螺栓生产过程中出现断裂的原因有哪些
在紧固件制造中正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等。下面就简单介绍下螺栓生产过程中出现断裂的原因有哪些:
一、材质缺陷
影响偏析的因素中(铁矿石元素、炼钢方法、钢锭大小、冶炼技术等),主因是炼钢方法和冶炼技术,偏析大将会引起热脆、冷脆、裂缝、疲劳等一系列问题。当钢材中碳、硫、磷、氧、氮、氢等元素的含量过高时,将会严重降低其塑性和韧性,脆性则相应增大。
(1)钢中碳元素含量增高会使钢的脆性转变温度升高,随着含碳量的增加,钢的最大恰贝冲击值显著降低皮此腊。
(2)磷对钢脆性转变温度影响随磷含量增加,钢脆性转变温度升高,硫与磷的存在对钢的断裂韧性起有害作用,硫危害性更大。
(3)钢中锰元素的存在对改善其脆性性能有一定帮助,随锰与碳之比值提高,碳、磷有害作用下降,钢的脆性转变扒粗温度显著降低。
二、应力集中
当钢材在某一局部出现应力集中,则出现了同号的二维或三维应力场使材料不易进入塑性状态,从而导致脆性破坏。应力集中越严重,钢材的塑性降低愈多,同时脆性断裂的危险性也愈大。钢结构或构件的应力集中主要与构造细节有关。
三、加工环境
当螺栓受到较大的动载作用或者处于较低的环境温度下工作时,螺栓脆性破坏的可能性增大。
(1)当温度升高时,钢材的强度及弹性模量均有变化,一般是强度降低,塑性增大。随着温度的不断升高,而塑性和冲击韧性下降出现所谓的“蓝脆现象”,此时进行热加工钢燃滑材易发生裂纹,钢结构几乎完全丧失承载力。
(2)当温度降低,钢材强度略有提高,而塑性韧性降低,脆性增大。尤其当温度下降到某一温度区间时,钢材的冲击韧性值急剧下降,出现低温脆断。通常又把钢结构在低温下的脆性破坏称为“低温冷脆现象”,产生的裂纹称为“冷裂纹”。
四、加载速率的影响
大量实验表明,高的加载速率会使材料出现脆断的危险增加,一般认为其影响与降低温度相当。随着变形速率的增大,材料的屈服强度将会增加,其原因是材料来不及进行塑性变形和滑移,因而位错摆脱束缚进行滑移所需的热激活时间减少,使脆性转变温度提高,所以易于产生脆断。当试件上有缺口时,应变速率的影响更为显著。脆性裂纹一经产生,裂纹尖端就会有很严重的应力集中,这一急骤增加的应力,相当于一个加载速率很高的荷载,使裂纹迅速失稳扩展,最后使整个结构发生脆性破坏。
五、冷镦成型油的使用
使用菜籽油、机械油、再生油等非专用油品也会发生工件断裂的问题,主要原因是非专用油品其不含有冷镦工艺所需要的添加剂成分,性能不能满足工艺要求。在加工过程中油膜瞬间破裂,冲棒与工件直接接触,因作用力的释放导致工件发生脆性断裂。
综合上述原因:材质缺陷,应力集中,加工环境,加载速率及工艺原料是影响脆性断裂的主要因素,其中应力集中的影响尤为重要。在此值得一提的是,应力集中一般不影响钢结构的静力极限承载力,在设计时通常不考虑其影响。但在动载作用下,严重的应力集中加上材质缺陷,残余应力,冷却硬化,低温环境等往往是导致脆性断裂的根本原因。
