建材秒知道
登录
建材号 > 钢管 > 正文

天津金刚桥介绍

俊逸的大炮
无情的台灯
2023-03-28 01:35:10

为什么钢桥要架在轴承上

最佳答案
发嗲的白羊
激昂的猫咪
2025-09-29 01:18:03

钢桥制造之后。将钢桥杆件或梁段拼装成桥并架设就位的施工过程。按桥梁在施工阶段的受力状态,钢桥的架设方法可分为:支架施工、悬臂施工和整体架设三类(见桥梁施工)。

支架施工包括膺架法、缆索悬吊法等。

膺架法在桥位设置木制或钢制的落地式膺架(也称脚手架)。顶面铺脚手板,在上面拼装钢桥。膺架须有落梁装置,便于桥梁拼成后与之分离,拆除膺架。此法作业简便,并能在膺架上用千斤顶调整桥梁的位置,保证拼装的精度。但膺架的用料较多,成本昂贵,阻水面积大,仅适用于桥位不高,水浅流缓,不通航运的情况,大跨度桥梁很少采用。膺架法可利用钢桥杆件或梁段本身的跨越能力,仅在主要节点(如实腹梁梁段的接点,或桁架梁斜腹杆和下弦杆的交点)上设置分立式膺架。日本的丰里斜张桥(1970年),在四个分立式钢膺架上拼装了216米的主梁。

缆索悬吊法悬索桥的施工,通常是先架设缆索,用缆索上临时加设的走行吊架,将加劲梁的梁段逐渐提升,悬挂在缆索垂下的吊杆上,调整位置后拼装成整跨的加劲梁。施工时加劲梁梁段的自重,由缆索承受。美国的金门、韦拉扎诺海峡及英国的亨伯等著名的悬索桥(见彩图),均用这种方法施工。瑞典阿斯克勒峡湾(Asker Fjord)钢管拱桥(1960年),利用同一原理提升跨度278米的管拱节段,悬吊在临时施工的缆索下,调整位置后拼铆成拱,整体降落到支座上。拱、梁组合结构,也可采用此法安装架设,如日本天草二号桥(1966年)的156.8米朗格尔桁架梁,就是这样施工的。

悬臂施工包括悬臂拼装法、拖拉法等。由一个墩台悬臂施工到另一个墩台,悬臂长度等于整个桥跨者,称为全悬臂施工;在跨间设置临时墩,桥梁在墩台和临时墩间悬臂施工,悬臂长度小于桥跨长度者,称为半悬臂施工。由墩台向单一方向悬臂,称为单悬臂施工在一座桥墩上同时向相反方向对称地悬臂,称为平衡悬臂施工。多跨连续桥的主跨可以从两端悬臂施工跨中合龙,使悬臂长度减为主跨之半。

悬臂拼装法简称悬拼法。

① 梁式桥悬拼法。就桥式而言,悬臂桁架梁桥在悬拼时的内力,常小于设计荷载的内力,故最适宜于悬臂拼装施工。如跨度521.2米的英国福斯湾铁路桥(1890年,跨度548.6米的加拿大魁北克铁路桥(1918年)及跨度为 510米的日本港大桥(公路桥,1974年),它们的悬臂桁架梁,均用此法施工。连续梁桥(桁架梁及实腹梁)采用全悬臂施工时,由于受力体系的改变,安装内力常比设计荷载的内力大,有些杆件(或梁段)的截面需要加强,或者采取下列措施减少安装内力:在前方桥墩旁设置托架,使悬臂端较早地得到支承;或设置塔索将悬臂端吊住,减少悬臂根部的弯矩;或在跨间设临时墩,改为半悬臂拼装。中国悬臂拼装须借助锚梁,以保持悬臂时的倾覆稳定。锚梁可以是连续梁的边跨(用膺架法或半悬臂法拼装的),也可是借用桥梁杆件在邻跨(或路堤)上拼装的平衡梁。为缩短平衡梁的长度,还可在它上面压重。三跨一联的不等跨连续梁桥,一般以边跨为锚梁悬拼中孔,在跨中合龙。为改善合龙的闭合条件,可按下列步骤进行:悬拼时降低两端的支座(或抬高中间两个支座),使两悬臂段能够顺利合龙,合龙后再将各支座恢复到设计位置。中国宜宾金沙江铁路桥(1968年)的112+176+112米三跨连续桁架梁,就是这样架设的。多跨简支梁桥,可用临时杆件组成连续梁悬臂拼装。对于单跨简支梁桥,可用两端加设的平衡梁与压重作为锚梁,照连续梁那样从两端悬拼至跨中合龙。成(都)昆(明)铁路三堆子金沙江桥(1969年),就是用此法悬拼单孔192米的简支桁架梁的。

② 拱桥悬拼法。钢拱桥适用于宽深河流或峡谷。它的跨度较大,跨间难于设置临时墩,一般从两端悬拼至跨中合龙。为减少悬臂弯矩,可在拱端设置塔索,斜吊住悬伸的钢拱。早在1874年,美国的主跨为158米的圣路易斯铁路钢拱桥就采用悬臂拼装法施工,在墩顶设木塔架,用拉索吊住钢拱,由桥墩平衡悬臂拼装至跨中合龙。大跨度钢拱桥,如澳大利亚的悉尼港拱桥、美国的新河峡谷桥(见彩图)等,也是采用悬拼法。唯独在美国跨度为503.6米的贝永钢拱桥(1931年),因河床基岩较浅,在跨间设置了临时墩悬臂拼装。

拖拉法钢梁桥在路堤或引桥上拼装后,用卷扬机和滑轮组顺线路方向拖拉,使其在滑道上纵移悬伸架设就位。此法使用的机具设备简单,施工进展较快,适用于中等跨度的钢梁桥。拖拉滑道一般由上、下滑轨及滚轴组成。上滑轨连在纵梁或主桁主要节点下面,下滑轨铺设在路堤、引桥及桥墩顶。上下滑轨之间放进若干直径8~14厘米的滚轴。拖拉时,用卷扬机及滑轮组的钢索牵引,通过滚轴在滑轨间的滚动,使桥梁向前纵移。连续梁桥采用拖拉架设较为方便。几跨简支梁,可临时连成一体,按连续梁拖拉架设,但需考虑到拖拉过程中受力体系的改变,加强某些截面或杆件。为减少悬臂时的杆件内力和支点反力,可在桥梁前端加设轻型导梁,或在跨间设置临时墩,使之较早地到达前方桥墩。中国京广(北京—广州)铁路汉水桥(1954年)三跨55米及黎(塘)湛(江)铁路郁江桥(1955年)三跨66米的简支桁架梁,都是临时组成连续梁拖拉架设的。单跨简支梁桥也可采用拖拉法架设,但需在前端加设导梁,后端压重,以保持悬臂时倾覆稳定。如用浮箱灌水压重,还能调整压重的位置,起到平衡滑道前后支点反力的作用。中国禹门口黄河铁路桥(1973年)用64米长的导梁及压重方法,将跨度144米的单孔简支桁架梁拖拉就位。

整体架设包括整体吊装法、浮运法、转体法、横移法,架桥机架设法等。

整体吊装法整孔钢桥或大型梁段浮运到桥下,用起重设备整体吊装、提升或预升就位。此法多用于大跨度桥梁,需要大型吊机或利用一般起重机具(如卷扬机、滑轮组、千斤顶等)来完成。英国不列颠箱管桥(1850年)的主跨长140米,重约1300吨,制成后船运至桥下,用千斤顶提升就位。美国跨度为 382米的弗里蒙特公路桥(1973年)用千斤顶顶升钢吊杆,将275米长、5800吨重的中间拱段提升就位。日本港大桥用卷扬机滑轮组提升186米长、4515吨重的挂孔。巴西跨度为300米的瓜纳巴拉湾悬臂梁公路桥(1974年),用千斤顶将292米长的锚跨(包括两端悬臂),连同起重平台共重5275吨,提升52米到墩顶横移就位。中国安康汉江 176米的斜腿刚架桥(见彩图)的中孔梁长56米,重180吨,也是用卷扬机及滑轮组整体提升架设的。

70年代以来,日本的大型浮吊设备发展较快,起重量最大达3000吨,起吊高度106米。荒川湾悬臂桁架梁桥(1975年)的桥长840米,分为6个大型梁段,用一台3000吨及两台1500吨的浮吊整体吊装架设,其中最大的吊重是195米长的锚跨(包括两端悬臂),重4250吨。泉北川联络桥(1976年)的 172.6米拱、梁组合结构总重3182吨,用两台3000吨浮吊一次吊装就位。

浮运法桥梁在驳船上或在河岸上拼装后,用船浮运至桥下,利用落潮或充水压舱落梁就位。此法适用于宽阔平稳的水域,桥位和水面的高差不宜过大。驳船的设计吨位最好大于浮运重量2~3倍,以保证浮运体系的稳定。中国杭州钱塘江桥(见彩图)有15孔65.8米钢桁架梁是利用潮汐浮运架设的。日本生浦桥(1973年)的195米拱、梁组合结构,整孔浮运400公里到达桥位,再利用落潮架设。

转体法整孔桥梁或大型梁体,在竖直面或水平面上旋转就位。如意大利斯法拉沙376米斜腿刚架桥(1972年)的斜腿竖直拼装后,绕腿底的铰轴向下倾转至设计位置。

横移法常用于通车线路更换旧桥,能缩短中断交通的时间。在桥位两侧设置支架及垂直于线路的横移滑道。新桥在一侧支架上拼装(平行于线路)就绪后,先从桥孔移出旧桥,再将新桥横移就位。例如:联邦德国杜塞尔多夫—上卡瑟尔桥(1976年),为更换旧桥采用横移法新建主跨258米的独塔斜张桥,桥长590米,重12700吨,设有四条横移滑道,绝大部分的桥重(约10300吨)支承在独塔下的一条滑道上,用安装在新建塔墩上的千斤顶通过钢拉杆拉曳梁体,使整座斜张桥横移47.5米到达桥位。横移的速度平均每小时3.6米。

架桥机架设法跨度不大于40米的铁路上承钢板梁,可在工厂内整孔制造,运往工地用铁路架桥机整体架设。

最新回答
搞怪的星星
正直的山水
2025-09-29 01:18:03

第一阶段以西周、春秋为主,包括此前的历史时代,这是古代桥梁的创始时期。此时的桥梁除原始的独木桥和汀步桥外,主要有梁桥和浮桥两种形式。

第二阶段以秦、汉为主,包括战国和三国,是古代桥梁的创建发展时期。这时不仅发明了人造建筑材料的砖,而且还创造了以砖石结构体系为主题的拱券结构,从而为后来拱桥的出现创造了先决条件。

第三阶段是以唐宋为主,两晋、南北朝和隋、五代为辅的时期,这是古代桥梁发展的鼎盛时期。

这时创造出许多举世瞩目的桥梁,如隋代石匠李春首创的敞肩式石拱桥--赵州桥,北宋废卒发明的叠梁式木拱桥--虹桥,北宋创建的用筏形基础、植蛎固墩的泉州万安桥,南宋的石梁桥与开合式浮桥相结合的广东潮州的湘子桥等。

第四阶段为元、明、清三朝,这是桥梁发展的饱和期,几乎没有什么大的创造和技术突破。这时的主要成就是对一些古桥进行了修缮和改造,并留下了许多修建桥梁的施工说明文献,为后人提供了大量文字资料。

扩展资料:

