2管道的载荷按性质如何分类?
压力管道应力分析 压力管道的载荷和应力分类按载荷作用的时间长短分类
恒载荷持续作用于管道的载荷,如介质压力、支吊架反力、管道自重、热膨胀受约束产生的热负荷、应变自均衡产生的自拉力、残余应力等
活载荷临时作用于管道上的载荷,如风载荷、地震载荷等
按载荷是否随时间变化分类
静力载荷缓慢、无振动地加到管道上的载荷,大小和位置均与时间无关,或极为缓慢地变化,惯性力很小可略去不计的载荷。
动力载荷随时间迅速变化的载荷,使管道产生显著的运动,必须考虑惯性力的影响。如管道的振动、阀门突然关闭时的压力冲击、地震等
按载荷的作用性质分类 自限性载荷(属静力载荷) 由于管道结构变形受约束所产生的载荷,不直接与外部载荷平衡,当管道材料塑性较好时,其最大值限定在一定范围内,不会无限制增大的载荷。 如管道温度变化产生的热载荷;结构曲率发生突变处附近的边缘应力等 非自限性载荷(属静力载荷) 直接由外部作用的外力载荷。如介质压力、管道自重等
管道计算时主要考虑的静力载荷
介质压力也称压力载荷
持续外载(或机械载荷)管道自重、支吊架反力和其它外载
位移载荷(或热负荷)热胀冷缩和端点附加位移 应力分类由于载荷性质不同,产生的应力性质也不同,它们对管道的破坏贡献不同。 分类如下:
一次应力(P)一次应力是由于外载荷作用而在管道内部产生的正应力或剪应力,它满足与外力平衡的条件。它的特征是非自限性的,始终随外载荷的增加而增加,最终达到破坏。由于载荷性质不同,在管道内产生的应力分布也不同,一次应力又分为:
一次总体薄膜应力(Pm) 它是管道的基本应力,分布在整个管道上,在管道的截面上是均匀分布的。如内压力引起的管道环向应力和轴向应力
一次弯曲应力(Pb) 这个应力在管道的很大区域内分布,在管道截面上的分布是沿厚度变化的,呈线性分布。这种应力达到屈服时,只是局部屈服,如果继续加载,应力在管道:1)力荷载,包括管道自重、保温重、介质重和积雪重
2)压力荷载,包括内压力和外压力
3)位移荷载,包括管道热胀冷缩位移、端点附加位移、支承沉降等风荷载地震荷载压力管道是指利用一定的压力,用于输送气体或液体的管状设备,其范围规定为最大工作压力大于或者等于0.1Mpa的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。
17.压力管道分长输管道、公用管道和工业管道三大类。
18.压力管道按其危害程度和安全等级划分为GC1、GC2、GC3三级。
19.管道设计的基本要求: 一般要求;防火安全设计;防保安全设计;其他安全设计;便与检修、运行维修
管道设计要与装置全部设计统一考虑,必须符合管道仪表流程图,满足工艺要求,要有适当的支承,保证足够的强度,对工作温度较高的管道要做柔性分析、有激振力的管道要作动力分析,使管道既具有足够的强度和吸收热膨胀位移的能力,又有良好的抗振性。在经常出现飓风或地震分区级别高的地方还要考虑抵御风载和地震载荷的能力。静力载荷是指缓慢、毫无振动地加到管道上的载荷,它的大小和位置与时间无关,或者是极为缓慢地变化。动力载荷是指随时间有迅速变化的载荷。
21.一般管道静力计算主要考虑的载荷有:介质内压,管道的重力,支吊架反力,管道热胀冷缩和端点的附加位移等。
22.管道应力分类:
⑴一次应力 ①一次总体薄膜应力 ②一次弯曲应力 ③一次局部薄膜应力
⑵二次应力 ⑶峰值应力
23.管系的热应力:物体一般有热胀冷缩的性质,管道也不例外。如果温度变化时,管道不受外界的限制而完全自由的伸缩,这时管道中并不产生热应力。但是,如果管道受到约束,温度变化时不能自由的膨胀或收缩,这时管道将产生热应力,或称热胀应力。
24.管系热应力的计算:p139
25.柔性系数(k):柔性系数表示弯管相对于直角弯头在承受弯矩时柔性增大的程度。
26.应力增大系数(i):是指弯管在弯矩作用下的最大弯曲应力和直角弯头受同样弯矩产生的最大
弯曲应力比值。
27.管道补偿器:
能减少热应力的弯曲管段和伸缩装置成为补偿器或伸缩器。