冷镦材料与热处理方法一、冷镦工艺对金属材料的要求1、冷镦用金属材料的机械性能要求根据冷镦工艺特点,对钢材机械性能提出如下要求:1) 屈服强度Re以及变形抗力尽可能低,这样可使单位变形力相应减小,以延长模具寿命;2) 材料的冷变形性能要好,既材料应有较好的塑性,较低的硬度,在大的变形程度下不致引起开裂。如冷镦高强度螺栓时,即可使用含碳量较高的碳素钢,又可使用含碳量较低的低合金钢。如果增加含碳量,就会使硬度提高,塑性降低,使冷变形性能变坏。但是在含碳量较低的钢中加入少量合金元素(如添加少量硼10B21、10B33钢),即可显著提高钢材强度,从而满足产品的使用性能要求,同时又不损害其冷变形性能;3) 材料的加工硬化敏感性能越低越好,这样不致使变形过程中的变形力太大。材料的加工硬化敏感性可用变形抗力--应变曲线的斜率来反映。斜率越大,则加工硬化敏感性越高。如不锈钢0Cr18Ni9(SUS304)的曲线斜率最大。这种材料的加工硬化敏感性就比较剧烈,随着变形程度的增加,变形抗力急剧上升。钢材的机械性能不但表现原始坯料的Rm、Re、A、Z及硬度等指标,不但受原材料的化学成分、宏观组织、微观组织等方面的影响,还受到材料准备过程中的拉拔及各道工序之间的热处理影响。2、化学成分的要求⑴碳(C) 碳是影响钢材冷塑性变形的最主要元素。含碳量越高,钢的强度越高,而塑性越低。含碳量每提高01%,其屈服强度Re提高274MPa,抗拉强度Rm提高(588-784MPa),而伸长率A则降低43%,断面收缩率Z降低73%。当钢的含碳量<05%、含锰量<12%、断面收缩率Z=80%时,单位冷变形力P与钢材含C、Mn量之间的近似关系如下:P=1950C+500Mn+1860(MPa)……………………(1)可见,钢中含碳量对于钢材的冷塑性变形性能的影响是很大的。在实际工艺过程中,冷镦挤压用钢的含碳量大于025%时,要求钢退火成具有最好的塑性组织——球状珠光体组织。对于变形程度为65%-85%的冷镦紧固件不经过中间热处理而进行三次镦锻变形,其含碳量不应超过04%。对当含碳量超过03%-05%的碳钢进行镦锻时,就要增加中间完全退火工序或者采用温镦。
⑵锰(Mn) 锰在钢的冶炼中与氧化铁作用(Mn+FeO+MnO+Fe)主要为对钢脱氧而加入。锰在钢中与硫化铁作用(Mn+FeS+MnS+Fe),能减少硫对钢的有害培好性。所形成的硫物中困化锰可改善钢的切削性能。锰使钢的强度有所提高,塑性有所降低,对于钢的冷塑性变形性能是不利的,但是锰对变形力的影响仅为碳的四分罩念之一左右。由于成品的特殊性能要求,允许锰的含量为硫的五倍。除了成品的特殊要求外,不宜超过09%。⑶硅(Si) 硅是钢在冶炼中脱氧剂的残留物。当钢中含硅量增加01%时,会增加137mpa。经验表明,含硅量超过017%且含碳量较大时,对钢的塑性的降低有很大影响。在钢中适当增加硅的含量,对钢的综合机械性能,特别是弹性极限有利,还可以增强钢的耐蚀性。但是当钢中含硅量超过015%时,使钢急剧形成非金属夹杂物,高硅钢即使退火也不会软化,急剧降低钢的冷塑性变形性能。如果硅以硅酸类形式存在于钢中,分散在钢中的细小颗粒会过快地磨损模具。因此,除了产品高强度的性能要求外,冷镦用钢总是尽量减少硅的含量。⑷硫(S) 硫是有害杂质。钢中的硫在冷镦时会使金属的结晶颗粒彼此分离引起裂纹。硫的存在还促使钢产生热脆和生锈。因此含硫量应小于006%。镦制高强度紧固件时,应控制在004%以下。由于硫、磷和锰的化合物能改善切削性能,冷镦螺母用钢的含硫量可放宽到008%-012%,以利于攻丝。⑸磷(P) 磷的固溶强化及加工硬化作用极强,在钢中偏析严重,增加钢的冷脆性及回火脆性,使钢易受酸的侵蚀。钢中的磷会恶化冷塑性变形性能,在拉拔中使线材断裂,在冷镦中使工件开裂。钢中含磷量要求控制在0045%以下。⑹其他合金元素铬(Cr)、钼(Mo)、镍(Ni)、钒(V)、钨(W)等合金元素对钢的冷变形性能的影响远不及碳那样大。一般来讲,随着钢中合金元素的增加,钢的机械强度指标、淬透性随之增加,冷变形性能随之降低。
