红外隐身涂料成本
你好,你是想问红外隐身涂料成本高吗?红外隐身涂料成本不高。红外隐身涂料因为工艺简单,施工方便,坚固耐用,所以成本不高,是目前隐身涂料中最重要的品种。红外隐身涂料是指用于减弱武器系统红外特征的信号已达到隐身技术要求的特殊功能涂料。
吸波涂料一般根据吸收剂不同可分为以下种类:
1 铁氧体吸波涂料铁氧体吸波涂料因为价格低廉 , 吸波性能好 , 即使在低频、厚度薄的情况下仍有良好的吸波性能 , 在米波至厘米波范围内 , 可使反射能量衰减 17 ~ 20DdB , 从 50 年代至今仍被广泛应用。按微观结构的不同 , 铁氧体可分为六角晶系铁氧体、尖晶石型铁氧体和稀土石榴石型铁氧体三类。作为吸波材料应用最为广泛的是尖晶石型铁氧体 , 由于尖晶石型铁氧体的介电常数 ε′ 和磁导率 μ′ 比较低 , 用纯铁氧体难以满足高性能的雷达波吸收材料的要求 , 但是把铁氧体粉末分散在非磁性体中而制成的复合铁氧体 , 则可以通过铁氧体粉末的粒径、铁氧体粉末与非磁性体的混合比以及铁氧体组成来控制其电磁参数。目前已研制并广泛应用的有 Ni - Zn 、 Li - Zn 、 Ni - Mg - Zn 、 Mn - Zn 、 Li -Cd 、 Ni - Cd 、 Co - Ni - Zn 、 Mg - Cu - Zn 等铁氧体。
2 羰基铁吸波涂料
羰基铁吸收剂是目前最为常用的雷达波吸收剂之一 , 它是一种典型的磁损耗型吸波材料 , 磁损耗角可达 40 °左右 , 与高分子粘结剂复合成的吸波涂料具有吸收能力强、应用方便等优点。但是由于羰基铁吸收剂存在着比重大 , 在涂料中体积占空比一般都大于 40 % , 因此导致这种吸波涂料仍存在面密度大的缺点。近期欧洲GAMMA 公司研制了一种新型吸波涂料 , 这种吸波涂料采用以羰基铁单丝为主的多晶铁纤维作为吸收剂 , 可在很宽的频带内实现高吸收率 , 由于这种吸收剂体积占空比为 25 % , 因此重量可减轻 40 % ~ 60 % 。目前 , 该吸波涂料已应用于法国国家战略防御部队的导弹和飞行器 , 同时正在验证用于法国下一代战略导弹弹头的可能性。
3 金属超细粉末或金属氧化物磁性超细粉末吸波涂料
这类吸波涂料一般是由金属超细粉末或金属氧化物磁性超细粉末与高分子粘结剂复合而成。由于作为吸收剂的金属超细粉末或金属氧化物磁性超细粉末的细化 , 使其组成粒子的原子数目大大减少 , 磁、电、光等物理性能发生质的变化 , 磁损耗较大。这种吸波涂料可以通过调节粉末的粒径、含量、混合比例等来调节吸波涂料的电磁参数 , 以使其达到较为理想的吸波效果。
4 陶瓷吸波涂料
作为陶瓷吸波涂料的吸收剂主要有碳化硅、硼硅酸铝等 , 与铁氧体、复合金属粉末等吸波剂相比 , 密度低、吸波性能较好 , 还可以有效地减弱红外辐射信号的特点。其中碳化硅是制作多波段吸波涂料的主要组分 , 有可能实现轻质、薄层、宽频带和多频段 , 很有应用前景。碳化硅的粒径、热处理时间等对其吸波性能影响非常大 , 碳化硅在不同处理温度和时间条件下 , 其电阻率变化范围为 10 0 ~ 10 4 Ω· cm , 通过控制工艺参数 , 可以对其显微结构和电磁参数进行控制 , 获得所希望的吸波效果。
5 纳米吸波涂料
纳米材料是指材料组分的特征尺寸在纳米量级 (1 ~ 100nm) 的材料 , 它独特的结构使其自身具有量子尺寸效应、宏观量子隧道效应、小尺寸和界面效应 , 金属、金属氧化物和某些非金属材料的纳米级超微粉在细化过程中 , 处于表面的原子数越来越多 ,增大了纳米材料的活性 , 在电磁场的辐射下 , 原子、电子运动加剧 , 促使磁化 , 使电磁能转化为热能 , 从而增加了对电磁波的吸收效果。由于纳米材料在具有良好吸波特性的同时还具有频带宽、兼容性好、面密度低、涂层薄的特点 , 美、俄、法、德、日等国都把纳米材料作为新一代隐身材料加以研究和探索。目前 , 美国研制的被称作 “ 超黑粉 ” 纳米吸波材料 , 所吸收的雷达波可达 99 % 。法国研制出一种宽频微波吸收涂层 , 这种吸收涂层由胶粘剂及纳米级微粒填充材料组成。这种由多层薄膜叠合而成的结构具有很好的磁导率 ,50MHz 至 50 GHz 内具有良好的吸波性能。总之纳米吸波涂料是一种非常有发展前途的吸波涂料。
