钢柱内浇注混凝土(土建方面)
1、有关的规范、标准及资料,其中包括: 《钢结构工程施工及验收规范》 (GB50205—95)、《混凝土结构工程施工及验收规范》(GB 50204—92)、《钢管混凝土结构设计与施工规程》(CECS28:90)、《混凝土强度检验评定标准》(GBJ107—87)。2、 钢管混凝土顶升浇筑工艺就是在钢管柱的下部(高度便于施工为宜)管壁上开一个比输送管略大的孔洞,用输送管将混凝土输送泵的出口与之连接,混凝土靠泵压通过输送管被连续注入钢管柱内,直至管内注满混凝土。泵车可以直接靠泵压顶升施工,可根据柱高计算所需的压力,来挑选合适的泵车。3、钢管混凝土的浇筑,还可采用立式手工浇捣法,振捣采用插人式加长振捣棒。浇注方案如下:(1)钢管混凝土施工缝处理施工缝设置在距钢管上端口30cm处,每次浇混凝土前铺设20cm厚与混凝土等强的砂浆层,混凝土浇至管顶清除浮浆层至坚硬混凝土面加盖养护。
(2)钢管混凝土泌水与空鼓现象的处理钢管的密闭性使混凝土中水分无法析出,加上振捣棒在狭小管内振捣,粗骨料相对下沉,砂浆上浮,使混凝土中多余水分上浮至管顶,在管顶形成砂浆层和泌水层。混凝土在硬化过程中的收缩,也易导致管壁与混凝土粘结不紧密,造成空鼓现象。针对以上问题,经对钢管混凝土施工的各个环节进行分析,采取如下措施:
1)严格控制碎石级配,钢管混凝土所有碎石必须是0.5~4cm连续级配。
2)调整配合比,确定水灰比为0.4,坍落度为20mm。在混凝土中掺入12%UEA膨胀剂配制成补偿收缩混凝土,并掺入NF高效减水剂,增强混凝土的粘聚性与和易性,减小用水量。
3)一次投料振捣高度不超过1.5m,用混凝土体积控制高度,振捣时间以混凝土表面无气泡泛出为准,设专人监控。
柱混凝土浇筑量,应扣除钢管所占混凝土体积;
钢管柱内混凝土按钢管内空断面积乘以管柱灌注高度计算;
应按圆形柱计量、计价;
支模、混凝土浇筑工程按层高3.6m,超过3.6m时,工程量包括3.6m以下部分,另按相应超高定额计算。
它具有良好的受力性能和施工性能,具体表现为以下几个方面:承载力高、延性好,抗震性能优越;施工方便,工期大大缩短;有利于钢管的抗火和防火;耐腐蚀性能优于钢结构。
钢管混凝土就是把混凝土灌入钢管中并捣实以加大钢管的强度和刚度.
一般的,我们把混凝土强度等级在c50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在c50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在c100以上的钢管混凝土称为钢管超高强混凝土。
钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。
1.钢管混凝土结构的特点
众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面:
1.1 承载力高、延性好,抗震性能优越
钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。
塑性是指在静载作用下的塑性变形能力。钢管混凝土短柱轴心受压试脸表明,试件压缩到原长的2/3,纵向应变达30%以上时,试件仍有承载力。剥去钢管后,内部混凝土虽已有很大的鼓凸褶皱,但仍保持完整,并未松散,且仍有约5%的承载力,用锤敲击后才粉碎脱落。抗震性能是指在动荷载或地震作用下,具有良好的延性和吸能性。在这方面,钢管混凝土构件要比钢筋混凝土构件强得多。在压弯反复荷载作用下,弯矩曲率滞回曲线表明,结构的吸能性能特别好,无刚度退化,且无下降段,和不丧失局部稳定性的钢柱相同,但在一些建筑中,钢柱常常要采用很厚的钢板以确保局部稳定性。但还常发生塑性弯曲后丧失局部稳定。因此,钢管混凝土柱的抗震性能也优于钢柱。
1.2 施工方便,工期大大缩短
钢管混凝土结构施工时,钢管可以做为劲性骨架承担施工阶段的施工荷载和结构重量,施工不受混凝土养护时间的影响;由于钢管混凝土内部没有钢筋,便于混凝土的浇注和捣实;钢管混凝土结构施工时,不需要模板,既节省了支模、拆模的材料和人工费用,也节省了时间。
1.3 有利于钢管的抗火和防火