3、金相组织要求为使钢材能更好地适应冷镦工艺,对于钢的结构、晶粒大小与形式、非金属夹杂物的分布都有一定的要求。⑴钢的组织结构钢中除了铁素体外,还有珠光体。含碳量越高,珠光体数量越多。铁素体是软的基体,在软的基体中嵌有硬的珠光体颗粒。成堆的珠光体分布对于冷变形是不利的,会形成裂纹。钢材的组织要紧密均匀,因此。冷镦用钢要用尽可能均匀分布、球状的晶粒结构。⑵晶粒度金属的变形是由于晶粒的滑移和晶粒本身的变形而发生的。在一定的体积内,细晶粒金属的晶粒数必然比粗晶粒金属的多,塑性变形时位向有利于滑移的晶粒也较多,变形能够较均匀地分散到各个晶粒。相应地细晶粒金属的变形不均匀性和由于变形不均匀性所引起的应力集中均较小,使开裂的机会也小,出现开裂前可承受的塑性变形量增加,对外反映出塑性较好。晶粒越小,所产生的激发相邻晶粒滑移的应力也越小。为使变形继续进行,必须增大外加的应力,对外反映出变形抗力较大。因此冷镦不宜采用过细晶粒的钢材。晶粒太大,又会使工件表面粗糙,产生明显的伤痕和裂纹。粗晶粒钢的加工硬化敏感性比细晶粒钢大,塑性较差,冷变形性能也差。冷镦用钢的晶粒度要求为4-6级,晶粒的大小规范如下:晶粒平均直径约(002-006)mm;每mm2晶粒数约为250-2300个;晶粒的平均面积约(400-4000)μm2。⑶非金属夹杂物不管用什么方法冶炼钢材,总会有或多或少的非金属夹杂物。氧化物或硫化物等夹杂物,会使金属紧密的晶体结构发生间断。夹杂物的形式、数量和分布情况不同,对于钢材的冷变形性能的影响也各异。冷镦用线材是热轧钢材经冷拔后使用的,在轧制和冷拔过程中,这些夹杂物已沿着变形方向被拉长。一般说来,细微、均匀分布的夹杂物为害不大。细小且分散的硫化物夹杂物可以较好地随着变形方向变形,因而较其他一些随之变形的夹杂物为害稍小。特别有害的是氧化铝夹杂物。氧化铝微小颗粒不仅极硬,会损伤模具;而且很难与钢的基体结合在一起,常常在剧烈的冷变形中使工件产生撕裂。粗的或者细而局部集中的夹杂物,对钢的冷镦性能影响很大。
4、 表面质量要求普通热轧钢的表面状态大多数不够好。热轧钢材的表面缺陷经过冷拔(如果压缩比太小)也无法消除,造成冷镦产品的表面缺陷及废品,严重的将无法进行生产。⑴ 坯料表面缺陷钢在冶炼时,钢锭留有的气泡、缩孔等缺陷。经过热轧和冷拔,使线材带有比较严重的贯穿性纵裂,在镦锻时会明显地暴露在产品表面。原材料在轧制中的折叠、耳子、偏析、裂缝等缺陷,在冷镦中会造成严重危害。如:螺栓的断头、螺母的开裂;工件在搓制螺纹时,螺坯被碾压成两半等。原材料在酸洗中处理不当,在钢材表面产生麻点、锈蚀。如果麻点、锈蚀轻微,经过冷拔,凹坑被拉长,在表面基本上显不出痕迹,冷镦中不致于因此而出现裂纹。如果凹坑严重就会形成裂口;裂口多呈现于工件变形量大的棱角处。材料表面裂缝等缺陷越深,冷变形性能就越差。实验表明:无论冷拔还是冷镦,裂纹的形状对于变形程度的影响不大,但是裂纹深度的影响是很大的。对于变形程度较大的冷镦材料,表面缺陷的临界深度是004-010mm,更深的缺陷必须避免。钢材在低碳气氛中加热会引起脱碳。虽然脱碳从产品 的外观质量看不出什么,但是工件表面含碳量的任何变化都会对工件的机械性能产生重大影响。特别对含碳量030%以上的钢材,表面脱碳对工件的疲劳强度和耐磨性明显有害。为防止脱碳材料在退火时,应使用保护气体。和脱碳相反的是渗碳。钢在高温高碳环境中会产生渗碳。尽管渗碳对于成品是相当于在软核上产生硬壳是可以接受的,有时是需要采用的方法,但是对于冷镦工艺来说是相当有害的。