独木桥是最早的桥梁形式,我国秦汉以前的桥几乎都是木桥。如最早出现的独木桥、木柱梁桥。约商周时便出现浮桥,战国前后又出现排柱式木梁桥和伸臂式木梁桥。

但因木材本身的特性,如质松易腐以及受材料强度和长度支配等,不仅不易在河面较宽的河流上架设桥梁,而且也难以造出牢固耐久的桥梁来,因此,南北朝始遂为木石混合或石构桥梁所取代。

石桥和砖桥。一般是指桥面结构是用石或砖料来做的桥,纯砖构造的桥极少见,一般是砖木或砖石混合构建,而石桥则较多见。

到春秋战国之际便出现了石墩木梁跨空式桥,西汉进一步发展为石柱式石梁桥,东汉则又出现了单跨石拱桥。

隋代创造出世界上第一座敞肩式单孔弧形石拱桥,唐代李昭得造出了船形墩多孔石梁桥。宋代是大型石桥蓬勃发展的时期,创造出像泉州洛阳桥和平安桥那样的长达数里横跨江海交汇处的石梁桥,以及像北京芦沟桥和苏州宝带桥那样的大型石拱桥。

参考资料来源:百度百科-桥

大意的人生
伶俐的巨人
2025-09-29 01:18:03
刘庄浮桥 http://attach.forum.enorth.com.cn:8080/001/053/001053893_cf436786318cff2e74bbac6e673d2696.jpg 是一个繁忙的渡口,1959年建浮桥,桥下是木船,照片就是这座桥。1977年进行了改建,木船改成了水泥船。 广场桥 http://attach.forum.enorth.com.cn:8080/001/050/001050999_52a7632c306b9749a4ab344267c029fc.jpg 这里原是渡口,1971年战备时修建吊桥,现桥1982年建成。因直通中心广场,故名广场桥。 金刚桥 这里原是一座始建于1924年的开启式铁桥,1996年拆除,现桥于1996年底建成。很怀念过去的老桥,如果新桥从老桥旁边或地下通过,把老桥保留下来,天津市就又多了一处国内少有的文物。 狮子林桥 http://attach.forum.enorth.com.cn:8080/001/050/001050994_e823d9abcbf20fdf602d6cfb37b977fc.jpg 该桥初建于1954年,重建于1974年,是中国公路桥梁建设上最早采用预应力混凝土悬臂技术的一座桥梁。1994年在老桥上下游侧各修建一座新桥。2003年对桥体实施了整体抬升,这在中国桥梁建设史上尚属首例。 金汤桥 http://attach.forum.enorth.com.cn:8080/001/050/001050995_274399e80b9819da9f57626d15e0c85a.jpg 该桥建成于1906年,是全国唯一的平转式开启桥,比解放桥早建约20年。1949年1月15日凌晨,解放军东西两路大军在金汤桥胜利会师。因此,金汤桥是象征天津解放的标志性建筑。 2003年11月开始对该桥进行修整加固,2005年10月完成对该桥的整容,并恢复了开启功能。 该桥现在是海河桥梁中最年长者。 解放桥 http://attach.forum.enorth.com.cn:8080/001/051/001051001_7c20d6b069206accd85c56a6e7e7eedf.jpg 该桥1927年建成,原名万国桥,民间称为法国桥,1946年改称中正桥,1949年1月25日改名解放桥。该桥是市区最大的一座开启桥,也是目前仍在正常通行的桥龄最高的桥梁。 在上世纪多数年代里,解放桥与百货大楼一起无可争议的成为天津的标志性建筑,有的商品还把解放桥作为商标。 前不久,又一次进行了整修,恢复了开启功能,长高0.2米。 赤峰桥 http://attach.forum.enorth.com.cn:8080/001/051/001051002_ee966e9dee9550ceb4f43c60eb359c83.jpg 这里原来也是一座1971年建设的吊桥,现桥建成于1981年10月,已为市民光荣服役26年,现正在拆除。 刘庄桥 http://attach.forum.enorth.com.cn:8080/001/051/001051012_169c73ab7a9d6185e66652f9b89daacd.jpg 这里原是一座始建于1959年的浮桥,每天中午1点左右开桥,经常有轮船通过,到现在蚌埠桥附近的码头停靠。在枯水或水大时就要暂停使用。1963年闹大水时,浮桥高得象拱桥,后来水太大了,就暂停使用了。在开桥或暂停使用期间,车辆需绕行解放桥,行人过附近的田庄摆渡。 现桥建成于1992年,是市区第一座独塔斜拉桥。

甜美的羽毛
天真的曲奇
2025-09-29 01:18:03
一、桥梁的组成

(一)桥梁的五“大部件”与五“小部件”

1.五“大部件”包括:桥跨结构;支座系统;桥墩;桥台;墩台基础

2.五“小部件”包括:桥面铺装(或称行车道铺装);排水防水系统;栏杆(或防撞栏杆);伸缩缝;灯光照明。

(二)相关尺寸术语名称

1.净跨径:梁式桥是设计洪水位上相邻两个桥墩(或桥台)之间的净距,用l0表示。对于拱式桥,净跨径是每孔拱跨两个拱脚截面最低点之间的水平距离。

2.总跨径:是多孔桥梁中各孔净跨径的总和,也称桥梁孔径( ),它反映了桥下宣泻洪水的能力。

3.计算跨径:对于具有支座的桥梁,是指桥跨结构相邻两个支座中心之间的距离,用l表示。拱圈(或拱肋)各截面形心点的连线称为拱轴线,计算跨径为拱轴线两端点之间的水平距离。

4.桥梁全长简称桥长:是桥梁两端两个桥台的侧墙或八字墙后端点之间的距离,用L表示。对于无桥台的桥梁为桥面自行车道的全长。

5.桥梁高度简称桥高:是指桥面与低水位之间的高差,或为桥面与桥下线路面之间的距离。桥高在某种程度上反映了桥梁施工的难易性。

6.桥下净空高度:是设计洪水位或计算通航水位至桥跨结构最下缘之间的距离,以H表示。它应保证能安全排洪,并不得小于对该河流通航所规定的净空高度。

7.建筑高度:是桥上行车路面(或轨顶)标高至桥跨结构最下缘之间的距离,它不仅与桥梁结构的体系和跨径的大小有关,而且还随行车部分在桥上布置的高度位置而异。公路(或铁路)定线中所确定的桥面(或轨顶)标高,与通航净空顶部标高之差,又称为容许建筑高度。桥梁的建筑高度不得大于其容许建筑高度,否则就不能保证桥下的通航要求。

8.净矢高:是从拱顶截面下缘至相邻两拱脚截面下线最低点之间连线的垂直距离,f0表示;计算矢高:是从拱顶截面形心至相邻两拱脚截面形心之间连线的垂直距离,用f表示。

9.矢跨比:是拱桥中拱圈(或拱肋)的计算矢高f与计算跨径l之比(f/l),也称拱矢度,它是反映拱桥受力特性的一个重要指标。

二、桥梁的分类

(一)桥梁的基本体系

按结构体系划分,有梁式桥、拱桥、刚架桥、悬索桥四种基本体系,其他还有几种由几种基本体系组合而成的组合体系等。

1.梁式体系

梁式体系是古老的结构体系。梁作为承重结构是以它的抗弯能力来承受荷载的。梁分简支梁、悬臂梁、固端梁和连续梁等。悬臂梁、固端梁和连续梁都是利用支座上的卸载弯矩去减少跨中弯矩,使梁跨内的内力分配更合理,以同等抗弯能力的构件断面就可建成更大跨径的桥梁。

2.拱式体系

拱式体系的主要承重结构是拱肋(或拱箱),以承压为主,可采用抗压能力强的圬工材料(石、混凝土与钢筋混凝土)来修建。拱分单铰拱、双铰拱、三铰拱和无铰拱。拱是有水平推力的结构,对地基要求较高,一般常建于地基良好的地区。

3.刚架桥

刚架桥是介于梁与拱之间的一种结构体系,它是由受弯的上部梁(或板)与承压的下部柱(或墩)整体结合在一起的结构。由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯结构,也是有推力的结构。刚架分直腿刚架与斜腿刚架。刚架桥施工较复杂,一般用于跨径不大的城市桥或公路高架桥和立交桥。

4.悬索桥

就是指以悬索为主要承重结构的桥。其主要构造是:缆、塔、锚、吊索及桥面,一般还有加劲梁。其受力特征是:荷载由吊索传至缆,再传至锚墩。传力途径简捷、明确。悬索桥的特点是:构造简单,受力明确;在同等条件下,跨径愈大,单位跨度的材料耗费愈少、造价愈低。悬索桥是大跨桥梁的主要形式。

5,组合体系

(1)连续钢构:连续钢构是由梁和钢架相结合的体系,它是顶应力混凝土结构采用悬臂施工法而发展起来的一种新体系。

(2)梁、拱组合体系:这类体系中有系杆拱、桁架拱、多跨拱梁结构等。它们利用梁的受弯与拱的承压特点组成联合结构。

(3)斜拉桥:它是由承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。

(二)桥梁的其他分类

1.按用途划分,有公路桥、铁路桥、公路铁路两用桥、农桥、人行桥、运水桥(渡槽)及其他专用桥梁(如通过管路、电缆等)。

2.按桥梁全长和跨径的不同,分为特大桥、大桥、中桥和小桥。

3.按主要承重结构所用的材料划分,有圬工桥(包括砖、石、混凝土桥)、钢筋棍凝土桥、预应力混凝土桥、钢桥和木桥等。

4.按跨越障碍的性质,可分为跨河桥、跨线桥(立体交叉)、高架桥和栈桥。

5.按上部结构的行车道位置,分为上承式桥、下承式桥和中承式桥。

2B313012掌握桥梁基础施工技术

一、桥梁基础分类

桥梁基础分为:刚性基础、桩基础、管柱、沉井、地下连续墙等,其中桩基础又包括沉入桩、灌注桩。

二、适用条件

1.刚性基础:适用于各类土层,根据土质情况分别采用铁镐、十字镐、爆破等设备和方法开挖。

2.桩基础:按施工方法可分为沉桩、钻孔桩、挖孔桩。其中沉桩又分为锤击沉桩法、振动沉桩法、射水沉桩法、静力压桩法。

(1)沉桩:锤击沉桩法一般适用于松散、中密砂土、黏性土。桩锤有坠锤、单动汽锤、双动汽锤、柴油机锤、液压锤等。可根据土质情况选用适用的桩锤;振动沉桩法一般适用于砂土,硬塑及软塑的黏性土和中密及较松的碎石土;射水沉桩法适用在密实砂土,碎石上的土层中。用锤击法或振动法沉桩有困难时,可用射水法配合进行;静力压桩法在标准贯入度N<20的软黏土中,可用特制的液压机或机力千斤顶或卷扬机等设备沉入各种类型的桩;钻孔埋置桩为钻孔后.将预制的钢筋混凝土圆形有底空心桩埋人,并在桩周压注水泥砂浆固结而成,适用于在黏性土、砂土、碎石土中埋置大量的大直径圆桩。

(2)钻孔灌注桩适用于黏性土、砂土、砾卵石、碎石、岩石等各类土层;挖孔灌注桩适用于上地下水或少量地下水。且较密实的土层或风化岩层,如空气污染物超标,必须采取通风措施。

(3)管柱、沉井适用于各种土质的基底,尤其在深水、岩面不平、无覆盖层或覆盖层很厚的自然条件下,不宜修建其他类型基础时,均可采用。

(4)地下连续墙适用于作地下挡土墙、挡水围堰、承受竖向和侧向荷载的桥梁基础、平面尺寸大或形状复杂的地下构造物基础,可用于除岩溶和地下承压水很高处的其他各类上层中施工。