管道补偿器的补偿可分成两类:一是由于工艺需要在布置管道时自然形成的弯曲管段,称自然补偿,如L形补偿和Z形补偿;一是专门设置用于吸收管道热膨胀的弯曲管段或伸缩装置,称人工补偿,如Ⅱ型补偿器、波纹补偿器或填料函式补偿器等。
28.管道系统振动的原因,大致可分为三类:
回转机械(如压缩机、泵)的回转部分动平衡不良而引起的振动,此振动传递给与它连接的管道,将引起管道振动;管道内气体或液体的不稳定流而引起的振动;外力引起的管道振动,以上三类原因中,由管内不稳定流引起的管道振动式最主要的。其中往复式压缩机管道振动式最常见的一种振动。
第八章 水电站压力管道要求:掌握压力管道的工作特点、类型及总体布置,压力管道的尺寸拟定,设计方法和步骤。第一节 压力管道的功用和类型一、功用及特点(一) 功用压力管道是从水库、压力前池或调压室向水轮机输送水量的水管。(二)特点(1) 坡度陡(2) 内水压力大,且承受动水压力的冲击(水击压力)(3) 靠近厂房。严重威胁厂房的安全。压力管道的主要荷载为内水压力,HD值是标志压力管道规模及技术难度的重要参数值。当V=5~7m/s时,HD≈(0.15~0.18) NgH当Ng相同时,H愈大,HD愈大。目前最大达5000m2。目前最大直径的钢管是巴基斯坦的塔贝拉水电站第三期扩建工程的隧洞内明钢管,直径为13.26m。二、分类
按布置方式分 按材料分
明管:暴露在空气中(无压引水式电站) 钢管(大中型水电站)钢筋混凝土管(小型电站)
地下埋管(隧洞埋管):埋入岩体。(有压引水电站) 不衬砌、锚喷或混凝土衬砌、钢衬混凝土衬砌,聚酯材料管
混凝土坝身埋管:依附于坝身(混凝土重力坝及重力拱坝),包括:坝内管道、 坝上游面管、坝下游面管 钢筋混凝土结构、钢衬钢筋混凝土结构
第二节 压力管道的线路选择及尺寸拟定一、供水方式1.单元供水:一管一机。不设下阀门。优点:结构简单(无岔管)、工作可靠、灵活性好,易于制作,无岔管缺点:造价高适用:(1) 单机流量大、长度短的地下埋管或明管; (2) 混凝土坝内管道和明管道2.联合供水:一根主管,向多台机组供水。设下阀门。优点:造价低缺点:结构复杂(岔管)、灵活性差适用:、(1) 机组少、单机流量小、引水道长的地下埋管和明管3. 分组供水:设多根主管,每根主管向数台机组供水。设下阀门。
适用:压力水管较长,机组台数多,单机流量较小的情况。地下埋管和明管单元供水 联合供水分组供水二、明管布置管道与主厂房的关系:1.正向引近:低水头电站。水流平顺、水头损失小,开挖量小、交通方便。钢管发生事故时直接危机厂房安全。2.纵向引近:高、中水头电站。避免水流直冲厂房。3.斜向引近:分组供水和联合供水。(a)、(b) 正向引进 (c)、(d) 纵向引进(e) 斜向引进压力水管引进厂房的方式三、线路选择压力管道的线路选择应结合引水系统中的其它建筑物(前池、调压室)和水电站厂房布置统一考虑。1.路线尽可能短、直。(经济、水头损失小、水击压力小)一般设在陡峻的山脊上。2.地质条件好。山体稳定、地下水位低、避开山崩、雪崩地区。3.尽量减小上下起伏,避免出现负压;转弯半径R≯3D。四、压力管道直径的选择压力管道经济直径确定是压力管道的主要设计内容之一。1.动能经济比较法:基本原理与渠道相同(压力管道要考虑流速、水击压力的影响),拟定几个直径,进行动能经济计算,比较确定最优经济直径。2.经验公式法:简化条件推导公式。精度较低,初步设计时采用Qmax——压力管道设计流量,H—设计水头3.经济流速法:压力管道的经济流速一般为4~6m/s,最大不超过7m/s,De= Qmax/Ve注:确定压力钢管直径的公式有很多。经验公式法或经济流速方法的设计结果可作为参考。第三节 明钢管的敷设方式及附件一、明钢管的敷设方式和支承方式明钢管一般敷设在一系列支墩上,离地面不小于60cm(便于维护和检修)。水管受力明确,在自重和水重作用下,水管在支墩上相当于一个多跨连续梁;每隔120~150m或在钢管轴线转弯处(包括平面转弯和立面转弯)设置镇墩,将水管完全固定,相当于梁的固定端。