有渗碳层的钢材表面象蛋壳那样又薄又硬。在材料改制或者冷镦时,材料表面会产生裂口或者剥离,降低钢材的冷变形性能。因此,冷镦用钢材应当完全避免脱碳和渗碳。钢材的脱碳和渗碳情况可采用金相显微镜检查。⑵尺寸精度要求线材的尺寸精度对于冷镦产品质量及工艺过程有很大影响。冷镦用线材和模具通常是专业化分别加工的。若线材直径超出最大允许值,则镦锻时工件头部的金属就过多,将产生不良飞边或者使工件杆部弯曲。或者因线材直径大于凹模模孔直径而使进料困难。以及工件杆部被凹模孔拉毛,在模孔内急剧形成金属瘤。若线材直径小于最小允许值,则在镦锻时金属不能完全充满模腔,造成工件棱角不清。所以冷镦用材料要充分接近真圆,直径均匀。冷镦用线材的直径允差一般为020-035mm,不圆度允差为直径允差的1/2。
二、常用冷镦材料适用于冷镦的材料种类繁多,其品种、规格、技术条件都纳入一定的技术标准中。纳入国家标准的叫“国标”;纳入冶金部标准的以“YB”表示。还有按钢厂企业标准或者按钢厂与使用单位签订的技术协议供应。冷镦生产中最常用的材料有黑色金属和有色金属两大类。A、 黑色金属材料从工艺角度,钢材在使用习惯上有以下几种分类方法。一按钢材的质量分1、普通碳素钢 标准代号GB700-2004《碳素结构钢》,常用有5个牌号。普通碳素钢分为Q195、Q215、 Q235、 Q255 、Q275、共有A、B、C、D4个等级。按机械性能供应,保证抗拉强度和伸长率,根据需要可补充保证屈服点,室温冲击韧性和冷弯性能;化学成分除硫、磷有规定外,其他不保证。普碳钢因来源广泛,价格较低廉,多用于镦制成品机械性能要求较低,变形程度不很大及形状较简单的低强度紧固件。2、优质碳素结构钢 标准代号GB699-1999《优质碳素结构钢》,共有31个牌号。 优质碳素结构钢其牌号为10、15、20、35、45……,其化学成分和机械性能都有严格规定。含碳量从低碳(C<025%)到中碳(C=025-050%),可以保证冷镦(压扁)试验,保证脱碳及宏观、微观组织,保证机械性能和表面质量等检验要求。被大量用来镦制性能要求严格、变形程度较大、形状较复杂或中等强度的紧固件和异性件。3、 专用冷镦钢 标准代号 GB6478-2001《冷镦和冷挤压用钢》,共有34个牌号。专用冷镦钢其牌号为钢号前冠ML,俗称铆螺钢。其化学成分要求严格,特别是对硫、磷、硅等不利于冷镦变形的有害元素有严格规定。对于钢材的机械性能,特别是屈服极限、伸长率、断面收缩率、硬度等塑性指标都有较高要求。对于影响变形程度的原材料的表面缺陷都经过清除处理。因此冷镦性能很好,能够用较大的变形量、较少的变形次数生产出形状较复杂的、合乎质量要求的产品,是较理想的冷镦材料。
4、 合金钢标准代号GB3077-1999《合金结构钢》,共有76个牌号。合金钢包括低合金钢及合金钢如15Mn、16Mn、15Cr、20Cr等,是在优质碳素结构钢加入少量的(一般不超过2-3%)合金元素而制成的。钢的淬火性能基本上是由含碳量和晶粒决定的。但是若加入合金元素后,钢的热处理性能随着加入量而提高(除一部分元素例外)。在低碳钢中加入少量合金元素而成的低合金钢,代替中碳结构钢用于生产中等强度的紧固件,因低合金钢的含碳量较低,故其冷变形性能较中碳钢好。同时由于热处理性能的提高,以及合金元素的强化作用,使低合金钢的强度可得到大大提高(提高25-150%左右)。所镦制的紧固件,主要用于桥梁、船舶、车辆、建筑等结构中。合金钢如15MnVB、35CrMo等,同于镦制性能等级109级以上的螺栓、螺钉,10级以上的螺母等高强度航空标准件以及高速、高负荷用的紧固件。