什么地方应用紧固件呢?
紧固件,是作紧固连接用且应用极为广泛的一类机械零件。紧固件,使用行业广泛,包括能源、电子、电器、机械、化工、冶金、模世喊具、液压等等行业,在各种机械、设备、车辆、船舶、铁路、桥梁、建筑、结构、工具、仪器、化工、仪表和用品等上面,都蔽余可以看到各式各样的紧固件,是应用最广泛的机械基础件。它的特点是品种规格繁多,性能用途各异,而且标准化、系列化、通用化的程度也极高。因此,也有人把已有国家标准的一类紧固件称为标准紧固件,或简称为标准件。紧固件是一种量大而广的通用基础件。用于制造紧固件的可以是钢材、有色金属、不锈钢、钛合金或其它工程材料等。由于钢材具有优良的塑性和强度,经冷镦或热处理后能获得预期的、优良的综合力学性能,资源丰富价格相对较低,并具有一定的可利用再生性,较其他材料具有更高的性能价格比优势,因而,世界各国还是首选钢材为制造紧固件的母材。紧固件是作紧固连接用且应用极为广泛的一类机械零件。在各种机械、设备、车辆、船舶、铁路、桥梁、建筑、结构、工具、仪器、仪表和用品等上面,都可宏返滚以看到各式各样的紧固件。它的特点是品种规格繁多,性能用途各异,而且标准化、系列化、通用化的程度也极高。随着我国2001年加入WTO并步入国际贸易大国的行列。我国紧固件产品大量出口到世界各国、世界各国的紧固件产品也不断涌入中国市场。紧固件作为我国进出口量较大的产品之一,实现与国际接轨,对推动中国紧固件企业走向世界,促进紧固件企业全面参与国际合作与竞争,都具用重要的现实意义和战略意义。由于每个具体紧固件产品的规格、尺寸、公差、重量、性能、表面情况、标记方法,以及验收检查、标志和包装等项目的具体要求。
我是钢厂的,我来告诉你,石油化工行业是长螺栓,基本都是大规格的,机械机床上都是些小规格的短螺栓,汽车配件上也用大量的小螺栓。基本所有行业敬蔽都有,颤困但以这些茄稿念行业为主。还有工程机械等行业什么的,具体可以问我,我是钢厂主要负责紧固件钢材销售的。
尖端的拧紧方式搭配极高的抗拉强度和最大的延展性,在小型化和轻型化的发动机设计过程中具有全新的技术潜力。为在全球进一步实现环保,需要对发动机进行技术优化,以此会导致发动机效率更高,功率密度不断提升,燃烧压力、温度和负荷的不断增加,同时整机质量持续减轻且具有更低的内部摩擦。但紧固件是如何辅助发动机行业发展的呢?请看下文。
与一个形状相同的109级螺栓相比,Kxtreme提供的概念使螺栓具有将预紧力增升45%的能力。这种能力可通过2种方式而实现。第一种是在需要较大预紧力的部位避免紧固件尺寸的持续扩大,或在使预紧力保持一致性时使螺栓逐步小型化。在第二种情形下,螺栓直径能减小一级,所以一个159 U级的M10螺栓能用于替代一个109级的M12螺栓。
Kamax公司正在开创全新方式来调整用于优化性能特征的超高强度紧固件特性。该公司还采用了一个被称为奥氏体回火(austempering)的热处理过程,其在螺栓制造过程中较为独特。随着钢基体相的奥氏体化,螺栓的微观结构被逐步转变为使用盐浴的贝氏体(bainitic)微观结构。采用该方法,螺栓可提供较好的延展性并具有超高强度。除了其极高的强度,特有的延展值与链消唯典型的109级和129级螺栓相当或者更高。
KXtreme概念螺栓包括从129U到179U强度等级和从M6到M20尺寸的所有长度、头部形状和拧紧力的类似产品。也可在进行热处理后实现螺纹滚牙处理,其与109级或者129级马氏体螺栓类似。