明钢管的敷设连续式布置:管身在两镇墩间连续,不设伸缩节。温度应力大,一般较少采用。分段式:两镇墩间设伸缩节(上镇墩的下游侧)。温度应力小。(一) 镇墩1.功用:固定钢管,承受因水管改变方向而产生的轴向不平衡力。水管在此处不产生任何方向的位移。2.布置:水管转弯处,直线段不超过150m。 3.类型:一般由混凝土浇制,靠自重维持稳定。(1) 封闭式:应用广泛。结构简单,节约钢村,固定效果好。(2) 开敞式:采用较少。易于检修,但受力不均匀。封闭式镇墩 开敞式镇墩(二) 支墩1.功用:承受水重和管重的法向分力。相当于连续梁的滚动支承,允许水管在轴向自由移动(温度变化时)。2.布置:间距6~12m,D特别大时,L取3m。支墩间距小→M、Q(弯矩和剪力)小→支墩造价高。3.类型:(1) 滑动式:支承环式、鞍式鞍式:包角:90~120,结构简单,造价低,摩擦力大,支承部位受力不均匀,D<1m。支承环式:在支墩处管身四周加刚性支承环。摩擦力小,支承部位受力较均匀,D<2m(2) 滚动式:在支承环与墩座之间加圆柱形辊轴,f小,D>2m。(3) 摆动式:在支承环与墩座之间设一摆动短柱。f很小,D>2m滑动支墩滚动支墩摆动支墩二、阀门及附件(一) 闸门及阀门1.快速平板闸门(事故门)——压力管道进口(前池、调压室、水库)。作用:在压力管道发生事故或检修时用以切断水流。2.快速阀门(事故阀或下阀门)——水轮机进口前(联合供水或分组供水),作用:为避免一台机组检修影响其他机组的正常运行,或在调速器、导水叶发生故障时,为紧急切断水流,防止机组产生飞逸。类型:平板阀、蝴蝶阀、球阀(1) 平板阀:框架+板面构成。阀体在门槽中的滑动方式与一般的平板闸门相似。平板阀一般用电动或液压操作。这种阀门止水严密,运行可靠,但需要很大的启闭力,动作缓慢,易产生汽蚀,常用于直径较小的水管。
(2) 蝶阀:由阀壳+阀体组成。阀壳为一短圆筒,阀体形似圆盘,在阀壳内绕水平或垂直轴旋转。阀门关闭时,阀体平面与水流方向垂直;开启时,阀体平面与水流方向一致。蝶阀关 蝶阀开优点:启闭力小,操作方便迅速,体积小,重量轻,造价较低;缺点:在开启状态时由于阀门板对水流的扰动,造成附加水头损失和阀门内汽蚀现象;在关闭状态时,止水不严密,不能部分开启。适用:大直径、水头不很高的情况。目前蝴蝶阀应用最广,最大直径可达8m以上,最大水头达200m。蝴蝶阀要求在动水中关闭,静水中开启。 (3) 球阀:球形外壳+可旋转的圆筒形阀体+附件。阀体圆筒的轴线与水管轴线一致时,阀门处于开启状态,若将阀体旋转90o,使圆筒一侧的球面封板挡住水流通路,则阀门处于关闭状态。优点:在开启状态时实际上没有水头损失,止水严密,结构上能承受高压;缺点:是尺寸和重量大,造价高。适用:高水头电站的水轮机前阀门。球阀是在动水中关闭,在静水中开启。球阀关球阀开(二) 附件(1) 伸缩节作用:消除温度应力,且适应少量的不均匀沉陷位置:常在上镇墩的下游侧 (2) 通气阀作用:当阀门紧急关闭时,向管内充气,以消除管中负压;水管充水时,排出管中空气位置:阀门之后(3) 进人孔作用:检修钢管;位置:钢管上方;直径:50cm左右。(4) 旁通阀及排水设备旁通阀:设在水轮机进水阀门处;作用:阀门前后平压后开启,以减小启闭力。排水管:水管的最低点应设置;作用:在检修水管时用于排出管中的积水和渗漏水。
第四节 作用在明钢管上的力一、力和荷载种类(一) 力1.内水压力:(1) 正常蓄水位的静水压力;(2) 正常工作情况最高压力(正常蓄水位,丢弃全负荷);(3) 特殊工作情况最高压力(最高发电水位,丢弃全负荷);(4) 水压试验内水压力;2.钢管结构自重;3.钢管内的满水重;4.钢管充水,放水过程中,管内部分水重;5.由温度变化引起的力,对分段敷设的明钢管,即伸缩节和支墩的摩擦力;6.管道直径变化处,转弯处及作用在闷头,闸阀,伸缩节上的水压力;7.镇墩、支墩不均匀沉陷引起的力;8.风荷载;9.雪荷载;10.施工荷载;11.地震荷载;12.管道放空时通气设备造成的气压差;要注意荷载的作用方向及作用的时间,在某些情况下有的荷载不可能出现。(二) 荷载种类按力的作用方向可以将上述作用力归纳为轴向力、径向力和法向力。