模具零件的固定方法有哪些
模具在装配时零件的固定方法有哪些 常采用以下几种固定方法。
一、机械固定法
机械固定法是对某个零件施加机械力而使其固定的方法,主要有以下几种:
1、紧固件固定
紧固件是一种可以固定机械零件的零件,如螺钉、螺栓、销钉等。这种方法固定,易于拆卸,简单方便,是最常用的固定法。如凸模、型芯、型腔的固定多用此法。
2、压入固定团丛升
对于过盈配合的零件,可以采用压入固定。一般在压力机上进行,压入时要注意过盈量,表面粗糙度,导入圆角和导入斜度等。压入固定的特点是连接牢固可靠,但对压入的型孔的配合精度要求较高。
3、铆接固定
这是采用铆钉将零件固定的方法或者对固定板型孔处进行局部敲击,使固定板的局部材料被挤向中心,将轴固定。此法操作简单,但承受的扭矩不能太大。
二、物理固定法
物理固定法是采用物理的方法使相关零件进行固定的方法,主要有以下几种:
1、热套固定
这是对过盈配合进行装配的一种方法,它是将型孔零件加热到一定温度,使内孔张大,然后趁热套于轴上,冷却后即将轴紧紧拉住而固定。此法对中性较好,但操作起来较麻烦,承受的扭矩较小。
2、冷胀固定
这是利用某些低熔点合金塌老冷凝时体积膨胀的特性来紧固零件。此法可减少模具装配中凸、凹模的位置精度和间隙均匀性的调整工作量,但其操作过程较复杂。
三、化学固定法
化学固定法是利用某些化学物质的粘接性能使零件结合起来而固定,主要有以下几种:
1、环氧树脂粘接固定
环氧树脂对各种金属和非金属表面的附着力非常强,加之机械强度高、收缩率小、化学稳定性好和工艺性能好,使其在模具装配中得以广泛应用。在粘接时,应将粘接部分弄粗糙,使其粘接牢固。环氧树脂粘接的主要缺点是不耐高温、硬度不高。
2、无机粘接固定
无机粘接剂是由氢氧化铝的磷酸溶液与氧化铜粉末定量郑悉混合而成,用其来粘接相关零件。此法粘接简便,不变形,可耐600℃的高温,但承受冲击能力差,不耐酸、碱腐蚀。
用于模板与模座之间的固定夹紧。
当设计模板吊环时需遵行以下原则:
1、模具主吊方向上应考虑吊装平衡,可设计两个或四个吊环,或采用吊模块吊装。
2、模具侧面设计翻模吊环孔,主要起到模具翻转作用,尽量设计为和主吊装方向一致。
3、方铁上的吊环由于常和底板连接在一起起吊,答拆设计时应注意设计校核。
4、一套模具上的吊环孔种类最多不要设计超过3种,防止用户吊装时频繁更换吊环。
英清蚂枣文名称:lifting eyebolt 或 Hoist Rings模具物慎吊环专用于模板与模座之间的固定夹紧,与吊带、吊链配合起来也用于悬挂较重模具,习惯上也叫吊环螺钉、吊环螺栓、吊环螺母等,与体育项目中的吊环有很大的区别,习惯上也叫吊环,属于模具紧固件。
模具吊环包括环部分与螺丝部分,独特拉紧构造。总体分两类:普通模具吊环和新型旋转模具吊环。如按连接方式则分为螺孔型和螺栓型两种。
冷镦、冷挤压基础知识介绍发表评论编辑词条冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。
冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模嫌伍余化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。
目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:
1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。
2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。
3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R02~R06。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。
4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压橘租工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。
5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。