6 放射性同位素吸波涂料
放射性同位素 ( 如 Po - 210 、 Cm - 242 和 Sr - 90 等 ) 产生的等离子体是一种有效的电磁波吸收媒质 , 等离子区中的自由电子在入射电磁波的电场作用下将产生频率等于电磁波载波频率的强迫振荡 , 在振荡的过程中 , 运动的电子与中性的分子、原子以及离子发生碰撞 , 增加了这些粒子的动能 , 从而把电磁场的能量转变为媒质的热量。放射性同位素吸波涂层非常薄和轻 , 具有吸收频带宽、耐用性好和能承受高速空气动力等优点。另外放射性同位素吸波涂层还可以吸收红外辐射、声波等
功能 , 是理想的多功能吸波涂料。
7 导电高分子吸波涂料
这类吸波涂料利用某些高聚物所具有共轭π电子的线形或平面形构型与高分子电荷转移给络合物的作用 , 设计高聚物的导电结构 , 实现阻抗匹配和电磁损耗。美国信号产品公司 (Signature Products Company) 开发了一种可用来适应 5 ~ 200 GHz 雷
达的吸波涂料 , 它以具有喷涂功能的高分子聚合物为基体 , 用具有极好的吸收雷达波特性的氰酸酯晶须和导电高聚物聚苯胺的复合物作吸收剂。其涂层具有易维护、吸收频带宽、涂层薄、质量好等优点。但由于用于这类吸波涂料的导电高聚物的合成研究刚刚开始 , 是新开展的高分子材料研究领域 , 有待于进行深
入的理论和实验研究。
8 视黄基席夫碱盐类吸波涂料
视黄基席夫碱盐是一种含有碳 - 氮双键结构的有机高分子聚合物 , 具有很强的极性 , 雷达波被这种盐吸收时 , 能量可迅速转变为热能耗散掉。某种特定类型的盐可吸收特定波长的雷达波 , 通过组合不同的盐类 , 可以实现较宽频带的电磁波吸收。美国 Carnegie - Mel - lon 大学用视黄基席夫碱盐制成的吸波涂层可使目标的RCS 减缩 80 % , 而比重只有铁氧体的 10 % 。
9 手征性吸波涂料
手征性吸波涂料是一种新型的吸波涂料 , 众多的研究结果表明 , 手征材料能够减少入射电磁波的反射并能吸收电磁波。与其它吸波涂料相比手征性吸波涂料具有以下两个优势 : 一是调整手征参数比调整介电常数和磁导率更容易 , 绝大多数吸波材料的介电常数和磁导率很难满足宽频带的低反射要求 二是手征材料频率敏感性比介电常数和磁导率小 , 易于扩宽频带。 1990年 ,国外首次公开报道了手征材料的吸波效果 , 结果表明手征吸波材料具有吸波频率高和吸收占带宽的特点。国内在 “ 九
五 ” 期间 , 青岛科技大学开展了手征吸波材料的研究工作 , 其涂层在 8mm 波段的吸波的吸波效果较好。但由于手征性吸波涂料的研究还处于起步阶段 , 在实际应用中还有许多问题 ( 如成本高等 ) 有待解决。
10 掺杂高损物吸波涂料
这类吸波涂料由导电纤维与高损物 ( 如炭黑、陶瓷和粘土等 ) 和树脂组成。其中导电纤维长度是雷达波波长的一半 , 涂层的厚度最好是雷达波波长 1/ 4 的奇数倍。
11 稀土元素吸波涂料
稀土元素吸波涂料是新开发研制的一类吸波涂料 , 以稀土磁性材料为吸收剂。另外稀土元素常作为添加剂加在其它吸波涂料中 , 用以调节吸波涂料的电磁参数。
由于单一的吸收剂一般很难满足吸波涂料对宽频带吸收的要求 , 因此 , 在实际应用中常通过对涂层进行设计 , 采用多种吸收剂以满足宽频带的吸波要求。
1、涂料厚度不能太大,只能对某些波段有良好的隐身性能,对其他波段就无能为力了
2、涂料本身的强度偏低,容易剥落
3、涂料受温度、湿度影响比较大,维护成本高
世界各国的导弹上面,为什么不用隐身涂层呢?