三、明挖扩大基础施工

明挖扩大基础施寸:的内容包括:基础的定位放样、墓坑开挖、基坑排水、基底处理以及砌筑(浇筑)基础结构物等。

(一)准备工作

在开挖基坑前,应做好复核基坑中心线、方向和高程,并应按地质水文资料,结合现场情况,决定开挖坡度、支护方案以及地面的防水、排水措施。

放样工作足根据桥梁中心线与墩台的纵横轴线,推算出基础边线的定位点,再放线画出基坑的开挖范围。基坑底部的尺寸较设计平面尺寸每边各增加0.5~1.0m,以便于支撑、排水与立模板(坑壁垂直的无水基坑坑底,可不必加宽,直接利用坑壁作基础模板亦可)。

(二)基坑开挖

1.坑壁不加支撑的基坑

对于在干涸河滩、河沟中,或经改河或筑堤能排除地表水的河沟中,在地下水位低于基底,或渗透量少,不影响坑壁稳定,以及基础埋置不深,施工期较短,挖基坑时,不影响邻近建筑物安全的场所,可选用坑壁不加支撑的基坑。

黏性土在半干硬或硬塑状态,基坑顶无活荷载,稍松土质,基坑深度不超过0.5m,中等密实(锹挖)土质基坑深度不超过1.25m,密实(镐挖)土质基坑深度不超过2.0m时,均可采用垂直坑壁基坑。基坑深度在5m以内,土的湿度正常时,采用斜坡坑壁开挖或按坡度比值挖成阶梯形坑壁,每梯高度为0.5~1.0m为宜,可作为人工运土出坑的台阶。基坑深度大于5m时,坑壁坡度适当放缓,或加做平台。土的湿度影响坑壁的稳定性时,心采用该湿度下土的天然坡度或采取加固坑壁的措施。当基坑的上层土质适合敞口斜坡坑壁条件,下层土质为密实黏性土或岩石,可用垂直坑壁开挖,在坑壁坡度变换处,应保留有至少0.5m的平台。

2.坑壁有支撑的基坑

当基坑壁坡不易稳定并有地下水,或放坡开挖场地受到限制,或基坑较深工程数量较大,不符合技术经济要求时,可根据具体情况,采取加固坑壁措施撑、钢木结合支撑、混凝土护壁及锚杆支护等。

混凝土护壁一般采用喷射混凝土。根据经验,一般喷护厚度为5~8cm,一次喷护约需1~2h。一次喷护如达不到设计厚度。应等第一次喷层终凝后再补喷,直至达到要求厚度为止。喷护的基坑深度应按地质条件决定,一般不宜超过l0m。

(三)基坑排水

桥梁基础施了中常用的基坑排水方法有:

1.集水坑排水法。除严重流沙外,一般情况下均可适用。

2.井点排水法。当土质较差有严重流沙现象,地下水位较高,挖基较深,坑壁不易稳定,用普通排水方法难以解决时,可采用井点排水法。

3.其他排水法。对于土质渗透性较大、挖掘较深的基坑,可采用板桩法或沉井法,此外,视上程特点、工期及现场条件等,还可采用帐幕法,即将基坑周围土层用硅化法、水泥灌浆法及冻结法等处理成封闭的不透水的帐幕。

(四)基坑施工过程中注意要点

1.在基坑顶缘四周适当距离处设置截水沟.并防止水沟渗水,以避免地表水冲刷坑壁,影响坑壁稳定性; 2,坑壁边缘应留有护道,静荷载距坑边缘不小于0.5m,动荷载距坑边缘不小于1.0m,垂直坑壁边缘的护道还应适当增宽,水文地质条件欠佳时应有加固措施;

3.应经常注意观察坑边缘顶面土有无裂缝,坑壁有无松散塌落现象发生;

4.基坑施工不可延续时间过长,自开挖至基础完成,应抓紧时间连续施工;

5.如用机械开挖基坑。挖至坑底时,应保留不小于30cm厚度的底层,在基础浇筑圬工前用人工挖至基底标高;

6.基坑应尽量在少雨季节施工;

7.基坑肩:用原土及时回填,对桥台及有河床铺砌的桥墩基坑,应分层夯实。

四、桩基础施工

(一)沉入桩施工

沉入桩所用的基桩主要为预制的钢筋混凝土桩和预应力钢筋混凝土桩。断面形式常用的有实心方桩和空心管桩两种。管桩(包括普通的和预应力的)一般由工厂以离心成型法制成。沉人桩的施工方法主要有:锤击沉桩、振动沉桩、射水沉桩以及静力压桩等。这里介绍锤击沉桩的施工方法。

1.概述

锤击沉桩一般适用于中密砂类土、黏性土。由于锤击沉桩依靠桩锤的冲击能量将桩打入士中,因此一般桩径不能太大(不大于0.6m),入土深度在40m左右,否则对沉桩设备要求较高。沉桩设备是桩基施寸:质量与成败的关键,应根据土质、工程量、桩的种类、规格、尺寸、施工期限、现场水电供应等条件选择

2.施工要点

(1)沉桩前应对桩架、桩锤、动力机械等主要设备部件进行检查;开锤前应再次检查桩锤、桩帽以及送桩与桩的中轴线是否一致;锤击沉桩开始时,应严格控制各种桩锤的动能:用坠锤和单动气锤时,提锤高度不宜超过0.50m;用双动气锤时,可少开气阀降低气压和进气量,以减少每分钟的锤击数;用柴油机锤时,可控制供油量以减少锤击能量;当桩尖已沉入到设计标高,但沉入度仍达不到要求时,应继续下沉至达到要求的沉入度为止。沉桩时,如遇到:沉入度突然发生急剧变化;桩身突然发生倾斜、移位;桩不下沉,桩锤有严重的回弹现象;桩顶破碎或桩身开裂、变形,桩侧地面有严重隆起等现象时,应立即停止锤击,查明原因,采取措施后方可继续施工。

(2)沉桩过程中应注意:桩帽与桩周围应有5~l0mm间隙,以便锤击时桩在桩帽内可作微小的自由转动,避免桩身产生超过许可的扭转应力;打桩机的导向杆应予固定,以便施打时稳定桩身;导向杆设置应保证桩锤上下活动自由;顶制桩顶面应附有适合桩帽大小的桩垫,其厚度视桩垫材料、桩长及桩尖所受抗力大小决定;桩边破碎后应及时更换;选用的桩帽,应将锤的冲击力均匀分布于桩顶面。

3.锤击沉桩的停锤控制标准

(1)当设计桩尖标高处为硬塑黏性土、碎石土、中密以上的砂土或风化岩等土层时,根据贯人度变化并对照地质资料,确认桩尖已沉人该土层,贯入度已达到控制贯人度。

(2)当贯人度已达到控制贯人度,而桩尖标高未到达设计标高时,应继续锤入0.10rn左右(或锤击30~50次),如无异常变化即可停锤;若桩尖标高比设计标高高得多时,应报有关部门研究确定。

(3)当设计桩尖标高处为一般黏性土或其他松软土层时,应以标高控制,贯入度作为校核。当桩尖已达设计标高,而贯入度仍较大时,应继续锤击,使其接近控制贯人度。

(4)在同一桩基中,各桩的最终贯入度应大致接近.而沉入深度不宜相差过大,避免基础产生不均匀沉降。如因土质变化太大,致使各桩贯人度或沉桩深度相差过大时,应报有关部门研究,另行制定停锤标准。对于特殊设计的桩.桩尖设计标高有高低时(如拱桥的桥台桩等),应按设计要求处理。

从沉桩开始时起,应严格控制桩位及竖桩的竖直度或斜桩的倾斜度。在沉桩过程中,不得采用顶、拉桩头或桩身办法来纠偏,以防桩身开裂并增加桩身附加弯矩。

(二)钻孔灌注桩施]:

1.钻孔灌注桩的特点

钻孔灌注桩桩长可以根据持力土层的起伏面变化,并按使用期间可能出现的最不利内力组合配置钢筋,钢筋用量较少,便于施工,故应用较为普遍。

2.钻孔灌注桩施工的主要工序

钻孔灌注桩施工的主要工序有:埋没护筒、制备泥浆、钻孔、清底、钢筋笼制作与吊装以及灌注水下混凝土等。

(1)埋设护筒:护筒能稳定孔壁、防止坍孔,还有隔离地表水、保护孔口地面、固定桩孔位置和起到钻头导向作用等。

护简要求坚固耐用,不漏水,其内径应比钻孔直径大(旋转钻约大20cm,潜水钻、冲击或冲抓锥约大40cm),每节长度约2~3m。一般常用钢护筒,在陆上与深水中均能使用,钻孔完成,可取出重复使用。在深水中埋设护筒时,先打入导向架,再用锤击或振动加压沉入护筒。护筒人土深度视土质与流速而定。护筒平面位置的偏差不得大于5cm,倾斜度不得大于1%。

(2)泥浆制备:钻孔泥浆由水、黏土(膨润土)和添加剂组成,具有浮悬钻渣、冷却钻头、润滑钻具,增大静水压力,并在孔壁形成泥皮,隔断孔内外渗流,防止坍孔的作用。

通常采用塑性指数大于25,粒径小于0.005mm的黏土颗粒含量大于50%的黏土过泥浆搅拌机或人工调和,贮存在泥浆池内,再用泥浆泵输入钻孔内。

(3)钻孔:一般采用螺旋钻头或冲击锥等成孔,或用旋转机具辅以高压水冲成孔用的方法是:止循环回转法,反循环回转法,潜水电钻法,冲抓锥法,冲击锥法。

1)正循环回转法:系利用钻具旋转切削土体钻进,泥浆泵将泥浆压进泥浆笼头,通过钻杆中心从钻头喷人钻孔内,泥浆挟带钻渣沿钻孔上升,从护筒顶部排浆孔排出至沉淀池,钻渣在此沉淀而泥浆流人泥浆池循环使用。其特点是钻进与排渣同时连续进行,在适用的土层中钻进速度较快,但需设置泥浆槽、沉淀池等。施工占地较多,且机具设备较复杂。

2)反循环回转法:与正循环法不同的是泥浆输入钻孔内,然后从钻头的钻杆下口吸进,通过钻杆中心排出至沉淀池内。其钻进与排渣效率较高,但接长钻杆时装卸麻烦,钻渣容易堵塞管路。另外,囚泥浆是从上向下流动,孔壁坍塌的可能性较正循环法的大,为此需用较高质量的泥浆。

(4)孔径检查与清孔:钻孔的直径、深度和孔形直接关系到成桩质量,是钻孔桩成败的关键。为此,除了钻孔过程中严谨操作、密切观测监督外,在钻孔达到设计要求深度后,应采用适当器具对孔深、孔径、孔形等认真检查,符合设计要求后,填写“终孔检查证”。

1)清孔的方法有抽浆法、换浆法、掏渣法、喷射清孔法以及用砂浆置换钻渣清孔法等,应根据设计要求、钻孔方法、机具设备和土质条件决定。其中抽浆法清孔较为彻底,适用于各种钻孔方法的灌注桩。对孔壁易坍塌的钻孔,清孔时操作要细心,防止坍孔。