由于合金钢的强度极限较高,冷镦变形困难,往往采用分工序加工并进行中间热处理的工艺流程,不能在多工位自动冷镦机上进行冷变形。有些合金甚至无法适应冷变形方式,需要采用温镦工艺或切削加工。二按钢材成份分1、低碳钢的含碳量低于025%,如Q195、Q235、10、15等。其塑性较好,变形抗力较低,大量被用作镦制低强度的紧固件。2、中碳钢 冷镦中使用的中碳钢含碳量在025-050%之间。用中碳钢制作的冷镦件经调质等热处理后,具有较高的综合机械性能,常用于镦制中等强度的紧固件。3、高碳钢 含碳量高于05%的碳钢的冷变形性能差,生产中一般不使用。4、特种钢 为满足成品的抗腐蚀性能、耐高温性能等特殊要求,也有使用1Cr13、1Cr18Ni9Ti、Cr17Ni2等不锈钢、耐热钢作为冷镦材料。特种钢的合金元素含量很高,要根据钢材的性能来决定工艺流程。需要通过特殊的退火处理后进行塑性变形,并在各道变形中间进行热处理清除加工硬化,一般不宜在多工位自动冷镦机上生产。
¥
59
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
冷镦材料与热处理方法
冷镦材料与热处理方法
一、冷镦工艺对金属材料的要求
1、冷镦用金属材料的机械性能要求
根据冷镦工艺特点,对钢材机械性能提出如下要求:
1) 屈服强度Re以及变形抗力尽可能低,这样可使单位变形力相应减小,以延长模具寿命;
2) 材料的冷变形性能要好,既材料应有较好的塑性,较低的硬度,在大的变形程度下不致引起开裂。如冷镦高强度螺栓时,即可使用含碳量较高的碳素钢,又可使用含碳量较低的低合金钢。如果增加含碳量,就会使硬度提高,塑性降低,使冷变形性能变坏。但是在含碳量较低的钢中加入少量合金元素(如添加少量硼10B21、10B33钢),即可显著提高钢材强度,从而满足产品的使用性能要求,同时又不损害其冷变形性能;
第 1 页
3) 材料的加工硬化敏感性能越低越好,这样不致使变形过程中的变形力太大。材料的加工硬化敏感性可用变形抗力--应变曲线的斜率来反映。斜率越大,则加工硬化敏感性越高。如不锈钢0Cr18Ni9(SUS304)的曲线斜率最大。这种材料的加工硬化敏感性就比较剧烈,随着变形程度的增加,变形抗力急剧上升。
钢材的机械性能不但表现原始坯料的Rm、Re、A、Z及硬度等指标,不但受原材料的化学成分、宏观组织、微观组织等方面的影响,还受到材料准备过程中的拉拔及各道工序之间的热处理影响。
SCM440属于日标铬钼型合金结构钢,执行标悉者准:JIS G4053-2008
SCM440化睁知薯学成分如下图:
从以上化学成分看,SCM440相当于国内牌号“42CrMo”
SCM440属猛裂于超高强度钢,具有高强度和韧性,淬透性也较好,无明显的回火脆性,调质处理后有较高的疲劳极限和抗多次冲击能力,低温冲击韧性良好。SCM440钢材适宜制造要求一定强度和韧性的大、中型塑料模具。
2520力学性能
抗拉强度(бb)(Mpa) :≥520
屈服强度(σs)(Mpa) :≥205
面积缩减(ψ)% :≥50
机械性能
ób(MPa)≥520,ó02(MPa)≥205 ,δ5(%)≥40, Ψ(%)≥50,HB≤187 能耐1150℃以上高温。熔点在1398℃~1454℃
0Cr25Ni20)是奥氏体铬镍不锈钢具有很好的抗氧化性、耐腐蚀性,因为较高百分比的铬和镍,310S拥有好得多蠕变强度,野碰在高温下能持续作业,具有良好的耐高温性。