实际上类似的问题,笔者已经在此前的文章当中有所说明,这个问题并不太复杂,无非就是两大因素所致,分别是成本问题,以及隐身效果的达成,除了隐身涂层之外还有一个最重要的因素就是隐身外形设计。隐身战机之所以能够隐身,最主要的因素是在其隐身外形的设计上,而隐身涂层也只是起到一个锦上添花的作用,一般来而言,外形设计占据了70~90%的隐身效果,而隐身涂层占据的比例则少之又少,所以说,隐身涂层通常只能起到锦上添花的作用而已,即使一架战斗机没有涂刷隐身涂层,只要其外形设计能够达到分散雷达波的作用,依然能够起到雷达隐身的效果。
反过来理解就是,隐身涂层并不适合在任何飞行器上进行涂刷,以此来达到隐身效果,因为,隐身涂层的工作原理是将照射到飞行器上的雷达波转化成热能而分散掉,而隐身涂层根本就无法将所有的雷达波转化成热能分散,所以,千万不要把隐身涂层当成飞行器隐身的必备要素,实际上,隐身涂层的作用是非常有限的,它必须配合隐身气动外形飞行器来搭配使用,才能将隐身效果发挥到最优,否则,隐身涂层不仅带不来隐身效果的提高,还会进一步增加涂装和维护费用,倒不如不用。
也正因为如此,即便隐身涂料发展了几十年时间已经非常成熟,但是,各主要军事强国并没有将其任意图刷在一款普通的战斗机身上,因为,这种做法是得不偿失的,根本无法让一款普通的三代战机摇身一变,变成4代隐身战机,也就是说,完全指望靠涂料来隐身是不现实的,导弹圆滚滚的外形,就算图刷上了隐身涂层也起不了多大的作用,反倒平白无故的增加了一笔成本或预算,更为糟糕的是,这还会进一步增加了导弹的维护成本。
除此之外,绝大多数的战术导弹根本就不需要达到隐身效果,如空空导弹,空空导弹主要采用红外或紫外热源追踪、雷达波制导等方式,近距离的格斗弹多采用热寻的,打出去几秒钟后战果就立见分晓,在这个过程当中,战斗机基本上都处于狗斗状态,所以,只要格斗弹打出去,敌方战机基本上就挂了,所以,像这种战术导弹,根本就不需要达到什么隐身效果,相反,如何降低战术导弹的成本才是各军事强国首要考虑的因素,毕竟,只有当导弹成本降到最低才能够在数量上装备最多,也才能够在最大程度上发挥这种战术导弹的效能。说白了就是花最少的钱,办最多的事。
再来说说弹道导弹,某种程度上讲,洲际弹道导弹确实需要达到隐身效果,以此来躲避或迷惑敌方的反导系统,但是,洲际弹道导弹上面也不可能涂刷这种隐身涂层,因为,弹道导弹首先是要发射到太空,在这个过程当中,由于空气的巨大的摩擦力会导致隐身涂层脱落,即使隐身涂层没有全部脱落,等到弹头再入大气层时,由于巨大的摩擦力产生高温,还是会将这一层隐身涂层全部烧掉,所以,隐身涂层也不适合弹道导弹,而弹道导弹想要达到欺骗或躲避敌方反导系统,就只能在分导弹头或再入大气层时的速度上做文章了,了解到这里,相信大家都已经能够理解,为什么导弹上面不用隐身涂层的原因。
关于这个问题,我斗胆说两句:
美军的F22作为第五代超音速巡航战斗机,需要至少上五层防雷达涂料,而这种涂料中百分之六十的成分是银,同时在长期的飞行过后,一次保养,或者说是更换一次涂料,就要把之前涂上的防雷达涂料先敲下来,然后再重新进行涂刷,每次涂刷都要消耗上百万美元的费用。
当然,这些被敲下来的用过的涂料,还能够进行回炉重造,变成其他材料后售卖给相关产业,弥补一部分军费支出。
但如果题主你要问,“美军是怎么给F22上隐身涂层的?”,我估计你要想知道真正的答案,只能去问美军的国防部了。。
公开的资料只会告诉你,F22的涂层作业,全部是在专门的喷涂车间完成,但不会告诉你具体工艺,这涉及到美军的核心军事机密,而且军工体系的复杂程度超乎你的想象,可不是一句话就能全部概括清楚的。
另外我再补充一点,在2016年的8月份,美军国防部跟洛马公司签订了新一期的维护合同,总价高达6100万美元,而这还仅仅是建设全新的“维修流程线”的费用,并不包含所要涉及的人工和技术开销,以及材料研发等等一系列的后续项目。
所以,我无法给你美军如何为F22上隐身涂层的确切答案,只能告诉你,作为第五代战斗机,不管F22身上发生什么,哪怕是点一次火,那烧的都是真金白银。
