求:
航空器是技术密集、高集成度的复杂产品,只有采用质地优良的航空材料才能制造出安全可靠、性能优良的飞机和发动机。航空产品的多样性和小批量生产,导致了航空材料研制和生产上的多品种、多规格、小批量、技术质量要求高等特点。
3、低成本航空材料:
新型号的先进飞机价格不断攀升,航空技术领先的国家和地区都先后对航空产品提出了“买得起”的要求。而材料在航空产品的成本和价格构成中占有相当份额,所以科陵棚学地选材和努力发展低成本材料技术是航空材料发展的重要方向。
参考资料来源:百度百科-航空材料
参考资料来源:百度百科-航空航天材料(名词)
保险丝灶伏烂保险;开口销保险;自锁螺帽保险;弹簧卡环保险;弹性垫圈保险。
螺纹联接一般采隐漏用单线普通螺纹满足自锁条件,螺母不会松脱。
带螺纹紧固件的安装和保险方法如下:
带螺纹紧固件的安装:
1、螺栓孔
。
(1)螺栓孔要垂直连接件;
(2)主连接件螺栓孔采用紧公厅含差配合;
(3)螺栓和孔的配合有螺栓进入孔时摩擦力大小判断;
(4)修理中,螺栓和孔采用轻压配合;
(5)承拉螺栓和孔壁之间允许有一定的间隙。
2、螺栓的选择和安装。
(1)选择与原螺栓同规格、同材料的螺栓;
(2)螺栓的夹紧长度等于被连接件的厚度;
(3)螺栓头和螺帽下使用垫圈;
(4)螺栓头向上或向前。