特性
310S不锈钢是奥氏体铬镍不锈钢,具有很好的310S不锈钢抗氧化性、耐腐蚀性,因为较高百分比的铬和镍,使得拥有好得多蠕变强度,在高温下能持隐改续作业,具有良好的耐高温性。因镍(Ni)、铬(Cr)含灶脊判量高,具有良好耐氧化、耐腐蚀、耐酸碱、耐高温性能,耐高温钢管专用于制造电热炉管等场合,奥氏体型不锈钢中增加碳的含量后,由于其固溶强化作用使强度得到提高,奥氏体型不锈钢的化学成分特性是以铬、镍为基础添加钼、钨、铌和钛等元素,由于其组织为面心立方结构,因而在高温下有高的强度和蠕变强度。熔点1470℃,800℃开始软化,许用应力持续降低。
化学成份
C :≤008,
Si :≤1500,
Mn :≤200,
P :≤0035,
S :≤0030,
Ni :≤1900-2200,
Cr :≤2400-2600
4340的材料是合金结构钢。相当于德国DIN钢号36CrNiMo4,德国DIN材料,法国NF标准40NCD3,日本JIS标准SNCM439,英国BS标准816M40,美国AISI/ASTM4340,美国UNS标准G43400。
扩展资料:
用途:
1、在低温回火后或者等温淬火后可作超高强度钢使用。
2、用于重型机械高负荷的轴类,直升机的旋翼轴,涡轮喷气发动机的涡轮轴、高负荷的传动碰颤兄件,曲轴紧固件。
3、也可以用于操作温度超过400℃的转子笑袭轴和叶片等;
4、还可以进行渗氮处理后,用来制洞让造特殊性能要求的重要零件。
参考资料来源:百度百科-aisi4340
参考资料来源:百度百科-40CrNiMoA
N06600介绍:
是镍-铬-铁基固溶强化合金,具有良好的耐高温腐蚀和抗氧化纤塌性能、优良的冷热加工和焊接工艺性能,在700℃以下具有满意的热强性和高的塑性。合金可以通过冷加工得到强化,也可以用电阻焊、熔焊或钎焊连接。
N06600具有以下特性:
1 具有很好的耐还原、氧化、氮化介质腐蚀的性能
2 在室温及高温时都具有很好的耐应力腐蚀开裂性能
3 具有很好的耐干燥氯气和氯化氢气体腐蚀的性能
4 在零下、室温及高温时都具有很好的机械性能
5 具有很好的抗蠕变断裂强度,推荐用在700℃以上的工作环境。
N06600的金相结构:
N06600为面心立方晶格结构。
N06600的耐腐蚀性:
600合金对于各种腐蚀介质都具有耐腐蚀性。铬的成分使该合金在氧化条件下比镍 992 (合金 200) 和镍 992(合金 201,低碳)具有更好的耐腐蚀性。同时,较高的镍含量使合金在还原条件和碱性溶液中具有很好的耐腐蚀性,并且能有效地防止氯-铁应力腐蚀开裂。 600合金在乙酸、醋酸、蚁酸、硬脂酸等有机酸中具有很好的耐蚀性,在无机酸中具有中等的耐蚀性。在核反应堆中一次和二次循环使用的高纯度水中具有很优秀的耐蚀性。 600尤其突出的性能是能够抵抗干氯气和氯化氢的腐蚀,应用温度达 650℃。在高温下,退火态和固溶处理态的合金在空气中具有很好的抗氧化剥落性能和高强度。该合金也能抵抗氨气和渗氮、渗碳气氛,但是在氧化还原条件交替变化时,合金会受到部分氧化介质的腐蚀(如绿色死亡液)
N06600工艺性能与要求:
热加工
1热加工温度范围1200℃~900℃,冷却方式为水淬或快速空冷。
2得到最佳耐蚀性能和最适宜的晶体结构,热加工后要进行热处理。
3材料可以直接送入已升温的炉中。
冷加工
1 冷加工材料应为退稿竖岩火或固溶热处理态,600合金的加工硬化率与奥氏体不锈钢接近,因此可以选择类似的加工设备。
2 在冷加工量过程中应进行中间退火。