6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。
冷挤压技术在应用中存在的难点主要有:
1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达2000MPa~2500MPa。例如制造一个直径38mm,壁厚56mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃左右,因而,模具材料需要一定的回火稳定性。由于上述情况,冷挤压模具的寿命远低于冲压模。
2)需要大吨位的压力机。由于冷挤压时毛坯的变形抗力大,需用数百吨甚至几千吨的压力机。
3)由于冷挤压的模具成本高,一般只适用于大批量生产的零件。它适宜的最小批量是5~10万件。
4)毛坯在挤压前需进行表面芹滚处理。这不但增加了工序,需占用较大的生产面积,而且难以实现生产自动化。
5)不宜用于高强度材料加工。
6)冷挤压零件的塑性、冲击韧性变差,而且零件的残余应力大,这会引起零件变形和耐腐蚀性的降低(产生应力腐蚀)
国内外冷挤压技术发展过程
现代冷挤压技术是从18世纪末开始的,法国人在法国革命时代把铅从小孔中挤出制成枪弹,开始了冷挤压。1830年在法国已经有人开始利用机械压力机,采用反挤压方法制造铅管和锡管。1906年美国为了制造黄铜的西服纽扣,已经有人取得了正挤压空心杯形坯料的专利权。1909年美国人获得专利的Hooker法——正向冲挤法,金属流动方向与冲挤方向相同,就是在买了1906年的专利之后发展起来的,该专利中的杯形坯料,是采用拉深法制造的。第一次世界大战中,曾用Hooker法制造了黄铜弹壳,而在第二次世界大战以前的1934年,德国人就利用这种方法试制了钢弹壳,但因热胶着严重,没有成功。直到第二次世界大战中期由于采用了新的表面润滑处理方法——使工件表面形成磷酸盐薄膜,挤压方法制造钢质弹壳获得成功。自此,冷挤压技术走向实用,成为冷锻技术中应用最广泛的一种方法。
60年代,日本汽车工业的成长,为冷挤压技术的发展创造了有利的条件。从冷挤压设备上看,自从1933年,日本会田株式会社生产了日本第一台 2000kN PK型精压机(肘杆式压力机)以来,到目前为止,己生产了2000多台PK系列压力机。随着汽车工业的发展,对高精度压力机的要求愈加迫切,会田株式会社又研制成功了各种锻造压力机。同时,日本小松研制了以高精度和易于操作为目标的 LIC、LZC系列冷锻成形压力机。
从冷挤压产品上看,日本70年代成功冷挤压启动离合器齿轮、传动轴花键、交流发电机磁极铁芯。80年代,又成功冷挤大型高精度等速圆球外座圈、内座圈、十字轴、汽车差速器伞齿轮等高精零件。为日本汽车的高性能化和降低生产成本做出了很大贡献。
我国的冷挤压技术与日本的起步时间相当。70年代,我国曾在自行车、汽车电器等批量生产的产品中,推广过冷挤压生产工艺技术,也开发成功了启动齿轮的挤压成形,并投入批量生产。但由于未从根本上解决工艺、设备、材料、模具、润滑、自动化装置以及毛坯料的原始尺寸、原始状态、后处理等一系列技术问题,因而未得到较大发展。80年代,随着家电和汽车摩托车工业的迅速发展,对冷挤压工艺设备及生产技术的引进、消化、吸收,科研人员通过生产实践攻克了冷挤压技术的不少难题与此同时冷锻设备也有了较大发展。目前,我国己能用冷挤压工艺生产表壳、自行车飞轮、中轴、精锻齿轮、汽车用等速万向节、内燃机用火花塞与活塞销、汽车挺杆、照相机零件、汽车启动器定向套筒、启动齿轮等,且己达到国外同等水平。
冷挤压技术的发展趋势
1)随着能源危机的日趋严重,人们对环境质量将更加关注,加之市场竞争日益加剧,促使锻件生产向高效、高质、精化、节能节材方向发展。因此用挤压成形等工艺手段所生产的精化锻件的产量,在市场竞争中将得到较大的发展。
2)汽车向轻型化、高速度、平稳性方向发展,对锻件的尺寸精度、重量精度及力学性能等都提出了较高的要求。如轿车发动机用连杆锻件除对大小头之间的误差有要求外,对每件的重量误差也要求不大于八克。新产品的高要求,将促进精化生产工艺的发展。
3)专业化、规模化的组织生产仍是冷挤压生产的发展方向和趋势。在法国,以挤压成形工艺生产锻件的专业厂家1991-1994年全员劳动生产率,即每人生产挤压件的产量及产值,均高于一般生产模锻件或者自由锻件的厂家。以1994年为例,专业厂家挤压件人均产量为 51024KG,创产值775688法郎。而同期一般性生产模锻件的厂家,其人均产量仅为39344KG,产值592384法郎,仅相当于挤压件专业生产厂家的771%和7637%。自由锻件生产厂与之相比则更低。