近日,澳大利亚为从美国购买的72架F-35A隐身战斗机举行接机仪式。然而,这里极度干燥与炎热的气候,很可能令F-35隐身涂料经常脱落“掉粉”。澳军方对此表示担忧,“最极端的情况,可能每飞行一次就得重涂。”
F-35隐身涂料与其他材料共同的特性是,在高速、高温、高寒、高盐等极端环境下可能会发生缺损。据统计,澳大利亚的荒漠、半荒漠占总面积比重约44%,比非洲更高,气候极其干燥。再加上F-35是超音速飞行,高速下空气分子的摩擦对机体影响较大,飞机机翼等部位的涂料就比较容易脱落。
“但即便如此,并不是飞一次就得涂一次,也不是从头到尾全部涂一次。”时家明说,隐身涂料非常精密,稍微的刮痕可能就足以让雷达侦测到战斗机的行踪。因此,每到维护时,会先检测飞机隐身涂料的损伤或脱落部位,再在这些部位像补刷油漆一样地补上涂料。此外,F-35战机在设计时便注意到要使吸波材料具备隐身性能,以及必须便于使用和维护。资料显示,F-35的吸波材料研制目标是在飞机整个寿命期内,基本只需要目视检查,并在损伤后快速修理。
隐身技术,准确地说是目标特征信号控制或缩减技术。飞机隐身作为一项系统性工程,大多使用复合手段,最重要的是外形设计和吸波材料相结合,意在控制飞机的雷达散射截面积。外形技术对降低飞机的雷达散射截面积有明显效果,而隐身材料在某些关键部位使用,在外形设计基础上进一步降低雷达散射截面积。
F-35战机采用特定的外形设计,显著减小了雷达散射截面积;同时,在机身表面涂敷吸波材料,“吸波涂料通常由磁性金属粉末和粘合剂构成,能吸收雷达波,让反射的雷达波变得很弱,缩短雷达发现目标的距离,实现隐身功能。涂敷隐身材料后,F-35战机的雷达反射截面积仅0.001平方米,相当于一个高尔夫球大小,一般雷达很难看见它。”不过,全球范围内能研制出高性能隐身涂料的国家屈指可数,隐身涂料的主要成分更是核心机密。
西方国家在第四代战机中强调具有隐身性能的多用途超音速战斗机,代表机型有F-22和F-35。美国的飞机隐身技术处于世界领先地位,自20世纪50年代开始隐身技术研究,70年代制定了综合应用多种隐身措施研制隐身飞机的计划,其杰出代表是F-117A隐身攻击机、B-2隐身战略轰炸机、F-22隐身战斗机。F-35属于具有隐身性能的多用途战斗攻击机。
隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。按材料用途可分为隐身涂层材料和隐身结构材料。这里便着重介绍几类重要的隐身材料。 雷达吸波材料是最重要的隐身材料之一,它能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。雷达吸波材料中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。
结构型雷达吸波材料
结构型雷达吸波材料是一种多功能复合材料,它既能承载作结构件,具备复合材料质轻、高强的优点,又能较好地吸收或透过电磁波,已成为当前隐身材料重要的发展方向。
国外的一些军机和导弹均采用了结构型RAM,如SRAM导弹的水平安定面,A-12机身边缘、机翼前缘和升降副翼,F-111飞机整流罩,B-1B和美英联合研制的鹞-Ⅱ飞机的进气道,以及日本三菱重工研制的空舰弹ASM-1和地舰弹SSM-1的弹翼等均采用了结构型RAM。近年来,复合材料的高速发展为结构吸波材料的研制提供了保障。新型热塑性PEEK(聚醚醚酮)、PES(聚醚砜)、PPS(聚苯硫醚)以及热固性的环氧树脂、双马来酰亚胺、聚酰亚胺、聚醚酰亚胺和异氰酸酯等都具有比较好的介电性能,由它们制成的复合材料具有较好的雷达传输和透射性。采用的纤维包括有良好介电透射性的石英纤维、电磁波透射率高的聚乙烯纤维、聚四氟乙烯纤维、陶瓷纤维,以及玻纤、聚酰胺纤维。碳纤维对吸波结构具有特殊意义,近年来,国外对碳纤维作了大量改良工作,如改变碳纤维的横截面形状和大小,对碳纤维表面进行表面处理,从而改善碳纤维的电磁特性,以用于吸波结构。