2)清孔的质量要求:对摩擦桩:孔底沉淀土的厚度,中、小桥不得大于(0.4~0.6)d(d为桩的直径),大桥按设计文件规定。清孔后的泥浆性能指标:含砂率为4%~8%,相对密度为1.10一1.25,黏度为18~20s。对支承桩(柱桩、嵌岩桩),宜用抽浆法清孔,并宜清理至吸泥管出清水为止。灌注混凝土前,孔底沉淀土厚度不得大于50mm。若孔壁易坍塌,必须在泥浆中灌注混凝土时,建议采用砂浆置换钻渣清孔法,清孔后的泥浆含砂率不大于4%。其他泥浆性能指标同摩擦桩要求。对于沉淀土厚度的测量,用冲击、冲抓锤时,沉淀土厚度从锥头或抓锥底部所到达的孔底平面算起。沉淀土厚度测量方法可在清孔后用取样盒(开口铁盒)吊到孔底,待到灌注混凝土前取出,直接测量沉淀在盒内的沉渣厚度。

(5)灌注混凝土:在土中形成一定直径的井孔,达到设计标高后,将钢筋骨架(笼)吊入井孔中,灌注混凝土。

2B313013 掌握桥梁下部结构施丁技术

一、承台施工

(一)围堰及开挖方式的选择

1,当凉台处于于处时,一般直接采用明挖基坑,井根据基坑状况采取一定措施后在其上安装模板,浇筑承台混凝土。

2,当承台位于水中时,一般先设围堰(钢板桩围堰或吊箱围堰)将群桩围在堰内,然后在堰内河底灌注水下混凝土封底,凝结后,将水抽干,使各桩处于干处,再安装承台模板.在干处灌筑承台混凝土。

3,对于承台底位于河床以上的水中.采用有底吊箱或其他方法在水中将承台模板支撑和固定,如利用桩基,或临时支撑。承台模板安装完毕后抽水,堵漏,即可在干处灌筑承台混凝土。

4.承台模板支承力式的选择应根据水深、承台的类型、现有的条件等因素综合考虑。

(二)开挖墓坑

1.基坑开挖一般采用机械开挖,并辅以人工清底找平,基坑的开挖尺寸要求根据承台的尺寸,支模及操作的要求,设置排水沟及集水坑的需要等因素进行确定。

2.基坑的开挖坡度以保证边坡的稳定为原则。

3.基坑顶面应设置防止地面水流入基坑的措施,如截水沟等。

4.当基坑地下水采用普通排水方法难以解决时,可采用井点法降水

(三)承台底的处理

1.低桩承台:当承台底层土质有足够的承载力,又无地下水或能排干水时,可按天然地基上修筑基础的施工方法进行施工。当承台底层土质为松软土,且能排干水施工时,可挖除松软土,换填10~30cm厚砂砾土垫层,使其符合基底的设计标高并整平,即立模灌筑承台混凝土。

2.高桩承台:当承台底以下河床为松软土时,可在板桩围堰内填人砂砾至承台底面标高。填砂时视情况决定.可抽干水填入或静水填入,要求能承受灌注封底混凝土的重量。

(四)模板及钢筋

1.模板一般采用组合钢模,纵、横椤木采用型钢,在施工前必须进行详细的模板设计,以保证使模板有足够的强度、刚度和稳定性,能町靠的承受施工过程中可能产生的各项荷载,保证结构各部形状、尺寸的准确。模板要求平整,接缝严密,拆装容易,操作方便。一般先拼成若干大块,再由吊车或浮吊(水中)安装就位,支撑牢固。

2.钢筋的制作严格按技术规范及设计图纸的要求进行,墩身的预埋钢筋位置要准确、牢固。

(五)混凝土的浇筑

1.混凝土的配制除要满足技术规范及设计图纸的要求外,还要满足施工的要求泵送对坍落度的要求。为改善混凝土的性能,根据具体情况掺加合适的混凝土外加剂减少剂、缓凝剂、防冻剂等。 -

2.混凝土的拌合采用拌和站集中拌合,混凝土罐车通过便桥或船只运输到浇筑位置

采用流槽、漏斗或泵车浇筑。也可由混凝土地泵直接在岸上东

3,混凝土浇筑时要分层,分层厚度要根据振捣器的功率确定,要满足技术规范的要求。

(六)混凝土养生和拆模

混凝土浇筑后要适时进行养生,尤其是体积较大,气温较高时要尤其注意,防止混凝土开裂。混凝土强度达到拆模要求后再进行拆模。

二,墩台施工

(一)钢筋混凝土墩台施工

1.在承台顶面准确放出墩台中线和边线,考虑混凝土保护层后,

2.将加工好的钢筋运到工地现场绑扎,在配置第一层垂直筋时,应使其有不同的长度,以符合同一断面筋接头的有关规定。随着绑扎高度的增加,用圆钢管搭设绑扎脚手架,做好钢筋网片的支撑并系好保护层垫块。

3.条件许可时,可事先加工成钢筋网片或骨架,整体吊装焊接就位。

4.将标准钢模组合成分块模板片,板片高度及宽度视墩台身尺寸和吊装能力确定。

5.用夹具将工字钢立柱和板片竖向连接,横向用销钉和槽钢横肋,将整个模板连成整体,安装就位,用临时支撑支牢,待另一面模板吊装就位后,用圆钢拉杆外套塑料管井加设锥形垫,外加垫块螺帽,内加横内撑,将二面模板横向连成整体,校正定位。

6.端头模板要和墙面模板牢固连接,认真采取支撑、加固措施,防止跑模、漏浆。

7.施工脚手架用螺栓连接在守柱上,立柱下部设置可调斜撑,以确保模板位置的正确。

8.安装直坡式墩台模板,为便于提升,宜有0.5%~l%模板高度的锥度,在制作模板时可根据锥度要求加工一定数量的梯形模板,为适应空心墩台,还要制作收坡式模板。

9.统筹安排混凝土拌和站的位置.拌和站的拌合能力必须满足施工需要,原材料质量、混凝土施工配合比、坍落度等必须符合设计要求。

10.混凝土浇筑前应将模板内杂物、已浇混凝土面上泥土清理干净,模板、钢筋检查合格后。方可进行混凝土的浇筑。

11.墩台身高度不大时,可搭设木板坡道,中间钉设防滑木条,用手推车运输混凝工浇筑。当墩台身高度较大,混凝土下落高度超过2m时,要使用漏斗、串筒。

12.拼装式模板用于高墩台时,应分层支撑、分层浇筑,在浇筑第一层混凝土时,在墩台身内顶埋支承螺栓,以支承第二层模板的安装和混凝土的浇筑。

13.浇筑墩台混凝土通常搭设普通外脚手架,浇筑高墩台混凝土时,须采用简易活动脚手或滑动脚手。浇筑空心高墩台混凝土宜搭设内脚手,并兼作提升吊架。

14.混凝土应分层、整体、连续浇筑,逐层振捣密实,轻型墩台需设置沉降缝时,缝内要填塞沥青麻絮或其他弹性防水材料,并和基础沉降缝保持顺直贯通。

15.混凝土浇筑时要随时检查模板、支撑是否松动变形、预留孔、预埋支座钢板是否移位,发现问题要及时采取补救措施。

(二)石砌墩台施工

1.墩台砌筑施工要点

(1)在砌筑前应按设汁图放出实样,挂线砌筑。

(2)砌筑基础的第一层砌块时,如基底为土质,只在已砌石块的侧面铺上砂浆即可,不需坐浆:如基底为石质,应将其表面清洗、润湿后,先坐浆再砌石。

(3)砌筑斜面墩台时,斜面应逐层放坡,以保证规定的坡度。

(4)砌块间用砂浆粘结并保持一定的缝厚.所有砌缝要求砂浆饱满。对于形状比较复杂的工程,应先作出配料设计图.注明块石尺寸。

2.砌筑方法

同一层石料及水平灰缝的厚度要均匀一致,每层按水平砌筑,丁顺相间,砌石灰缝互相垂直。砌石顺序为先角石、再镶面、后填腹。填腹石的分层高度应与镶面相同。

圆端、尖端及转角形砌体的砌石顺序,应自顶点开始,按丁顺排列接砌镶面石。圆端形桥墩的圆端顶点不得有垂直灰缝,砌行应从顶端开始先砌,然后依丁顺相间排列,按砌四周镶面石。

3.砌体质量应符合以下规定

(1)砌体所用各项材料类别、规格及质量符合要求;

(2)砌缝砂浆或小石子混凝土铺填饱满,强度符合要求;

(3)砌缝宽度、错缝距离符合规定,勾缝坚固、整齐.深度和形式符合要求;

(4)砌筑方法正确:

(5)砌体位置、尺寸不超过允许偏差。

案例

某桥主墩基础为钻孔灌注桩,地质依次为表层5m的砾石、27m的漂石和软岩。主要施工过程如下:

平整场地、桩位放样、埋设护筒,采用冲击钻成孔。下放钢筋笼后,发现孔底沉淀量超标,但超标量较小,施工人员采用空压机风管进行扰动,使孔底残留沉渣处于悬浮状态,之后,安装导管,导管底口距孔底的距离为35cm,且导管口处于沉淀的淤泥渣之上,对导管进行接头抗拉实验,并用1.5倍的孔内水深压力的水压进行水密承压试验,试验合格后,灌注混凝土,混凝土塌落度18cm,整个过程连续均匀进行。

对导管进行接头抗拉试验,并用1.5倍的孔内水深压力的水压进行水密承压试验,试验合格后,灌注混凝土,混凝土坍落度18cm,在整个过程中连续均匀进行。

施工单位考虑到灌注时间较长,在混凝土中加入缓凝剂。首批混凝土灌注后埋置导管的深度为1.2m,在随后的灌注过程中,导管的埋置深度为3m。当灌注混凝土进行到l0m时,出现塌孔,施工人员用吸泥机进行清理;当灌注混凝土进行到23m时,发现导管埋管,但堵塞长度较短,施工人员采取用型钢插入导管的方法疏通导管;当灌注到27m时,导管挂在钢筋骨架上,施工人员采取了强制提升的方法;进行到32m时,又一次堵塞导管,施工人员在导管始终处于混凝土中的状态下,拔抽抖动导管,之后继续灌注混凝土直到完成。养生后经检测发现断桩。

2.问题:

(1)断桩可能发生在何处,原因是什么?

(2)在灌注水下混凝土时,导管可能会出现哪些问题?

(3)塞管处理的方法有哪些?

参考答案

(1)1)可能发生在10m处:吸泥机清理不彻底时,形成灌注桩中断或混凝土中夹有泥石。

2)可能发生在27m处;采取强制提升而造成导管脱节。

(2)进水、塞管、埋管。

(3)可采用拔抽抖动导管(不可将导管口拔出混凝土面)。当所堵塞的导管长度较短时,也可以用型钢插入导管内束疏通导管,或在导管上固定附着式振捣器进行振动。

友好的小海豚
灵巧的草丛
2025-09-29 01:18:03
梁【bridge】指的是为道路跨越天然或人工障碍物而修建的建筑物。

桥梁一般讲由五大部件和五小部件组成,五大部件是指桥梁承受汽车或其他车辆运输荷载的桥跨上部结构与下部结构,是桥梁结构安全的保证.包括(1)桥跨结构(或称桥孔结构.上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础.五小部件是指直接与桥梁服务功能有关的部件,过去称为桥面构造.包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明.