4) 挤压专机将成为一种发展趋势。随着中小型锻件的精化生产发展及冷挤压、温挤压工艺的推广应用,多工位冷挤压压力机、精压机及针对某种锻件而设计制造的专机会得到大力发展。
冷温挤压的定义和分类
挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。如果毛坯不经加热就进行挤压,便称为冷挤压。冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。温挤压仍具有少无切屑的优点。
根据挤压时金属流动方向与凸模运动方向之间的关系,
常用的挤压方法可以分为以下几类。
(一)正挤压 挤压时,金属的流动方向与凸横的运动方向相一致。正挤压又分为实心件正挤压空心件正挤压两种。正挤压法可以制造各种形状的实心件和空心件,如螺钉、心轴、管子和弹壳等。
(二)反挤压 挤压时,金屑的流动方向与凸模的运动方向相反,反挤压法可以制造各种断面形状的杯形件,如仪表罩壳、万向节轴承套等。
(三)复合挤压 挤压时,毛坯一部分金属流动方向与凸模的运动方向相同,而另一部分金屑流动方向则与凸模的运动方向相反,复合挤压法可以制造双杯类零件,也可以制造杯杆类零件和杆杆类零件。
(四)减径挤压 变形程度较小的一种变态正挤压法,毛坯断面仅作轻度缩减。主要用于制造直径相差不大的阶梯轴类零件以及作为深孔杯形件的修整工序。
以上几种挤压的共同特点是:金屑流动方向都与凸模轴线平行,因此可统称为轴向挤压法。另外还有径向挤压和镦挤法。
冷挤压的主要矛盾
冷挤压是在金属冷态下,而且是在强烈的三向压应力状态下变形的,因此变形抗力较大,如以制造一个直径38mm、厚56mm、高100mm的杯形低碳钢零件为例,采用深拉伸方法加工。最后一次拉伸工序仅需变形力170KN而采用冷挤压加工则需变形力1320KN。这时作用在凸模上的单位压力达到2300MP以上,相当于大气压力的23000倍。
由于变形抗力高,所以就导致以下的缺点:
(1)模具易磨损,易破坏、因此要求模具材料好。目前一般模具钢,其许用应力最大只能达2500MPa,最好的模具钢也不超过3000MPa。为了解决冷挤压的主要矛盾,就得采取各种技术措施,在尽力降低冷挤压材料变形抗力的同时,设法提高模具的承受能力。以利于冷挤压生产的顺利进行。
2)对挤压设备要求较高,吨位要大。除了要求挤压设备应有较大的强度以外,还要求有较好的刚度。此外.还要求设备具有良好的精度并具有可靠的保险装置。
冷挤压和温挤压的比较:
冷挤压虽有很多优点,但变形抗力大,就限制了零件的尺寸,同时也限制了变形抗力大的材料采用冷挤压工艺。
热挤压成形法,虽然可以使材料变形抗力变小,但由于加热,产生氧化、脱碳及热膨胀等问题,降低了产品的尺寸精度和表面质量,因而一般都需要经过大量的切削加工,才能作为最后产品。
温挤压是将毛坯加热到金属再结晶温度以下某个适当的温度进行挤压。由于金属加热,毛坯的变形抗力减小.成形容易,压力机的吨位也可以减小,而且模具的寿命延长。但与热挤压不同,因为在低温范围内加热,氧化、脱碳的可能性小,产品的机械性能与冷挤压的产品也差别不大。特别是在室温下难加工的材料,例如析出硬化相的不锈钢、高碳钢、含铬量高的—些钢、高温合金等,在温挤压时可能变成可以加工或容易加工。
温挤压不仅适用于变形抗力高的难加工材料,就是对于冷挤压适宜的低碳钢,也适合作为温挤压的对象,因为温挤压有便于组织连续生产的优点。在冷挤压时,包括冷挤压低碳钢在内,一般在加工前要进行预先软化退火,在各道冷挤压工序之间也要进行退火处理。在冷挤压以前要进行钝化处理。这就使得组织连续生产产生困难。温挤压时可以不进行预先软化退火和各工序之间的退火,也可以不进行表面处理,这就使得组织连续生产成为可能.至少可以减少许多辅助工序
温挤压可以采用大的变形量,这样就可以减少工序数目。模具费用也可以大为减少,而且不需要刚性极高的高价锻压设备,可以来用通用锻压设备,所以虽然温挤压需要加热金属,但是总的加工费用还是比较便宜,待别是在制造工序复杂的非轴对称的异形部件时,温挤压尤可发挥它的作用。
目前,温挤压采用的润滑剂还不能完全令人满意。同时,也还缺乏加工方面的一些实际数据,还有许多技术问题有待解决。