美国空军研究发现将PEEK、PEK和PPS抽拉的单丝制成复丝分别与碳纤维、陶瓷纤维等按一定比例交替混杂成纱束,编织成各种织物后再与PEEK或PPS制成复合材料,具有优良的吸收雷达波性能,又兼具有重量轻、强度大、韧性好等特点。据称美国先进战术战斗机(ATF)结构的50%将采用这一类结构吸波材料,材料牌号为APC(HTX)。
国外典型的产品有用于B-2飞机机身和机翼蒙皮的雷达吸波结构,其使用了非圆截面(三叶形、C形)碳纤维和蜂窝夹芯复合材料结构。在该结构中,吸波物质的密度从外向内递增,并把多层透波蒙皮作面层,多层蒙皮与蜂窝芯之间嵌入电阻片,使雷达波照射在B-2的机身和机翼时,首先由多层透波蒙皮导入,进入的雷达在蜂窝芯内被吸收。该吸波材料的密度为0.032g/cm,蜂窝芯材在6-18GHz时,衰减达20dB;其它的产品如英国Plessey公司的泡沫LA-1型吸波结构以及在这一基础上发展的LA-3、LA-4、LA-1沿长度方向厚度在3.8~7.6cm变化,厚12mm时重2.8kg/m2,用轻质聚氨酯泡沫构成,在4.6~30GHz内入射波衰减大于10dB;Plessey公司的另一产品K-RAM由含磁损填料的芳酰胺纤维组成,厚5~10mm,重7~15kg/m2,在2~18GHz衰减大于7dB。美国Emerson公司的Eccosorb CR和Eccosorb MC系列有较好的吸波性,其中CR-114及CR-124已用于SRAM导弹的水平安定面,密度为1.6~4.6kg/m2,耐热180℃,弯曲强度1050kg/cm2,在工作频带内的衰减为20dB左右。日本防卫厅技术研究所与东丽株式会社研制的吸波结构,由吸波层(由碳纤维或硅化硅纤维与树脂复合而成)、匹配层(由氧化锆、氧化铝、氮化硅或其它陶瓷制成)、反射层(由金属、薄膜或碳纤维织物制成)构成,厚2mm,10GHz时复介电数为14-j24、样品在7~17GHz内反射衰减>10dB。
在结构吸波材料领域,西方国家中以美国和日本的技术最为先进,尤其在复合材料、碳纤维、陶瓷纤维等研究领域,日本显示出强大的技术实力。英国的Plesey公司也是该领域的主要研究机构。
雷达吸波涂料
雷达吸波涂料主要包括磁损性涂料、电损性涂料。
(1) 磁损性涂料
磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。目前国外航空器的雷达吸波涂层大都属于这一类。这种涂层在低频段内有较好的吸收性。美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。
(2) 电损性涂料
电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。 红外隐身材料作为热红外隐身材料中最重要的品种,因其坚固耐用、成本低廉、制造施工方便,且不受目标几何形状限制等优点一直受到各国的重视,是近年来发展最快的热隐身材料,如美国陆军装备研究司令部、英国BTRRLC公司材料系统部、澳大利亚国防科技组织的材料研究室、德国PUSH GUNTER和瑞典巴拉居达公司均已开发了第二代产品,有些可兼容红外、毫米波和可见光。近年来美国等西方国家在探索新型颜料和粘接剂等领域作了大量工作。新一代的热隐身涂料大多采用热红外透明度。国内外目前研制的红外隐身材料主要有单一型和复合型两种。
单一型红外隐身材料
导电高聚物材料重量轻、材料组成可控性好且导电率变化范围大,因此作为单一红外隐身材料使用的前景十分乐观,但其加工较困难且价格相当昂贵,除聚苯胺外尚无商品生产。E. R. Stein等人研究发现, 导电聚合物聚吡咯在 1. 0~2. 0GHz 对电磁波的衰减达26dB。中科院化学所的万梅香等人研制的导电高聚物涂层材料,当涂层厚度在 10~15μm 时,一些导电高聚物在8~20μm 的范围内的红外发射率可小于0. 4。
复合型红外隐身材料
复合型红外隐身材料主要有涂料型隐身材料、多层隐身材料和夹芯材料。
(1) 涂料型隐身材料