一、桥梁的分类:

按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥。

按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。

按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四中基本体系,此外还有组合体系桥

按行车道位置分为上承式桥、中承式桥、下承式桥

按使用年限可分为永久性桥、半永久性桥、临时桥

按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥

桥梁分类 多孔跨径总长L(米) 单孔跨径L0(米)

特大桥 L≥500 L0≥100

大桥 L≥100 L0≥40

中桥 30<L<100 20≤L0<40

小桥 8≤L≤30 5<L0<20

涵洞 L<8 L0<5

二、各类桥梁的基本特点:

梁式桥 包括简支板梁桥,悬臂梁桥,连续梁桥.其中简支板梁桥跨越能力最小,一般一跨在8-20m.连续梁桥国内最大跨径在200m以下,国外已达240m.

拱桥 在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大.理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m.亦正是这个推力,修建拱桥时需要良好的地质条件.

刚架桥 有T形刚架桥和连续刚构桥,T形刚架桥主要缺点是桥面伸缩缝较多,不利于高速行车.连续刚构主梁连续无缝,行车平顺.施工时无体系转换.跨径我国最大已达270m(虎门大桥辅航道桥)

缆索承重桥(斜拉桥和悬索桥) 是建造跨度非常大的桥梁最好的设计.道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。斜拉桥已建成的主跨可达890m,悬索桥可达1991m.

组合体系桥 有梁拱组合体系,如系杆拱,桁架拱,多跨拱梁结构等.梁刚架组合体系,如T形刚构桥等.

桁梁式桥:有坚固的横梁,横梁的每一端都有支撑。最早的桥梁就是根据这种构想建成的。他们不过是横跨在河流两岸之间的树干或石块。现代的桁梁式桥,通常是以钢铁或混凝土制成的长型中空桁架为横梁。这使桥梁轻而坚固。利用这种方法建造的桥梁叫做箱式梁桥。

悬臂桥:桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。

拱桥:借拱形的桥身向桥两端的地面推压而承受主跨度的应力。现代的拱桥通常采用轻巧、开敞式的结构。

吊桥:是建造跨度非常大的桥梁最好的设计。道路或铁路桥面靠钢缆吊在半空,钢缆牢牢地悬挂在桥塔之间。较古老的吊桥有的使用铁链,有的甚至使用绳索而不是用钢缆。

拉索桥:有系到桥柱的钢缆。钢缆支撑桥面的重量,并将重量转移到桥柱上,使桥柱承受巨大的压力。

玻璃桥:纯玻璃制成的一种桥梁。(平板桥)

廊桥:加建亭廊的桥,称为亭桥或廊桥,可供游人遮阳避雨,又增加桥的形体变化。

三、中国桥梁的历史

历史和现状上看,绝大多数桥梁均架设在水面上,只有阁道桥和现代城市的行人天桥和行车天桥,是架设于高楼崇阁之间或通衢大道之上。

从对天生桥的利用到人工造桥,这是一个历史的飞跃过程。从简单的独木桥到今天的钢铁大桥;从单一的梁桥到浮桥、索桥、拱桥、园林桥、栈道桥、纤道桥等;建桥的材料从以木料为主,到以石料为主,再到以钢铁和钢筋混凝土为主,这是一个非常漫长的发展过程。然而,中国桥梁建筑都取得了惊人的成就。

著名的科学技术史学家、英国剑桥大学李约瑟博士( J. Needham )在《中国科学技术史》中说,中国桥梁「在宋代有一个惊人的发展,造了一系列巨大的板梁桥」。到了当代中国,所建造的武汉、南京长江大桥等,更受到世人称赞。可见,中国的桥梁,经过了一个从童年、少年、青年到壮年的发展过程,愈趋成熟。中国在发展桥梁方面于 14 世纪以前处于领先地位,今天,她依然是世界上举足轻重的桥梁大国。

四、桥梁的分类:

1.按跨径分类

桥梁按跨径分类是一种行业管理的手段,并不反映桥梁工程设计和施工的复杂性。以下是我国公路工程技术标准(JTJ001-97)规定的按跨径划分桥梁的方法。

特大桥

桥梁总长L≥500m,计算跨径L0≥100m。

大桥

桥梁总长100m≤L<500m, 计算跨径40m≤L0<100m。

中桥

桥梁总长30m<L<100m,计算跨径20m≤L0<40m。

小桥

桥梁总长8m≤L≤30m,计算跨径5m≤L0<20m。

桥梁分类 多孔跨径总长L(m) 单孔跨径(L0)

特大桥: L≥500m L0≥100m

大桥 :100m≤L<500m 40m≤L0<100m

中桥 :30m<L<100m 20m≤L0<40m

小桥 :8m≤L≤30m 5m≤L0<20m

由於时代的进步,赋予了“桥梁”新的词义,泛指为机构与机构之间、地区与地区之间、国家与国家之间,沟通有无、建立合作关系、促进友好交流等诸如此类工作的人的统称。这种人从事的工作和职业也被统称为“桥梁工作”。

五、桥梁的发展史:

桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。

(1)古代桥梁

人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和浮桥,如公元前1134年左右,西周在渭水架有浮桥。古巴比伦王国在公元前1800年建造了多跨的木桥,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。

古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。

石桥 石桥的主要形式是石拱桥。据考证,中国早在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。现在尚存的赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。

罗马时代,欧洲建造拱桥较多,如公元前200~公元200年间在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为24.4米。公元98年西班牙建造了阿尔桥,高达52米。此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一,图1[列米尼桥示意图]为罗马时代建造的列米尼桥示意图。

罗马帝国灭亡后数百年,欧洲桥梁建筑进展不大。11世纪以后,尖拱技术由中东和埃及传到欧洲,欧洲开始出现尖拱桥,如法国在公元1178~1188年建成的阿维尼翁桥,为20孔跨径达34米尖拱桥。英国在公元1176~1209年建成的泰晤士河桥为19孔跨径约 7米尖拱桥。西班牙在13世纪建了不少拱桥,如托莱多的圣玛丁桥。拱桥除圆拱、割圆拱外,还有椭圆拱和坦拱。公元1542~1632年法国建造的皮埃尔桥为七孔不等跨椭圆拱,最大跨径约32米。当时椭圆拱曾盛行一时。1567~1569在佛罗伦萨的圣特里尼塔建了三跨坦拱桥,其矢高同跨度比为1∶7。11~17世纪建造的桥,有的在桥面两侧设商店,如意大利威尼斯的里亚尔托桥。

石梁桥是石桥的又一形式。中国陕西省西安附近的灞桥原为石梁桥,建于汉代,距今已有2000多年。公元11~12世纪南宋泉州地区先后建造了几十座较大型石梁桥,其中有洛阳桥、安平桥。安平桥(五里桥)原长2500米,362孔,现长2070米,332孔。英国达特穆尔现存的石板桥,有的已有2000多年。

木桥 早期木桥多为梁桥,如秦代在渭水上建的渭桥,即为多跨梁式桥。木梁桥跨径不大,伸臂木桥可以加大跨径,图2[ 木悬臂桥示意图]为木悬臂桥的示意图。中国 3世纪在甘肃安西与新疆吐鲁番交界处建有伸臂木桥,“长一百五十步”。公元405~418年在甘肃临夏附近河宽达40丈处建悬臂木桥,桥高达50丈。八字撑木桥(图3[ 八字撑木桥示意图])和拱式撑架木桥亦可以加大跨径。16世纪意大利的巴萨诺桥为八字撑木桥。

木拱桥(图4[木拱桥示意图])出现较早,公元104年在匈牙利多瑙河建成的特拉杨木拱桥,共有21孔,每孔跨径为36米。中国在河南开封修建的虹桥(图5[ 虹桥示意图]),净跨约为20米,亦为木拱桥,建于公元1032年。日本在岩国锦川河修建的锦带桥为五孔木拱桥,建于公元300年左右,是中国僧戴曼公独立禅师帮助修建的。

中国西南地区有用竹篾缆造的竹索桥。著名的竹索桥是四川灌县珠浦桥,桥为8孔,最大跨径约60米,总长330余米,建于宋代以前。

古代桥梁基础,在罗马时代开始采用围堰法施工,即打木板桩成围堰,抽水后在其中修筑桥梁基础和桥墩。1209年建成的英国泰晤士河拱桥,其基础就是用围堰法修筑,但是,那时只能用人工打桩和抽水,基础较浅。中国11世纪初,著名的洛阳桥在桥址江中先遍抛石块,其上养殖牡蛎二三年后胶固而成筏形基础,是一个创举。

(2)近代桥梁

18世纪铁的生产和铸造,为桥梁提供了新的建造材料。但铸铁抗冲击性能差,抗拉性能也低,易断裂,并非良好的造桥材料。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料。钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥梁的部件在厂内组装创造了条件,使钢材应用日益广泛。

18世纪初,发明了用石灰、粘土、赤铁矿混合煅烧而成的水泥。19世纪50年代,开始采用在混凝土中放置钢筋以弥补水泥抗拉性能差的缺点。此后,于19世纪70年代建成了钢筋混凝土桥。

近代桥梁建造,促进了桥梁科学理论的兴起和发展。1857年由圣沃南在前人对拱的理论、静力学和材料力学研究的基础上,提出了较完整的梁理论和扭转理论。这个时期连续梁和悬臂梁的理论也建立起来。桥梁桁架分析(如华伦桁架和豪氏桁架的分析方法)也得到解决。19世纪70年代后经德国人K.库尔曼、英国人W.J.M.兰金和J.C.麦克斯韦等人的努力,结构力学获得很大的发展,能够对桥梁各构件在荷载作用下发生的应力进行分析。这些理论的发展,推动了桁架、连续梁和悬臂梁的发展。19世纪末,弹性拱理论已较完善,促进了拱桥发展。20世纪20年代土力学的兴起,推动了桥梁基础的理论研究。

近代桥梁按建桥材料划分,除木桥、石桥外,还有铁桥、钢桥、钢筋混凝土桥。

木桥 16世纪前已有木桁架。1750年在瑞士建成拱和桁架组合的木桥多座,如赖谢瑙桥,跨径为73米。在18世纪中叶至19世纪中叶,美国建造了不少木桥,如1785年在佛蒙特州贝洛兹福尔斯的康涅狄格河建造的第一座木桁架桥,桥共二跨,各长55米;1812年在费城斯库尔基尔河建造的拱和桁架组合木桥,跨径达104米。桁架桥省掉拱和斜撑构,简化了结构,因而被广泛应用。由于桁架理论的发展,各种形式桁架木桥相继出现,如普拉特型、豪氏型、汤氏型等(图6[ 桁架桥])。由于木结构桥用铁件量很多,不如全用铁经济,因此,19世纪后期木桥逐渐为钢铁桥所代替。

铁桥 包括铸铁桥和锻铁桥。铸铁性脆,宜于受压,不宜受拉,适宜作拱桥建造材料。世界上第一座铸铁桥是英国科尔布鲁克代尔厂所造的塞文河桥,建于1779年,为半圆拱,由五片拱肋组成,跨径30.7米。锻铁抗拉性能较铸铁好,19世纪中叶跨径大于60~70米的公路桥都采用锻铁链吊桥。铁路因吊桥刚度不足而采用桁桥,如1845~1850年英国建造布列坦尼亚双线铁路桥,为箱型锻铁梁桥。19世纪中以后,相继建立起梁的定理和结构分析理论,推动了桁架桥的发展,并出现多种形式的桁梁。但那时对桥梁抗风的认识不足,桥梁一般没有采取防风措施。1879年12月大风吹倒才建成18个月的阳斯的泰湾铁路锻铁桥,就是由于桥梁没有设置横向连续抗风构。