由于钢管内填有混凝土,能吸收大量的热能,因此遭受火灾时管柱截面温度场的分布很不均匀,增加了柱子的耐火时间,减慢钢柱的升温速度,并且一旦钢柱屈服,混凝土可以承受大部分的轴向荷载,防止结构倒塌。组合梁的耐火能力也会提高,因为钢梁的温度会从顶部翼缘把热量传递给混凝土而降低。经实验统计数据表明:达到一级耐火3小时要求和钢柱相比可节约防火涂料1/3一2/3甚至更多,随着钢管直径增大,节约涂料也越多。
1.4 耐腐蚀性能优于钢结构
钢管中浇注混凝土使钢管的外露面积减少,受外界气体腐蚀面积比钢结构少得多,抗腐和防腐所需费用也比钢结构节省。钢管混凝土构件的截面形式对钢管混凝土结构的受力性能、施工难易程度、施工工期和工程造价都有很大的影响。圆钢管混凝土受压构件借助于圆钢管对其内部混凝土有效的约束作用,使钢管内部的混凝土处于三向受压状态,使混凝土具有更高的抗压强度。但是圆钢管混凝土结构的施工难度大,施工成本较高。相比之下,方钢管混凝土结构的施工较为方便,但钢管混凝土受到的约束作用较小,结构的承载力较低。
一、优点
1、承载能力大为提高,特别是在高层建筑中,钢管混凝土柱抗压和抗剪承载能力相对普通钢筋混凝土优势较为明显。钢管混凝土的塑性性能好,防止了管内砼的脆性破坏。在高层建筑中可以做到不限制轴压比。
2、塑性和韧性好,所以抗震性比钢筋混凝土更好。
3、扩大了使用空间。由于钢管混凝土柱的承载力高,不但柱子截面减小,而且可以大柱网、大空间的框架结构体系。
二、缺点
1、使用范围有限,仅限于柱、桥墩、拱架等。这是因为梁一般都做成矩形,而矩形的钢管混凝土受力比较复杂而且构造要求繁琐,经济效益不佳。
2、从钢管构件的制作、安装要求讲也是具有一定难度和繁锁性。钢管混凝土柱用的钢管,焊接、制作要求较高。
钢管混凝土的基本原理
1、利用横向钢管,对受压混凝土施加侧向约束,使管内混凝土处于三向受压的应力状态,延缓其纵向微裂缝的发生和发展,从而提高其抗压强度和压缩变形能力。
2、借助内填混凝土的支撑作用,增强钢管壁的几何稳定性,改变窑钢管的失稳模态,从而提高其承载能力。钢管混凝士利用钢管和混凝土中材料在受力过程中的相互作用即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。
同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲。可以保证其材料性能的充分发挥;另外,在钢管混凝土的施工过程中,钢管还可以作为浇筑其核心混凝土的模板。总之通过钢管和混凝土组合而成为钢管混凝土,不仅可以弥补两种材料各自材料的缺点,而且能够充分发挥二者的优点,这也正是钢管混凝土组合结构的优势所在。
一、钢管砼的结构特点钢管砼在高层建筑工程中,主要是作为受压管柱的建筑构件使用,与钢梁和梁柱节点等共同构成建筑物的框架结构体系。钢管砼柱因其结构特征,同时具备了钢管和混凝土两种材料的性质。即管柱外部包裹钢管材料,管柱内部充填混凝土材料,因钢管壁对管内混凝土形成的刚性拘束作用,防止了管内混凝土的脆性破坏。实验和理论分析证明,钢管混凝土在轴向压力作用下,钢管的轴向和径向受压而环向受拉,混凝土则三向皆受压,钢管和混凝土皆处于三向应力状态。三向受压的混凝土抗压强度大大提高,同时塑性增大,其物理性能上发生了质的变化,由原来的脆性材料转变为塑性材料。正是这种结构力学性质的根本变化,决定了钢管砼的基本性能和特点,并作为新型的第五种建筑组合结构显示出巨大的生命力和发展前景。在高层建筑中,钢管砼的特征与优势如下:
1、钢管砼柱的抗压和抗剪承载力高,相当于钢管和混凝土二者之和的2倍以上;
2、钢管砼柱截面比钢筋混凝土柱可减少60%以上,轮廓尺寸也比钢柱小,扩大了建筑物的使用空间和面积;
3、柱子截面减小,自重减小,有利于结构抗震,相当于设防烈度下降一级;
4、钢管砼柱自重减少,减轻了地基承受的荷载,相应降低了地基基础造价;
5、钢管壁薄便于选材、制造与现场焊接,是施工最为快捷的建筑结构;
6、钢管砼柱内的混凝土可大量吸收热能,其耐火性优于钢柱,从而比钢柱可节省耐火涂料50%以上;