涂料型红外隐身材料一般由粘合剂和填料两部分组成。填料和粘合剂是影响红外隐身性能的主要因素,目前的研究大多针对热隐身。
(2) 多层隐身材料
多层隐身材料中最常见的是涂敷型双层材料。一般有微波吸收底层和红外吸收面层组成。德国的 Boehne研制了一种双层材料, 底层有导电石墨、炭化硼等雷达吸收剂 ( 75%~85%) , Sb2O3 阻燃剂( 6%~8%) 和橡胶粘合剂( 7%~18%) 组成,面层含有在大气窗口具有低发射率的颜料。国内研制出了面层为低发射率的红外隐身材料, 内层雷达隐身材料可用结构型和涂层型两种吸波材料的双层隐身材料。
(3) 夹芯材料
夹芯材料一般由面板和芯组成。面板一般为透波材料, 芯为电磁损耗材料和红外隐身材料。 纳米材料的特性
表面效应。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例,随着粒径的减小,表面原子数量比迅速增加。由于表面原子数量比增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。
量子尺寸效应。粒子尺寸下降到一定值时,费米能级附近的电子连续能级离散化,致使纳米材料具有高的光学非线性,特异的催化及光催化特性。
小尺寸效应。当超细微粒的尺寸与光波波长或德布罗意波长及超导态的相干长度等物理尺寸特征相当或者更小时,晶体周期性的边界条件将被破坏,从而产生一系列的光学、热学、磁学和力学性质。
纳米复合隐身材料的隐身机理
由于纳米材料的结构尺寸在纳米数量级,物质的量子尺寸效应和表面效应等方面对材料性能有重要影响。隐身材料按其吸波机制可分为电损耗型与磁损耗型。电损耗型隐身材料包括SiC粉末、SiC纤维、金属短纤维、钛酸钡陶瓷体、导电高聚物以及导电石墨粉等;磁损耗型隐身材料包括铁氧体粉、羟基铁粉、超细金属粉或纳米相材料等。下面分别以纳米金属粉体(如Fe、Ni等)与纳米Si/C/N粉体为例,具体分析磁损耗型与电损耗型纳米隐身材料的吸波机理。
金属粉体(如Fe、Ni等)随着颗粒尺寸的减小,特别是达到纳米级后,电导率很低,材料的比饱和磁化强度下降,但磁化率和矫顽力急剧上升。其在细化过程中,处于表面的原子数越来越多,增大了纳米材料的活性,因此在一定波段电磁波的辐射下,原子、电子运动加剧,促进磁化,使电磁能转化为热能,从而增加了材料的吸波性能。一般认为,其对电磁波能量的吸收由晶格电场热振动引起的电子散射、杂质和晶格缺陷引起的电子散射以及电子与电子之间的相互作用三种效应来决定。
纳米Si/C/N粉体的吸波机理与其结构密切相关。但目前对其结构的研究并没有得出确切结论,本文仅以M.Suzuki等人对激光诱导SiH4+C2H4+NH3气相合成的纳米Si/C/N粉体所提出的Si(C)N固溶体结构模型来作说明。其理论认为,在纳米Si/C/N粉体中固溶了N,存在Si(N)C固溶体,而这些判断也得到了实验的证实。固溶的N原子在SiC晶格中取代C原子的位置而形成带电缺陷。在正常的SiC晶格中,每个碳原子与四个相邻的硅原子以共价键连接,同样每个硅原子也与周围的四个碳原子形成共价键。当N原子取代C原子进入SiC后,由于N只有三价,只能与三个Si原子成键,而另外的一个Si原子将剩余一个不能成键的价电子。由于原子的热运动,这个电子可以在N原子周围的四个Si原子上运动,从一个Si原子上跳跃到另一个Si原子上。在跳跃过程中要克服一定势垒,但不能脱离这四个Si原子组成的小区域,因此,这个电子可以称为“准自由电子”。在电磁场中,此“准自由电子”在小区域内的位置随电磁场的方向而变化,导致电子位移。电子位移的驰豫是损耗电磁波能量的主要原因。带电缺陷从一个平衡位置跃迁到另一个平衡位置,相当于电矩的转向过程,在此过程中电矩因与周围粒子发生碰撞而受阻,从而运动滞后于电场,出现强烈的极化驰豫。
纳米复合隐身材料因为具有很高的对电磁波的吸收特性,已经引起了各国研究人员的极度重视,而与其相关的探索与研究工作也已经在多国展开。尽管目前工程化研究仍然不成熟,实际应用未见报道,但其已成为隐身材料重点研究方向之一,今后的发展前景一片光明。而其一旦应用于实际产品,也必将会对各国的政治、经济、军事等多方面产生巨大影响。