中国于1705年修建了四川大渡河泸定铁链吊桥。桥长100米,宽2.8米,至今仍在使用。欧洲第一座铁链吊桥是英国的蒂斯河桥,建于1741年,跨径20米,宽0.63米。1820~1826年,英国在威尔士北部梅奈海峡修建一座中孔长 177米用锻铁眼杆的吊桥。这座桥由于缺乏加劲梁或抗风构,于1940年重建。世界上第一座不用铁链而用铁索建造的吊桥,是瑞士的弗里堡桥,建于1830~1834年、桥的跨径为 233米。这座桥用2000根铁丝就地放线,悬在塔上,锚固于深18米的锚碇坑中。

1855年,美国建成尼亚加拉瀑布公路铁路两用桥这座桥是采用锻铁索和加劲梁的吊桥,跨径为250米。1869~1883年,美国建成纽约布鲁克林吊桥,跨度为283+486+283米。这些桥的建造,提供了用加劲桁来减弱震动的经验。此后,美国建造的长跨吊桥,均用加劲梁来增大刚度,如1937年建成的旧金山金门桥(主孔长为1280米,边孔为344米,塔高为228米),以及同年建成的旧金山奥克兰海湾桥(主孔长为704米,边孔为354米,塔高为152米),都是采用加劲梁的吊桥。

1940年,美国建成的华盛顿州塔科玛海峡桥,桥的主跨为853米,边孔为335米,加劲梁高为2.74米,桥宽为11.9米。这座桥于同年11月7日,在风速仅为 67.5公里/小时的情况下,中孔及边孔便相继被风吹垮。这一事件,促使人们研究空气动力学同桥梁稳定性的关系。

钢桥 美国密苏里州圣路易市密西西比河的伊兹桥,建于1867~1874年,是早期建造的公路铁路两用无铰钢桁拱桥,跨径为153+158+153米。这座桥架设时采用悬臂安装的新工艺,拱肋从墩两侧悬出,由墩上临时木排架的吊索拉住,逐节拼接,最后在跨中将两半拱连接。基础用气压沉箱下沉33米到岩石层。气压沉箱因没有安全措施,发生119起严重沉箱病,14人死亡。19世纪末弹性拱理论已逐步完善,促进了20世纪20~30年代修建较大跨钢拱桥,较著名的有:纽约的岳门桥,建成于1917年,跨径305米;纽约贝永桥,建成于1931年,跨径504米;澳大利亚悉尼港桥(见彩图[澳大利亚悉尼港桥,是公路、铁路两用桥]),建成于1932年,跨径503米。3座桥均为双铰钢桁拱。

19世纪中期出现了根据力学设计的悬臂梁。英国人根据中国西藏木悬臂桥式,提出锚跨、悬臂和悬跨三部分的组合设想,并于1882~1890年在英国爱丁堡福斯河口建造了铁路悬臂梁桥。这座桥共有6个悬臂,悬臂长为206米,悬跨长为107米,主跨长为519米(图7[福斯悬臂梁桥示意图])。20世纪初期,悬臂梁桥曾风行一时,如1901~1909年美国建造的纽约昆斯堡桥,是一座中间锚跨为190米、悬臂为 150和180米、无悬跨、由铰联结悬臂、主跨为300米和360米的悬臂梁桥。1900~1917年建造的加拿大魁北克桥也是悬臂钢桥。1933年建成的丹麦小海峡桥为五孔悬臂梁公路铁路两用桥,跨径为137.50+165+200+165+137.5米。

1896年比利时工程师菲伦代尔发明了空腹桁架桥。比利时曾经造了几座铆接和电焊的空腹桁架桥。

钢筋混凝土桥 1875~1877年,法国园艺家莫尼埃建造了一座人行钢筋混凝土桥,跨径16米,宽4米。1890年,德国不莱梅工业展览会上展出了一座跨径40米的人行钢筋混凝土拱桥。1898年,修建了沙泰尔罗钢筋混凝土拱桥。这座桥是三铰拱,跨径52米。图8[ ]为三铰拱、桥示意图。1905年,瑞士建成塔瓦纳萨桥,跨径51米,是一座箱形三铰拱桥,矢高5.5米。1928年,英国在贝里克的罗亚尔特威德建成 4孔钢筋混凝土拱桥,最大跨径为110米。1934年,瑞典建成跨径为181米、矢高为26.2米的特拉贝里拱桥1943年又建成跨径为264米、矢高近40米的桑德拱桥(图9[瑞典桑德拱桥示意图])。

桥梁基础施工,在18世纪开始应用井筒,英国在修威斯敏斯特拱桥时,木沉井浮运到桥址后,先用石料装载将其下沉,而后修基础及墩。1851年,英国在肯特郡的罗切斯特处修建梅德韦桥时,首次采用压缩空气沉箱。1855~1859年,在康沃尔郡的萨尔塔什修建罗亚尔艾伯特桥时,采用直径11米的锻铁筒,在筒下设压缩空气沉箱。1867年,美国建造伊兹河桥,也用压缩空气沉箱修建基础。压缩空气沉箱法施工,工人在压缩空气条件下工作,若工作时间长,或从压缩气箱中未经减压室骤然出来,或减压过快,易引起沉箱病。

1845年以后,蒸汽打桩机开始用于桥梁基础施工。

(3)现代桥梁

20世纪30年代,预应力混凝土和高强度钢材相继出现,材料塑性理论和极限理论的研究,桥梁振动的研究和空气动力学的研究,以及土力学的研究等获得了重大进展。从而,为节约桥梁建筑材料,减轻桥重,预计基础下沉深度和确定其承载力提供了科学的依据。现代桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥和钢桥。

预应力钢筋混凝土桥 1928年,法国弗雷西内工程师经过20年的研究,用高强钢丝和混凝土制成预应力钢筋混凝土。这种材料,克服了钢筋混凝土易产生裂纹的缺点,使桥梁可以用悬臂安装法、顶推法施工。随着高强钢丝和高强混凝土的不断发展,预应力钢筋混凝土桥的结构不断改进,跨度不断提高。

预应力钢筋混凝土桥有简支梁桥、连续梁桥、悬臂梁桥、拱桥、桁架桥、刚架桥、斜拉桥等桥型。简支梁桥的跨径多在50米以下。连续梁桥如1966年建成的法国奥莱隆桥,是一座预应力混凝土连续梁高架桥,共有26孔,每孔跨径为79米。1982年建成的美国休斯敦船槽桥,是一座中跨229米的预应力混凝土连续梁高架桥,用平衡悬臂法施工。悬臂梁桥如1964年联邦德国在柯布伦茨建成的本多夫桥,其主跨为209米;1976年建成的日本滨名桥,主跨240米;中国1980年完工的重庆长江桥,主跨174米(见彩图[重庆长江桥,是公路预应力混凝土 T型刚构桥])。桁架桥如1960年建成的联邦德国芒法尔河谷桥,跨径为 90+108+90米,是世界上第一座预应力混凝土桁架桥。1966年苏联建成一座预应力混凝土桁架式连续桥,跨径为106+3×166+106米,用浮运法施工刚架桥如1957年建成的法国图卢兹的圣米歇尔桥,是一座160米、5~65米的预应力混凝土刚架桥;1974年建成的法国博诺姆桥,主跨径为186.25米,是目前最大跨径预应力混凝土刚架桥(图10[博诺姆桥示意图])。预应力钢筋混凝土吊桥是将预应力梁中的预应力钢丝索作为悬索,并同加劲梁构成自锚式体系,1963年建成的比利时根特的梅勒尔贝克桥和玛丽亚凯克桥,主跨径分别为 56米和100米,就是预应力钢筋混凝土吊桥。斜拉桥如1962年建成委内瑞拉的马拉开波湖桥。这座桥为5孔235米连续梁,由悬在 A形塔的预应力斜拉索将悬臂梁吊起。斜拉桥的梁是悬在索形成的多弹性支承上,能减少梁高,且能提高桥的抗风和抗扭转震动性能,并可利用拉索安装主梁,有利于跨越大河,因而应用广泛。预应力混凝土斜拉桥如1971年利比亚建造的瓦迪库夫桥,主跨径282米;1978年美国建造的华盛顿州哥伦比亚河帕斯科-肯纳威克桥,主跨299米1977年法国建造的塞纳河布罗东纳桥,主跨320米。中国已建成十多座预应力混凝土斜拉桥,其中1982年建成的山东济南黄河桥主跨为220米(见彩图[济南黄河公路桥,是连续预应力混凝土斜拉桥,于1982年建成通][车])。

钢筋混凝土桥 二次世界大战以后,世界上修建了多座较大跨径的钢筋混凝土拱桥,如1963年通车的葡萄牙亚拉达拱桥,跨径为270米,矢高50米;1964年完工的澳大利亚悉尼港的格莱兹维尔桥,跨径305米。

中国1964年创造钢筋混凝土双曲拱桥。桥由拱肋和拱波组成,纵向和横向均有曲度,横向也用拱波形式(图11[双曲拱结构示意图])。拱肋和拱波分段预制,因此可用轻型吊装设施安装。这样,在缺乏重型运输工具和重型吊装机具下,也可以修建较大跨径拱桥。第一座试验双曲拱桥,建于中国江苏无锡,跨径为9米。此后,1972年建成湖南长沙湘江大桥,是一座16孔双曲拱桥,大孔跨径为60米,小孔跨径为50米,总长1250米。

钢筋混凝土桁架拱桥(图12[桁架拱桥示意图])是拱和桁架组合而成的结构,其用料少,重量轻,施工简易。

钢桥 二次世界大战后,随着强度高、韧性好、抗疲劳和耐腐蚀性能好的钢材的出现,以及用焊接平钢板和用角钢、板钢材等加劲所形成轻而高强的正交异性板桥面的出现,高强度螺栓的应用等,钢桥有很大发展。

钢板梁和箱形钢梁同混凝土相结合的桥型,以及把正交异性板桥面同箱形钢梁相结合的桥型,在大、中跨径的桥梁上广泛运用。1951年联邦德国建成的杜塞尔多夫至诺伊斯桥,是一座正交异性板桥面箱形梁,跨径206米。1957年联邦德国建成的杜塞尔多夫北桥,是座6孔72米钢板梁结交梁桥。1957年南斯拉夫建成的贝尔格莱德的萨瓦河桥,是一座钢板梁桥,跨径为75+261+75米,为倒U形梁。1973年法国建成的马蒂格斜腿刚架桥,主跨为300米。1972年意大利建成的斯法拉沙桥,跨径达376米,是目前世界上跨径最大的钢斜腿刚架桥。1966年美国完工的俄勒冈州阿斯托里亚桥,是一座连续钢桁架桥,跨径达376米。1966年日本建成的大门桥,是一座连续钢桁架桥,跨径达300米。1968年中国建成的南京长江桥,是一座公路铁路两用的连续钢桁架桥,正桥为128+9×160+128米,全桥长6公里(见彩图[南京长江桥,是中国目前规模最大的桥梁])。1972年日本建成的大阪港的港大桥为悬臂梁钢桥,桥长980米,由235米锚孔和162米悬臂、186米悬孔所组成1964年美国建成的纽约维拉扎诺吊桥,主孔1298米,吊塔高210米。1966年英国建成的塞文吊桥,主孔985米。这座桥根据风洞试验,首次采用梭形正交异性板箱形加劲梁,梁高只有3.05米。1980年英国完工的恒比尔吊桥,主跨为1410米,也用梭形正交异性板箱形加劲梁,梁高只有3米。