3 在冷加工量大于5%时,则需要对工件进行固溶处理。
4 为减少材料的磨损,模具应选择合金刀具钢、硬质合金或铸钢。
N06600焊接工艺
合金焊接性能良好,可用电弧焊、氩弧焊、电阻焊和钎焊等各种方法连接,大型或复杂的焊接结构件在熔焊后应在870℃退键御火1h,以消除焊接应力。
N06600合金的焊接建议采用AWS A514焊丝ERNiCr-3或AWS A511焊条ENiCrFe-3
N06600零件热处理工艺
零件的热处理工艺应按相应的材料标准的热处理制度进行。薄板和带材零件的退火处理应在保护气氛中进行。
N06600应用范围应用领域有:
侵蚀气氛中的热电偶套管
氯乙烯单体生产:抗氯气、氯化氢、氧化和碳化腐蚀
铀氧化转换为六氟化物:抗氟化氢腐蚀
腐蚀性碱金属的生产和使用领域,特别是使用硫化物的环境
用氯气法制二氧化钛
有机或无机氯化物和氟化物的生产:抗氯气和氟气腐蚀
核反应堆
热处理炉中曲颈瓶及部件,尤其是在碳化和氮化气氛中
石油化工生产中的催化再生器在700℃以上的应用中推荐使用合金600以获得较长的使用寿命。
N06600主要规格:
N06600无缝管、N06600钢板、N06600圆钢、N06600锻件、N06600法兰、N06600圆环、N06600焊管、N06600钢带、N06600直条、N06600丝材及配套焊材、N06600圆饼、N06600扁钢、N06600六角棒、N06600大小头、N06600弯头、N06600三通、N06600加工件、N06600螺栓螺母、N06600紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
加工HRC38的30CrMnsiA材料,适合的刀具材料牌号为“YG8”
30CrMnSiA属高强度调质结构钢,执行标准:GB/T 3077-1988
30CrMnSiA钢板执行标准:GB3531-2014
30CrMnSiA执行标准;国标GB/T11251-2009
30CrMnSiA执行标准:舞阳钢厂国防国军标准GJB2150A-2005
30CrMnSiA中碳,强度高,焊接性能较差。30CrMnSiA调质后有很高的强度和足够的韧性,淬塌启顷透性也好。调质后该材料做砂轮轴,齿轮,链轮都可以。30CrMnSiA具有良好的加工性,加工变形微小,抗疲劳性能相当好。用于轴类、活塞类零配件等。用于汽车、飞机各种特殊耐磨零配件等。
30CrMnSiA合金钢特性与应用:30CrMnSiA高强度调质结构钢,具有很高的强度和韧性,淬 透性较高,冷变形塑性中团陆等,切削加工性能良好, 有回火脆性倾向,横向的冲击韧度差,焊接性能较 好,但厚度大于3mm时,先预热到150℃ ,焊后热 处理,一般调质后使用 多用于制造高负载,、高速的各种重要零件,如齿轮、轴、离合器、链轮、砂轮轴、轴套、螺栓、螺母等,旁敬也用于制造耐磨、工作温度不高的零件、变载荷的焊接构件,如高压鼓风机的叶片、阀板以及非腐蚀管道用管。
30CrMnSiA化学成分如下图:
大型焊接齿轮用30Cr2Ni2Mo更合适。
34Cr2Ni2Mo属于国标合金结构钢,执行标准:JB/T 6396-2006
34Cr2Ni2Mo化学成分如下图:
34Cr2Ni2Mo结构迅历钢,其特性是有高的强度、韧度和良好的淬透性和抗过热的稳定性,但白点亩搭搜敏感性高,有回火脆性。焊接性较差,焊前需经高温预热,焊后需消除应力,经调质后使用。一般制作强度高、塑性好的重要零部件,氮化处理后制作特殊性能枝运要求的重要零件,如轴类、齿轮、紧固件等。