1.轴向力:水重+管重的轴向分力,摩擦力,管径变化处、转弯处、闷头、阀门、伸缩节上的水压力。2.径向力:内水压力3.法向力:水重+管重的法向分力第五节 明钢管的结构分析一、钢管管壁厚度估算在进行钢管应力分析时,需要先设定管壁厚度。由于内水压力在管壁上产生的环向应力是其主要应力。因此用锅炉公式来初拟管壁厚度,以钢材的允许应力[σ]代替σ θ,根据规范要求,焊缝系数φ一般取为0.9~0.95,允许应力取钢管材料允许应力的75% ~85%。考虑钢管运行期间的锈蚀、磨损及钢板厚度误差,δ实际=δ+2mm(锈蚀厚度);在实际工程中,考虑到制造、运输、安装等条件,必须保持一定的刚度,因而需要限制管壁的最小厚度δmin。δmin一般取为D/800+4(mm),且不宜小于6 mm二、管身的应力分析钢管支承在一系列支墩的直线管段在法向力的作用下,相当于一根连续梁。支墩处设有支承环,由于抗外压需要,支承环之间有时还加有刚性环(加劲环)。一般情况下,最后一跨的应力最大。根据受力特点常选四个断面进行应力分析。
(1) 跨中断面1-1:只有弯距作用,且弯距最大,无局部应力——受力最简单;(2) 支承环旁管壁膜应力区边缘,断面2-2:弯距和剪力共同作用,均按最大值计算,无局部应力——受力比较简单;(3) 加劲环及其旁管壁,断面3-3:由于加劲环的约束,存在局部应力;(4) 支承环及其旁管壁,断面4-4:应力最复杂,存在弯距和剪力(支承反力)的作用,有局部应力.分析方法:结构力学法。坐标:轴向x、径向r、环向θ(一) 跨中段面(1)-(1)的管壁应力跨中段面属于膜应力区,其特点是弯矩最大,剪力为零。1.径向应力管壁内表面: , “-”表示压应力。管壁外表面: 由于径向应力的数值比较小,所以应力计算中可以忽略。2.切向(环向)应力设压力水管中心处的水头为H,而水管轴线与水平面的夹角为α,则在管壁中任意一点(该点半径与管顶半径的夹角为θ)的水头为。推导出管壁中的切向拉力T和切向应力为:管壁上内水压力的分布管壁微圆弧的受力平衡式中 P —— 内水压强;δ —— 管壁计算厚度;H —— 计算水头;α —— 管轴线倾角;θ —— 管壁中任意一点半径与管顶半径的夹角;r —— 水管半径。 3.轴向应力轴向应力=法向力引起的轴向弯曲应力+轴向作用力引起的轴向应力(1) 法向力作用引起的管壁轴向应力将水重和管重的法向分力视为均布荷载,则钢管的受力与多跨连续梁类似,其变形以弯曲为主,并在管壁上产生弯曲正应力与剪应力。在相邻两镇墩之间的压力钢管放置于支墩之上,支墩相当于连续梁的中间辊轴支座,最下端的镇墩相当于固定端,上端伸缩节处可近似认为是自由端。法向力引起的弯矩和剪力
¥
5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
水电站压力管道
第八章 水电站压力管道
要求:掌握压力管道的工作特点、类型及总体布置,压力管道的尺寸拟定,设计方法和步骤。
第一节 压力管道的功用和类型
一、功用及特点
(一) 功用
压力管道是从水库、压力前池或调压室向水轮机输送水量的水管。
(二)特点
第 1 页
(1) 坡度陡
(2) 内水压力大,且承受动水压力的冲击(水击压力)
(3) 靠近厂房。严重威胁厂房的安全。
压力管道的主要荷载为内水压力,HD值是标志压力管道规模及技术难度的重要参数值。
当V=5~7m/s时,HD≈(0.15~0.18) NgH
当Ng相同时,H愈大,HD愈大。目前最大达5000m2。
目前最大直径的钢管是巴基斯坦的塔贝拉水电站第三期扩建工程的隧洞内明钢管,直径为13.26m。
1、一次应力 为平衡压力与其它机械载荷所必须的法向应力或剪应力。一次应力分为以下三类: 1.一次总体薄膜应力 是影响范围遍及整个结构的一次薄膜应力(primary membrane stress)。在塑性流动过程之中一次总体薄膜应力不会重新分布,它将直接导致结构破坏。
2.一次局部薄膜应力 应力水平大于一次总体薄膜应力,但影响范围仅限于结构局部区域的一次薄膜应力。当结构局部发生塑性流动时,这类应力将重新分布。若不加以限制,则当载荷从结构的某一高应力区传递到另一低应力区时,会产生过量塑性变形而导致破坏。