纳米材料的制备方法
下面重点以两种常用的方法来讨论纳米材料的制备方法。
(1)溶胶-凝胶法
溶胶-凝胶法是近年来发展的一种制备纳米材料的新工艺。此法是将金属有机或无机化合物经溶液制成溶胶,再在一定条件下(如加热)将其脱水,则具有流动性的溶胶逐渐变粘稠,成为略显弹性的固体凝胶,再将凝胶干燥、焙烧得到纳米级产物。烧结的方式和温度随物料的不同也有差异,如用微波加热代替常规加热,在较低的温度和极短时间内合成了粒度小、纯度高的超细粉;还比如用γ射线照射制得纳米级CdSe/聚丙烯酰胺复合粉。此类方法还能制备气孔互联的多孔纳米材料。可利用液体渗透、物理方法和化学沉积、热解、氧化及还原反应来填充气孔以制备复合材料。目前采用此法制备纳米材料的具体技术和工艺很多,但按其产生溶胶-凝胶的机制来分主要有三种类型。
(a)传统胶体型。通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉降,得到稳定均匀的溶胶,再经蒸发溶剂(脱水)得到凝胶。Adriana S.Albuquerque等人运用传统胶体法使Ni0.5Zn0.5Fe2O4纳米颗粒向前在SiO2玻璃相中,通过改变铁氧体的量和退火温度来获得需要的磁性能。
(b)无机聚合物型。通过可溶性聚合物在水或有机相中的溶胶-凝胶法过程,使金属离子均匀分散于凝胶中。常用聚合物有聚乙烯醇、硬脂酸、聚丙烯酰胺等。王丽等人用聚乙烯醇溶胶-凝胶法制得Ni1-xZnxFe2O4(0≤x≤1)纳米颗粒,此法得到的产物纯度高,颗粒细,热处理温度低。Gang Xiong等人用硬脂酸凝胶法制得10-25nm大小的Ba4Co2Fe36O60粉末,且随热处理温度提高,粉末形状由球形转化为立方体。
(c)络合物型。利用络合剂将金属离子形成络合物,再经溶胶-凝胶过程形成络合物凝胶。常用络合剂有柠檬酸等。刘常坤采用柠檬酸络合分解的溶胶-凝胶法制得平均粒径30nm且分散均匀的CoFe2O4超细微粒。
与其他传统的无机材料制备方法相比,溶胶-凝胶法具有反应烧结温度低,粒径分布均匀等优点,但其也有反应时间过长,凝胶易开裂等缺点。这些都值得我们在应用此法时给予足够的注意。
(2)激光诱导化学气相反应法
激光诱导化学气相反应法是利用激光来引发、活化反应物系,从而合成高品位纳米材料的一种方法。其基本原理是:利用大功率激光器的激光束照射于反应气体,反应气体通过对激光光子的强吸收,气体分子或原子在瞬间得到加热、活化,在极短时间内反应气体分子或原子获得化学反应所需要的温度,迅速完成反应、成核与凝聚、生长等过程,从而制得相应物质的纳米微粒。因此,简单的说,激光法就是利用激光光子能量加热反应体系,从而制得纳米微粒的一种方法。通常,入射激光束垂直于反应气流,反应气体分子或原子吸收激光光子后被迅速加热,根据J S Haggerty的估算,激光加热的速率为106-108°C/s,加热到反应最高温度的时间小于10-4s。被加热的反应气流将在反应区域内形成稳定分布的火焰,火焰中心的温度一般远高于相应化学反应所需温度,因此反应将在10-3s内完成。生成的核粒子在载气流的吹送下迅速脱离反应区,经短暂生长过程到达收集室。
入射激光能否引发化学反应取决于入射光的频率——气体分子对光能的吸收系数一般与入射光频率有关。为保证制备过程中反应生成的核粒子快速冷凝,获得超细微粒,需要冷壁式反应室。常用水冷式反应器壁和透明辐射式反应器壁。这样有利于在反应室中构成较大温度梯度分布,加速生成核粒子冷凝,抑制其过分生长。此外,为防止颗粒碰撞、粘连团聚,甚至烧结,还需要在反应器内配惰性保护气体,使生成的纳米微粒的粒径得到保证。另外,通过对加入反应气体成分的控制,可以制得复合纳米材料。
激光法与普通加热法制备纳米微粒有极大不同,这主要表现为:
(a)冷的反应器壁,无潜在污染。
(b)原料气体分子直接或间接吸收光子能量后迅速进行反应。