螺纹的种类和标记发表评论编辑词条1 螺纹的种类
螺纹按用途可分为联接螺纹和传动螺纹两类。常用标准螺纹的种类及用途可参看表1。
2 螺纹联接的画法
如图2在剖视图中,内、外螺纹结合部分按外螺纹画,其余部分仍用各自的画法表示。内、外螺纹的大、小径的粗细实线应分别对齐。
3 螺纹的代号标注
在图样上螺纹需要用规定的螺纹代号标注,除管螺纹外,螺纹代号的标注格式为:
管螺纹的标注格式为:特征代号 尺寸代号 旋向
其中,右旋螺纹省略不注,左旋用“ LH”表示。
4 螺纹标记的标注
当螺纹精度要求较高时,除标注螺纹代号外,还应标注螺纹公差带代号和螺纹旋合长度。
螺纹标记的标注格式为: 螺纹代号—螺纹公差带代号(中径、顶径)—旋合长度
有关标注内容的说明:
1) 公差带代号由数字加字母表示(内螺纹用大写字母,外螺纹用小写字母),如7H、6g等,应特别指出,7H,6g等代表螺纹公差,而H7,g6代表圆柱体公差代号。
2) 旋合长度规定为短(用S表示)、中(用N表示)、长(用L表示)三种。一般情况下,不标注螺纹旋合长度,其螺纹公差带按中等旋合长度(N)确定。必要时,可加注旋合长度代号S或L,如“M20-5g6g-L”。特殊需要时,可注明旋合长度的数值,如“M20-5g6g-30”。
5 螺纹标记在视图上的标注方法
如表1中图例,除管螺纹外,在视图上螺纹标记的标注同线性尺寸标注方法相同;而管螺纹是用指引线的形式,指引线应从大径上引出,并且不应与剖面线平行。
表1中标注的说明:
1) M 16-5g6g表示粗牙普通螺纹,公称直径16,右旋,螺纹公差带中径5g,大径6g,旋合长度按中等长度考虑。
2) M16×1 LH-6G表示细牙普通螺纹,公称直径16,螺距1,左旋,螺纹公差带中径、大径均为6G,旋合长度按中等长度考虑。
3) G1表示英制非螺纹密封管螺纹,尺寸代号1 in,右旋。
4) Rc 12表示英制螺纹密封锥管螺纹,尺寸代号12 in,右旋。
5) Tr20×8(P4)表示梯形螺纹,公称直径 20,双线,导程 8,螺距 4,右旋。
6) B20×2LH表示锯齿形螺纹,公称直径 20,单线,螺距 2,左旋
2、压进法:其特点是连接牢固可靠,用于装配具有较大卸料力的冲压凸模。
3、铆接法:在凸模上沿外轮廓开一个槽,根据模具的工作情况确定槽深,然后将模具放入固定板中,最后用固定板材料将凸模挤压在凸模周围。
4、热套法:模套与凹模的配合采用较大的过盈量。当过盈配合的连接只起到固定作用时,过盈量应该少一些,当连胡或接增加预应力时滚做雀,过盈量应大。
5、焊接方法:主要用于硬质合金凸凹模的设备,焊料为黄铜,焊后缓冷。
6、低熔点合金法:低熔点合金是指在冷凝时体积膨胀,利用这一特性来固定零件。
7、环大早氧树脂粘结法:硬化后对金属和非金属有很强的附着力,连接强度高,化学稳定性好,收缩率小,粘结方法简单。但是硬度低,不耐高温,一般低于100度。
8、无机粘结法:氧化铜粉末定量混合氢氧化铝磷酸溶液,粘结强度高,耐磨性好,但冲击能力差,不耐酸碱。
1)注塑模设计时要考虑该模具是安装在哪种注塑机上使用,安装在注塑机上的各配合部位的尺寸,应符御郑伏合所选用的设备规格。
2)注塑模的开合模行程长度,所选用的注塑机应能满足要求。
3)装配后的注塑模,应打上模具编号,大、中型注塑模,应设有起吊孔。
(2)注塑模总体装配精度要求
1)注塑模的外露部分锐角应倒钝,安装面应光滑平整,螺钉、螺钉头部不能高出安装基面,并无明显毛刺、凹陷及变形现象。
2)注塑模各零件的材料、形状、尺寸、精度、表面粗糙度及热处理要求等,均应符合图样要求,各零件的工作表面不允许有损伤。
3)模具的所有活动部位,均应保证位置正确,配合间隙适当,动作可靠,运动平稳。
4)模具上的所有紧固件,镇携均应紧固可靠,不得有任何松动现象。
5)注塑模所选用的模架规格,应能满足注塑制品所需的技术要求。
6)模具在装配后,动模板沿导柱上、下移动时,应平稳无阻滞现象,导柱与导套的配合精度应符合规定标准要求,丛皮且间隙均匀。
7)必须保证模具各零件间的相对位置精度,尤其是当有些尺寸与几个零件尺寸有联系时,如分型面的两个平面一定要保证相互平行。
8)装配后的动模和定模,在合模时必须紧密接触,不得有任何间隙,符合图样要求。
9)注塑模在合模时定位要准确、可靠,开模出塑件时应畅通无阻更多这方面的知识可以到对钩网上了解