3. 一次弯曲应力 平衡压力或其他机械载荷所需的沿截面厚度线性分布的弯曲应力。二次应力 为满足外部约束条件或结构自身变形连续要求所须的法向应力或剪应力。二次应力的基本特征是具有自限性,即局部屈服和小量变形就可以使约束条件或变形连续要求得到满足,从而变形不再继续增大。只要不反复加载,二次应力不会导致结构破坏。峰值应力 由局部结构不连续或局部热应力影响而引起的附加在一次加二次应力上的应力增量。
梁跨度方向钢管的计算
作用于梁跨度方向钢管的集中荷载为梁底支撑方木的支座反力。
钢管的截面惯性矩I,截面抵抗矩W和弹性模量E分别为:
W=4.73 cm3;
I=11.36 cm4;
E= 206000 N/mm2;
支撑钢管按照集中荷载作用下的三跨连续梁计算;集中力P= 2.031 kN
支撑钢管计算简图
最大弯矩 Mmax = 0.433 kN·m ;
最大变形 νmax = 0.849 mm ;
最大支座力 Rmax = 4.603 kN ;
最大应力 σ =M/W= 0.433×106 /(4.73×103)=91.6 N/mm2;
支撑钢管的抗弯强度设计值 [f]=205 N/mm2;
支撑钢管的最大应力计算值 91.6 N/mm2 小于支撑钢管的抗弯强度设计值 205 N/mm2,满足要求。
支撑钢管的最大挠度νmax=0.849mm小于800/150与10 mm,满足要求。
1, 冷轧钢管允许截面出现局部屈曲,从而可以充分利用杆件屈曲后的承载力而热轧钢管不允许截面发生局部屈曲.
2,热轧钢管和冷轧钢管残余应力产生的原因不同,所以截面上的分布也有很大差异.冷弯薄壁型钢截面上的残余应力分布是弯曲型的,而热扎钢管或焊接钢管截面上残余应力分布是薄膜型.
3,热轧钢管的自由扭转刚度比冷轧钢管高,所以热轧钢管的抗扭性能要优于冷轧钢管
钢管工作压力计算器(电脑端网页版)Pipe Working Pressure Calculation
钢管的壁厚与压力计算公式
钢管的壁厚与压力计算公式
Equation: P = (2*S*T)/((O.D.-2*T)*SF) 计算公式。
Where:
P = Fluid Pressure (psi) 压力(单位psi,1MPa = 145psi)
T = Pipe Wall Thickness (in) 厚度 (单位 in,1 in = 25.4mm)
O.D. = Pipe Outside Diameter (in) 外径(单位 in)
SF = Safety factor (General Calculations 1.5 10, Use 1 For Bursting Pressure) 安全系数。
S = Material Strength (psi)Ultimate Tensile strength or Yield strength can be used.
Ultimate should be used to determine the bursting pressure.Yield can be used for estimating pressures at which permanent deformation begins. 材料的机械强度。
相应的数值,转换成对应的单位后,填入蓝色部分,点“Calculate!”即可计算出压力,单位是 Psi, 不要忘记除以145,得出Mpa.
其中:M是钢管承受的最大弯矩;
γx——截面的塑性发展系数;对于钢管截面,取为1.15,
Wnx——钢管净截面模量,也称为净截面抵抗矩。如果截面没有削弱,可以通过钢结构设计手册中的型钢表格查到,如果截面有削弱,可以根据材料力学的公式根据截面尺寸通过计算公式计算得到。
由这个公式计算的到的钢管最大正应力应该小于钢管钢材的强度设计值(根据你选择的钢材牌号不同,钢材强度设计值也不相同,这个数值同样可以通过钢结构设计手册查到),满足这个要求,钢管就满足了在弯矩作用下的强度要求。