20世纪60年代以后,钢斜拉桥发展起来。第一座钢斜拉桥是瑞典建成的斯特伦松德海峡桥,建于1956年,跨径为 74.7+182.6+74.7米。这座桥的斜拉索在塔左右各两根,由钢筋混凝土板和焊接钢板梁组合作为纵梁1959年联邦德国建成的科隆钢斜拉桥,主跨为334米;1971年英国建成的厄斯金钢斜拉桥,主跨305米;1975年法国建成的圣纳泽尔桥,主跨404米。这座桥的拉索采用密束布置,使节间长度减少,梁高减低,梁高仅3.38米。目前通过对钢斜拉桥抗风抗震性能的改进,其跨径正在逐渐增大。

钢桥的基础多用大直径桩或薄壁井筒建造。

………………

糟糕的路人
忐忑的薯片
2025-09-29 01:18:03
钢桥按受力体系可分为:梁式桥,拱桥,刚构桥,斜拉桥,悬索桥,混合体系桥梁2,刚巧的优缺点优点:匀质材料,跨越能力大,适合工业

《现代公路钢桥设计》《考试大全》

关于《考试大全》的文章《现代公路钢桥设计》正文开始>>-

-

-

一,概论

1,钢桥按受力体系可分为:梁式桥,拱桥,刚构桥,斜拉桥,悬索桥,混合体系桥梁

2,刚巧的优缺点

优点:匀质材料,跨越能力大,适合工业化,便于运输,安装,施工快韧性,延性好,可提高抗震;在受损后易于修复和更换;旧桥可回收,可在利用资源,有利于环保

缺点:易于腐蚀,需要经常检查和按期油漆,行车时噪音与震动比较大

3,结构与受力:薄壁结构,稳定,刚度,疲劳,连接

4,钢桥设计的一般原则:应以经济合理,便于加工,方便运输安装和检查养护为准,为了保证行车舒适安全,避免过大的变形和震动对结构产生不利影响,必须有足够的刚度;为保证成桥后线性,应设预拱度;为防止横向失稳和过大的横向震动,应有必要的横向刚度;设计中应考虑养护问题和疲劳问题,设计中选用有足够韧性的刚材,尽量避免集中力和容易出现疲劳的结构细节和连接构造与方法,结构中不应有为栓和或未焊合的接触部分;设计中尽量可能标准化,是同型构件能互换

5,设计方法:容许应立法,半概率极限状态设计法

6,疲劳强度计算:疲劳容许应立法和疲劳容许应力幅

7,钢桥的主要材料:主要有板钢与型钢,钢绞线和钢索的钢丝,螺栓,铰和销子的优质钢,的锻钢和铸钢,焊条和焊丝等焊接材料.型钢有角钢,槽钢,工字钢,h型钢和T型钢,钢管

7,材料选择的原则:(1)结构性能:上应保证桥梁的承载力和防止出现脆性破坏,应考虑结构的重要性,荷载特征,结构形式,应力状态,连接方式,钢板厚度和工作环境等;(2)可加工性能:钢板不应过厚,避免造成加工困难,满足一定的可焊性,并要防止出现脆性破坏和疲劳破坏;(3)耐久性、抗腐蚀。

考虑的因素:结构重要性,荷载性质,结构形式,应力状态(连接方式、钢板厚度),工作环境(温度、介质 腐蚀),经济

二,连接

8连接主要方式:铆钉,螺栓,焊接连接

9,焊接主要有:电弧焊,栓钉焊接,其中电弧焊可分为手工电弧焊,埋弧焊,气体保护焊

10,焊接形式:对接街头,搭接接头,T型接头,角接接头

三,桥面结构

11,刚桥面结构主要有桥面梁格,桥面板,桥面铺装,排水防水系统,伸缩缝等

12,桥面结构形式的选择注意事项:公路的桥梁必须耐久性强,抗滑性好,表面平滑;铁路桥梁必须采用轨道稳定好,震动和噪声小,容易养护和维修;组合结构中,桥面板作为主梁的一部分,有助于材料的节约;钢桥的自重比例较大,减轻桥面结构重量对于减轻恒载,提高跨越能力和经济效益有很大意义

13,钢桥面板的力学特性:刚桥面板不仅可为桥面直接承受荷载作用,而且还可以作为主梁的一部分参与主梁共同受力,结构系1,由顶板和纵肋组成的结构体系看成是主梁的一部分,参与主梁共同受力,称为主梁体系,通过顶板与腹板的连接,使桥面板称为主梁的一部分而共同受力;2由纵肋,横肋和顶板组成,起到桥面系的作用,把桥面上的荷载传递到主梁和刚度较大的横梁,称为桥面体系,把桥面板自重和桥面板上的外力传递到主梁和横梁;3把设置在肋上的顶板看作是各向同性的连续板,这个板直接承受作用于肋间的轮荷载,同时把轮荷载传递到肋上,称为盖板体系 。

14,钢桥面板有效宽度的影响因素:一般与跨度,支承条件以及荷载形式等, 对于不同的受力体系,有效宽度的分布和大小不同,主梁体系和桥面体系的传力途径不同,他们的有效宽度不同

四,钢板梁桥

15,钢板梁桥的组成形式:主梁通常由工字钢,H形钢,焊接工形梁等结构形式,主梁与主梁之间采用横梁与纵梁相连接成为整体受力。

16钢桥面板梁桥的组成 :主梁,横向连接系,纵向连接系和桥面系组成,主梁起到整个桥梁的承重作用,把荷载传递到支座上,横向连接系是为把个个主梁连接成整体,起到荷载横向分布,防止主梁的侧向失稳,纵向连接系采用桁架式,是为了加强桥梁的整体稳定性,与横梁共同承担横向力与扭矩的作用,桥面系为了提供桥梁的行车部分,把荷载传递到主梁和横梁上

17,横向连接系的作用:1防止主梁侧倾失稳2,起到荷载分布作用,是的个主梁受力均匀,防止主梁间相对变形过大导致桥面受力不均3,与主梁及纵向连接系构成空间空间桁架抵抗水平荷载4,桥梁安装架设时主梁的定位5,抵抗桥梁的扭矩,将扭矩和水平力传递到支座6在端部起到横向支承作用

18 纵向连接系的作用:1 将地震荷载,风荷载等水平力传递到支座2防止主梁下翼缘的侧向变形和横向震动3与主梁和横向连接系构成空间结构抵抗水平荷载和扭矩4 桥梁安装架设时主梁的定位

五、箱梁梁桥

19钢箱梁的结构形式:单箱单室,用于宽度与跨径比较小的桥梁;双箱单室,倾斜腹板的倒梯形,桥墩宽度较小;单箱多室,多箱多室,用于桥宽较大;扁平钢箱梁,主要用于吊桥,斜拉桥,拱桥等

20,箱梁特点:1翼缘宽度大,抗弯能力强,跨度大,2抗扭刚度大,横向分布均匀3具有很大的横向抗弯刚度,横向稳定性好,可抵抗很大的水平力作用4便于施工5梁高小,适合于立交桥和建筑高度受限的桥梁6外观美观7箱内空间大,可布设电缆,水管,煤气管等附属设施。 21,横隔板的作用:由于活载的偏心加载作用以及轮载直接作用在箱梁顶板上,使得箱梁断面发生畸变和横向弯曲变形,为了减少钢箱梁的这种变形,增加整体刚度,防止过大的局部应力,需要在箱梁的支点处和跨间设置横隔板

22,箱梁的受力特性:纵向弯曲(纵向弯曲应力,剪应力),横向弯曲(横向弯曲应力,剪应力),扭转(扭转剪应力,约束扭转正应力,约束扭转剪应力),畸变 六,组合梁桥

23,剪力连接件的结构形式:刚性(采用角钢或槽钢),柔性(斜钢筋或螺旋钢筋),焊钉(焊接于钢梁翼板的大头螺钉) 24,构造上的要求:焊钉的最大间距不得超过混凝土板厚度的3倍,并且不得大于60cm,桥住方向的最小间距为5d,横桥向d+3cm,翼缘板不得小于2.5cm;刚性连接件可将其与桥面板钢筋悍在一起,连接件之间的间距不得超过板厚的8倍,不得小于连接件计算厚度的3.5倍;柔性连接件宜成对出现,钢筋弯折与钢梁纵向夹角为30或45,并在末端做成锚钩,间距不得小于0.7倍桥面板厚度,也不得大于2倍桥面板厚度,保护层厚度不应小于2cm。

25,支点处负弯矩的处理:预加荷载法,调整支点标高法或设置预应力钢筋等对混凝土板负弯矩区预压力等方法

七,钢桁梁桥

26钢桁梁的组成:主桁,联接系,桥面系及桥面组成主桁的作用是承受竖向荷载,将荷载通过支座传给墩台,有上下弦杆和腹杆组成;联结系分为纵向和横向,是使住桁架联结起来,使桥跨结构成为稳定的空间结构,能承受各种横向荷载,纵向联接分为上,下水平纵向联结,平纵联结是承受作用于桥跨结构上的横向水平荷载,横向联结设在桥跨结构的横向平面里,端部称为端横梁,下承式为桥门架,中部为中横联,是为了增加抗扭刚度,还可以调节两主片或两纵联的受力不均;桥面系是指纵梁,横梁及纵梁之间的联结系;桥面供车行走。

27 常用形式:三角形桁架(斜腹杆,弦杆)优点:大节点的个数少,支承横梁的竖杆只承受局部荷载,内力很小而截面相同,不支承的只起支撑弦杆作用,内力为零;斜杆形桁架,与三角形相比弦杆规格多,而且竖杆内力大,所有节点均为大节点;k形桁架,杆件规格多,节点多,用于中小跨径桥,结构复杂,宜于大跨度桥梁使用;双重腹杆形桁架,由两个不带竖杆的三角形组成,受压斜杆短有利于压曲稳定。

28,主要尺寸:桁架高度(经济上,竖向刚度)节间长度(用钢量上)斜杆倾角,主桁架中心距(横向刚度)

29,钢桥结构选型考虑的因素:1结构性能(强度,刚度)2施工性能,运输吊装,3养护性能,构造设计,4标准设计与可互换性

30钢桥的主要破坏模式:1,倾覆2,强度破坏,疲劳强度破坏3,稳定破坏,整体失稳,4杆件稳定5断裂破坏

31安全系数影响因素:1破坏模式2,材料的变异性3,超载系数4荷载性质5结构的重要性6设计方法

32,结构的稳定承载力取决于:桥梁结构的刚度,支承条件,桥梁截面刚度

------------------------------不知道是不是你要的部分--------------------------------------------

强健的龙猫
自觉的溪流
2025-09-29 01:18:03
三通一平施工方案

一、项目地理位置

项目建造在汕尾市红海湾开发区,厂址规划用地面积1000亩,施工及生活的临时用地面积400㎡。主体工程施工前需完成供电、供水、施工便道、便桥、活动板房等前期工程。

二、供电工程

1、根据工程情况,本工程配备机械如下:

可能进场施工机械表:

序号 机械设备名称 数量 额定功率

1 钢筋调直机 1 5.5KW

2 钢筋切断机 1 4KW

3 钢筋炜弯机 1 3KW

4 电焊机 3 33KW

5 木工圆盘机 1 3KW

6 砼振捣机 4 2.8KW

7 对焊机 1 26KW

8 砼搅拌机 2 12.5KW

2、施工供电设计

根据施工情况,以上设备不可能同时使用,最大利用约70%,为65KW.