7、钢管砼具有的核心混凝土三向受压特性,利于刚刚问世的C60~80高强度混凝土安全可靠地推广应用。由于上述各项优点,采用钢管砼柱时可节省大量的建筑材料,且素混凝土无须振捣,施工方便,工期短。根据计算,与钢筋混凝土柱相比,可节约混凝土60~70%,同时降低造价。若与全钢结构的钢柱相比,则可节约钢材50%,其工程造价也可降低45%。在高层建筑设计中,钢管砼柱可以仅控制长细比而不必限制轴压比。此外因其整体性能好,还克服了普通钢结构钢柱存在的局部失稳的缺点。因此,与钢筋混凝土柱相比,截面设计可以减少60%以上。例如,北京国际贸易中心塔楼的原结构设计由美国提供,采用的是钢筋混凝土结构,钢筋混凝土柱的截面设计尺寸为2200×2200mm,十分庞重。后改用了国内的钢管混凝土设计方案后,钢管砼柱的截面仅为φ1400×30mm,截面面积减少了2/3。全国闻名的深圳赛格广场大厦,采用了钢管砼结构设计,其钢管砼柱最大截面仅为φ1600×28mm,若用钢筋混凝土柱,截面则应为2400×2200mm,柱截面面积减少了63%,粗略估算使整个大厦增加了使用面积八千多平方米。显然,采用钢管砼结构的高层建筑,其经济效益非常显著。
二、钢管混凝土的发展前景与工程应用我国在钢-混凝土组合结构的学术研究与工程应用方面,一直处于国际领先地位。1988年创立的"国际钢-混凝土组合结构合作研究协?quot,其首届与第二届主席,即由我国的中国钢结构协会常务理事、中国钢协钢-混凝土组合结构协会理事长、博士及博士后导师、著名的建筑钢结构专家和学者、哈尔滨建筑大学钟善桐教授担任。现已82岁高龄的钟善桐教授,至今仍担任着该国际学术组织的名誉主席。与此同时,钟善桐教授居世界领先创立了"统一理论",并将其应用于钢管混凝土的理论研究与工程设计方面,使钢管混凝土结构演变成一个完整和独立的建筑新学科。在此基础上,提出了一整套设计公式,并就钢管混凝土柱及节点的优化设计创编了CFST软件,现已被广泛应用于工程实践当中。钢管混凝土的实际工程应用,最早见于19世纪80年代,曾用作桥墩,以后渐渐用于建筑物支柱的建造,并且其用途日益拓宽。20世纪50年代始,前苏联、美国、日本和欧州部分先进国家对其进行了大量的试验研究,并在一些房屋建筑和桥梁工程中得到应用。我国钢管混凝土的研究开发始于60年代中期,首例应用为北京的地铁工程,并成功地用于"北京站"和"前门站"站台柱的建造,之后环线地铁工程的站台柱全部采用了钢管混凝土结构。70年代以后,我国的钢管混凝土逐渐应用于单层和多层工业厂房、高炉和锅炉构架、送变电构架及各种支架结构中,建成的建设工程超过百项。80年代初,日本率先采取了先进的泵送混凝土施工方法,成功地解决了进行钢管柱的混凝土浇灌复杂工艺问题,既保证了工程质量,又降低了工程造价,从而促使钢管混凝土结构进入了一个新的发展阶段。日本、澳大利亚和美国等国相继建成了一些钢管混凝土的高层建筑和拱桥。80年代末至90年代,我国的钢管混凝土工程应用也进入成熟阶段,并居世界前列将其拓展为公路与城市拱桥和高层与超高层建筑的两大工程应用领域。近10年来,我国达百米和超过百米的钢管砼结构的高层建筑已有20多座。其中最高的是深圳72层的赛格广场大厦,结构高度291.6米,堪称世界之最。至20世纪末,钢管混凝土无论是理论研究还是工程应用,我国均已处于世界前列。
三、钢管砼在高层建筑中应用的典型实例澳大利亚墨尔本的联邦中心大厦这是澳大利亚第一次采用钢管砼结构的高层建筑物,钢管砼管柱50×8~16mm,为一座46层的办公大楼,于1991年建成。美国西雅图的联合广场大厦这是一座58层、高220米的的建筑物,在核心筒中采用四根φ3050mm钢管砼管柱,建筑物的用钢量仅为58公斤/平方米,于80年代末建成。美国西雅图的太平第一中心大厦这是一座44层高的建筑物,在核心筒中采用八根φ2300mm钢管砼管柱,周边采用φ760mm钢管砼管柱,于90年代初建成。与全钢结构相比,该建筑物大致节约一半钢材左右。日本琦玉县雄师广场高层住宅楼这是日本第一座最高的采用钢管砼结构的高层建筑,设计55层、高185.8米,于1998年建成。中国福建泉州市邮局大楼等15座高层建筑中国福建泉州市的邮局大楼,是我国第一座采用钢管砼结构的高层建筑,16层,高87.5米,于1992年建成。随后的短短的数年里,国内采用钢管砼结构先后建成了二十几幢高层建筑。
更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
如果打桩之前,灌注混凝土,打桩过程中,混凝土会有破坏。
如果打桩之后灌注混凝土,管桩中间如何换土出来。
具体根据图纸设计要求施工。