除了超高强度和较好的延展性,贝氏体微观结构(标明‘U’)对氢致应力腐蚀开裂(HISCC)也具有较好的抵抗性。这使得螺栓能在高腐蚀性的环境中使用,例如底盘应用件。对于HISCC的抗性在慢应变拉伸试验中得到证实。在试验中,一批零件被分为两部分,其中50%用于加载氢负荷,另外的50%在未加负荷的状态中进行试验。对两批零件的试验结果进行比较,对已加氢载零件与未加氢载零件的比例也进行了比较。其被称为HE-value。HE值为1表明其具有最高的HISCC敏感度,而HE值为0则说明其完全不敏感。
129U到159U级的KXtreme紧固件表明HE值小于04,其与109级紧固件相当。该特性允许零部件被应用到所有的汽车部件中。168U和178U级螺栓试验后的HE值高于109级但明显低于129级紧固件。因此这些紧固桥带件仅为内燃机的后续使用预留。
非常重要的的发动机紧固件是缸盖螺栓棚培、飞轮螺栓、主轴承盖螺栓和连杆螺栓。Kamax紧固件解决方案在行业内逐渐得以广为人知,且自2013年起,大量同系列产品已经成功在内燃机生产中得以应用。
与FEV集团合作的Kamax公司最近对优化的可能性进行了调查,并评估了使用KXtreme紧固件的设计潜力。在研究前和研究中持续的预紧力是所有连接处的基础假设。相关研究结果是通过对紧固件直径减小一个级别来进行部件优化。在研究中,在轻型发动机中应用的较小螺栓的初始假设原本仅有一个优势。每台发动机减轻了约08 kg的总质量,Kamax团队能证明其在发动机摩擦、热管理和密封功能上也具有优势。
对下述两个研究区域进行重点研究,其中第一项优化的重点是发动机缸体设计。通常缸套周围的布置空间有限且较为紧凑,这导致围绕缸套的冷却液流动截面小,从而妨碍了热传递。较小的螺栓直径允许水套底部具有更大的根部半径,从而产生一个更大的冷却影响区域并减小了部件压力。这意味着更多的热量能从缸孔传递到具有更低压力的冷却系统中,且通过较小的水泵对冷却系统进行优化,由此减小了发动机的功率损失。
第二项研究重点是飞轮紧固螺栓数量的减少。通常通过6个或8个紧固件将飞轮固定到曲轴法兰上。在本次调查中,初始的8个螺栓被替换为6个具有同样结构的Kxtreme螺栓。螺栓装配节圆直径(PCD)能移向曲轴的中心线,且仍然保持同样的螺栓间距(为了刀具后角),由此可使在径向唇形密封的密封表面上具有低质量、低惯性和低摩擦特点的曲轴法兰面的外部直径相应减小。通常而言,KXtreme在发动机设计和开发过程中可提供更大的自由度。对具有超高抗拉强度紧固件的螺纹旋合需求进行确认以承担较高的预紧力。例如连杆材料的钢材,螺纹旋合通常较为充分,但对于缸盖螺栓而言,则需要增加约1×D的旋合长度。
Kamax完成了第二项调查,与EDAG公司合作,采用与发动机优化研究类似的方式,优化且重新设计了一个底盘部件。基于对转向关节的试验,研究发现每个转向关节能为系统节省约675 g的悬载质量。Kxhead采用这类特殊设计的螺栓头部,能进一步减小螺栓质量,同时结合内六角和外六角紧固方式,与根据DIN 1665标准的标准六角螺栓相比,能减小超20%的螺栓头部质量。
Kamax有很多年用于量产发动机和汽车的KXtreme紧固件的生产经验。具有1 700 MPa强度的发动机内部应用螺栓和1 500 MPa强度的发动机外部应用螺栓都可得以应用。对于氢脆腐蚀开裂的敏感性也比109级紧固件更好。
作者:ETi
整理:王少辉
编辑:伍赛特
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。