照明加10%, 最大额定功率65KW×1.1=71.5KW,故选用四线铝芯电缆。电缆敷设长度1.5㎞,敷设方式采用简易架空。

3、施工用电具体事实细则

(1)接地与接零保护系统

施工现场专用的中性点直接接地的电力系统中必须采用TN-S接零保护系统。

施工现场每处重复接地的接地电阻值应不大于10Ω,且不得少于3处(总被电箱、线路中间和末端处),重复接地线应与保护零线相连,接地电阻每月检测一次。

接地装置的接地线应采用2根芯的导体,在不同点与接地体做电气连接,垂直接地体应采用角钢,钢管或圆钢,不得采用螺纹钢。保护零线应由工作接地线,配电室的零线或第一级漏电保护器电源侧的零线引出,保护零线应接至每一台用电设备的金属外壳(包括被电箱)。保护零线的截面应不小于工作零线的截面,并使用统一标志的颜色,任何情况下不得将之作负荷载,与电气设备相连的保护零线的截面不小于2.5mm2的多股铜线。

保护零线与电气设备连接应采用钢鼻子的可靠连接,不得交接。工作零线和保护零线在配电箱内应通过端子板连接,其保护零线在其他地方不得有接头。同一施工现场的电气设备不得一部分做保护零线,一部分做保护接地。

2、电器设置

设备功率大于5.5KW的动力线路采用加设自动开关电器或降压启动设置,不得采用手动电器直接控制。各种开关电器的额定值应与其控制用电设备的额定值相适应。熔丝应与设备容量相匹配,不得用多根熔丝绞接代替一根熔丝,每根熔丝的规格应一致,严禁其他金属代替。配电箱内的电器必须可靠完好,不得使用破损、不合格的电器。

三、供水工程

1、水源

采用甲方指定供水点接引供水。从接水点到施工生活现场距离2㎞。

2、用水量

根据施工现场情况,在平时施工与生活中日用水量在20m3~50m3 ,在工程施工高峰期日用水量达到100m3~150 m3 。

3、供水管道

为满足以后日用水150m3的能力,埋设时采用DN50钢塑管道,管道埋设深度不少于300mm。

四、便道工程

施工范围内提供的道路,重载车辆(如:泥头车、挖掘机以及工程材料运输车等)无法直接到达施工现场,从取土点自施工红线范围距离3000m,需修施工便道,供重车双向通行。根据施工现场行走车辆的需要,施工便道基层路面宽度9.0m,泥结碎石路面宽6.5M,厚10cm,下设30cm厚手摆片石,宽度8.0米,路基边坡比例按1:1设置。设单侧排水沟,沟底宽度和深度不小于30cm。

1、原路面清理压实作业

(1)在道路施工范围内,对含有地表水、淤泥、垃圾等地方应进行排除清理。

(2)对清理后原路面进行平整,经现场管理人员检查合格后进行初步碾压工作。

2、填方施工

(1)填方前准备工作:先进行施工测量,对含水较大的地方,在填方两侧开挖临时排水沟,必要时在路基中挖纵横排水沟,加快路基晾干。按技术规范要求对表土进行清理,清理后,将路基碾压使之达到规定要求。

(2)填筑方法:填筑采用依次进行、机械为主、人工为辅的作业方法进行施工。在达到要求的填方上,将合格的填料(手摆片石)运到填筑地点,其卸料依次进行,派专人指挥,按规定数量均匀卸料,以免影响摊铺厚度和质量。

(3)填筑施工程序:自卸汽车分运到填筑地段→推土机推平→人工修整→振动压路机碾压。

(4)碾压顺序:碾压遵循先低后高、先轻后重的原则,直线段由填方两侧向中心碾压,有弯道段由弯道内侧向外碾压。碾压时前后两次轮迹重叠20cm~30cm,并尽快压到规定的压实度。

(5)施工机械:施工机械的选择根据工程规模、场地大小、填料种类、压实度要求、气候条件、压实机械效率的因素综合考虑确定。主要机械设备包括:装载机、推土机、自卸车、挖掘机、压路机等。

五、便桥工程

便桥位于村道旁的河涌上,为连通河两侧施工便道而建。考虑到双向通行且互不干扰,拟相邻建24米×4.2米桥两座便桥,主要通行土方等物料运输车辆及施工人员。

便桥采用全钢结构,全长24m,双横梁 2跨。下部采用529#钢管桩基础,梁采用3条45#工字钢,桥面架设组装好的标准321公路钢桥,桥头位置设钢筋砼搭板顺接。

1、主要工程数量及材料数量

⑴、钢管桩12(6×2)根

⑵、钢梁6(3×2)根

⑶、529#螺旋管中间采用C30水泥灌注,约90(45×2)㎡

⑷、单座标准321公路钢桥构件明细表

序号 名 称 单位 数量 单重(公斤) 重量(吨)

1 贝 雷 片 片 48 270 12.96

2 加强弦杆 根 22 80 1.76

3 销  子 套 80 3 0.24

4 弦杆螺栓 套 80 3 2.40

5 450支撑架 片 32 21 0.67

6 横梁 根 33 245 8.09

7 横梁夹具 只 180 3 0.54

8 斜撑 根 20 11 0.22

9 抗风拉杆 根 22 33 0.73

10 联板 块 33 3 0.10

11 支撑架螺栓 套 24 0.8 0.20

12 U型桥面板 块 32 240 7.68

13 U型中央型桥面板 块 8 120 0.96

14 U型螺栓 套 72 3 0.22

15 勾头螺栓 套 20 2.5 0.05

16 简易桥座 只 12 38 0.46

17 座板 只 0 184 0.00

18 阴头端柱 根 0 70 0.00

19 阳头端柱 根 0 69 0.00

20 路 缘 根 24 20 0.48

21 路缘螺栓 套 40 0.5 0.02

2、施工方案

⑴、管桩施工

钢管桩、321公路钢桥组装同时施工,安装钢梁后,架设钢桥。

沉入管桩时,管桩下沉的导向结构必须牢靠,应能控制管桩的方向和位置。初期振动下沉时应严格控制振动时间。振动下次时,应根据土质、下沉深度、管桩结构特点、振动力大小及其周围建筑设施的影响等具体情况,确定最低的下沉速度。每次连续振动时间不宜超过5min。当管桩下沉较困难时或振动时管桩明显回跳、倾斜加剧以及大量翻砂涌水时,应立即停振,分析原因。管桩下沉到设计位置后应测定其承载力大于60t,复核平面位置,能否满足设计要求。

⑵、钢梁

管桩施工完成后,在桩顶设置墩帽,以增大桩顶受力面积,然后根据墩轴线位置放置钢梁,钢横梁与墩帽应贴合严密,如有缝隙用适当钢板垫稳,并将其与桩、墩帽焊接牢固。

⑶、吊装公路钢桥

吊装公路钢桥,复核工程定位依据、轴线、水准控制点,完成构件的焊接。

⑷、桥头搭板

根据桥面标高及河岸标高,通过搭板将桥面与河岸顺接,施工时先将搭板底面下原地面土深挖20cm,然后换填渗水料,并进行夯实或碾压,再进行搭板施工。

3、质量要求

⑴、钢管桩

钢管桩沉入必须沉至河底岩石顶面并满足承载力要求,承载力为60t。平面位置、桩顶高程满足图纸要求,允许偏差±10mm。桩体垂直度不大于1%。

⑵、钢梁

尺寸及间距满足图纸要求,允许偏差±20mm,焊接时焊缝必须饱满,强度满足要求。

⑶、公路钢桥及管桩在施工前进行防腐处理,所有外露钢构件做涂炭漆防腐处理。

六、活动板房

本工程为工人施工现场活动板房,板房为地上2层,长为47.48m,宽为5.84m,单层为227.8㎡,总面积为555.6㎡。

1、材料

建筑结构形式为:轻型轻钢结构,柱为100槽钢。柱距3米-3.64米,柱脚与混凝土基础用膨胀螺栓连接,墙面围护为75复合墙板,屋面为100厚瓦楞符合顶板,门窗为塑钢门窗。

2、基础和水沟施工

(1)、基础混凝土为C20素砼,先放出板房定位桩和水平桩,抛基槽开挖灰线,基础每边放300㎜施工面,清槽、修平。

(2)、模板安装:模板采用木模,模板安置基槽土面。在模板下口侧边打入木桩,间距700㎜,用铁钉把木桩和模板钉牢,在模板外200㎜处打入木桩,间距1m,模板上口和木桩之间用木料斜撑钉牢。模板断面用连刀卡拉紧卡牢,校准、加固。

(3)、混凝土施工:混凝土采用人工搅拌,控制混凝土配合比和搅拌时间。用220v两线振动器振捣,振动棒要快插慢拔或抽振,砼面不得有空洞及麻面,收平、抹光。室内地坪用c15细石砼浇筑收光。

(4)、板房四周设250㎜宽× 400㎜深排水沟,沟底坡度3%。120㎜标准砖、M10水泥砂浆砌筑,1:3水泥砂浆粉刷,C20钢筋预制盖板。

3、安装程序

(1)、放线

按照图纸尺寸,利用墨斗在完成板房基础面上弹出板房安装位置线,用勾股弦法规方。用水平管在基础四周给出相对标高点,标点数量每根地梁上不少于2个点。

(2)、安装地梁

将地梁抬至板房基础上,根据板房安装位置线找正地梁,地梁与轴线位置最大偏差3毫米。

地梁找正后,利用电锤打孔,安装膨胀螺栓,膨胀螺栓数量应符合设计要求,栓孔深度应与螺栓长度相符,螺栓安装后,应与基础面保持垂直。

(3)、立柱安装

安装顺序:柱—→圈梁—→调节拉杆

(4)、屋面一字梁系统安装

安装顺序:一字梁—→水平支撑—→楼面檩条

(5)、外墙板安装

○1、外墙板应与铝合金窗框配合安装。装配时,应两人在上往下送,一人在下接。按照配板图安装外墙板,安装前,用抹布将墙板擦洗干净。

○2、外墙板接缝,应顺水流方向拼接。

○3、地梁与墙板间应加装防水槽,并且防水槽两端用玻璃胶封死,以防漏水。

(6)、窗户安装

安装顺序:窗台上、下收口—→窗框安装—→窗扇安装—→窗锁钩—→打胶

(7)、门安装

安装顺序:门边框、门把头—→门头板—→门扇(合页)—→锁具插销—→打胶。

(8)屋面板安装

安装顺序:尺字架→水平支撑→檩条安装→屋面板→打胶。

(9)、内隔墙板安装

施工顺序:墙板位置放线—→内隔墙上码—→内隔墙—→内隔墙下卡码—→打胶。

4、安全加固措施

预防台风临房倒塌,在基础中预埋A8钢筋地锚,间距为3.64m一根。屋面四周檐边用5mm×10mm木料压边,用8mm钢丝绳穿透木料压紧,钢丝绳扣住前后地锚花篮扣,系紧扣牢。

七、安全文明要求

1、现场施工作业人员必须佩戴安全帽,高空作业必须佩戴安全带。

2、用电设备必须检查完好并经常进行检修维护。严格遵守用电规则,由专业电工负责现场用电。

3、施工期间注意对周围土地,沟渠及地表植物进行保护,避免不必要的污染和破坏。

汕尾市万营实业有限公司

土方项目用地三通

施工方:崇阳县鑫盛建筑有限公司

法人代表:陈天佑

湖北省国土资源厅备案顺序号: 805

公司地址:崇阳县天城镇桃溪大道151号