(c)反应具有选择性。
(d)反应区条件可以被精确的控制。
(e)激光能量高度集中,反应区与周围环境之间温度梯度大,有利于生成核粒子快速凝结。
由于激光法具有上述的技术优势,因此,采用此法可以制得均匀、高纯、超细、粒度窄分布的各类微粒。尽管存在成本较高的问题,但这种方法也已经开始走向工业化,毕竟,激光法是一种制备纳米微粒的理想方法。
纳米复合隐身材料的复合新技术
隐身材料按其吸波机制可分为电损耗型与磁损耗型。电损耗型隐身材料包括SiC粉末、SiC纤维、金属短纤维、钛酸钡陶瓷体、导电高聚物以及导电石墨粉等;磁损耗型隐身材料包括铁氧体粉、羟基铁粉、超细金属粉或纳米相材料等。运用复合技术对这些材料进行纳米尺度上的复合便可得到吸波性能大为提高的纳米复合隐身材料。近年来,纳米复合隐身材料的制备新技术发展的很迅速,这些新的复合技术主要包括一下几种:
(a)以在材料合成过程中于基体中产生弥散相且与母体有良好相容性、无重复污染为特点的原位复合技术。
(b)以自放热、自洁净和高活性、亚稳结构产物为特点的自蔓延复合技术。
(c)以组分、结构及性能渐变为特点的梯度复合技术
(d)以携带电荷基体通过交替的静电引力来形成层状高密度、纳米级均匀分散材料为特点的分子自组装技术。
(e)依靠分子识别现象进行有序堆积而形成超分子结构的超分子复合技术。
材料的性能与组织结构有密切关系。与其他类型的材料相比,复合材料的物相之间有更加明显并成规律化的几何排列与空间结构属性,因此复合材料具有更加广泛的结构可设计性。纳米隐身符合材料因综合了纳米材料与复合材料两者的优点而具有良好的对电磁波的吸收特性,已经成为目前各主要国家材料科技界人士争相研究的热点之一。 电路模拟隐身材料
该技术是在合适的基底材料上涂敷导电的薄窄条网络、十字形或更复杂的几何图形, 或在复合材料内部埋入导电高分子材料形成电阻网络, 实现阻抗匹配及损耗, 从而实现高效电磁波吸收。这种材料能在给定的体积范围内产生高于较简单类型吸波材料的性能。但对每一种应用, 都必须运用等效电路或二维周期介质论在计算机上进 行 特定的匹配设计, 而且涉及计算比较麻烦。
手征隐身材料
所谓的手征是指一个物体不论是通过平移或旋转都不能与其镜像重合的性质。研究表明, 手征材料能够减少入射电磁波的反射并能够吸收电磁波。目前, 用于微波波段的手征材料都是人造的。现在研究的手征吸波材料是在基体中掺杂手征结构物质形成的手征复合材料。
红外隐身柔性材料
这种材料是指以织物为中心开发的各种红外隐身材料, 常常以高性能纤维织物为基础。
红外隐身服
美国特立屈公司( TeledyncIndustr ies Inc) 设计出一种红外隐身效果较好的隐身服,它由多层涂层织物复合加工而成。基布采用多孔尼龙网,并在表面镀银,再在基布上粘贴具有不同红外发射率的布条,布条的一端可以自由飘动,同时控制布条表面涂层面积的大小和形状。这种隐身服可以与背景保持一致,从而保证人体的红外特性难于被红外探测器探测到。
(实际上,用隐身材料做蒙皮的思路在B-2那个时代已经有了,不过当年的复合材料生产技术远远达不到要求的水平,只能退而求其次)
严格意义上的“隐身涂料”最早是用在F-22与B-2这两款隐身飞机上的。至于更早一些的F-117?它用的根本不是“涂料”,而是一种贴在机身表面的“雷达波吸收板”。
对于F-22和B-2来说,涂刷在机身表面的隐身涂料其附着性并不好,很容易被刮下来,在实际的使用中,因为环境温度的变化,还会热胀冷缩然后脱落。如此一来,几乎需要飞一次刷一次,非常麻烦,而且飞机出动任务前刷涂料来不及,所以都是平时刷好然后把飞机停在恒温机库里。
“涂敷型吸波材料”是这种涂料的学术称呼,其主体成分通常为“金属氧化物”,比如“氧化铁”。而如今的F-35用的是另一种隐身材料,更确切的说,是“一体化隐身蒙皮”,或者“结构型隐身涂料”。
即飞机的蒙皮本身就是由隐身材料制成的,材料的主体成分通常为“树脂基增强塑料”这类复合材料,而非传统的金属氧化物。这种材料有许多优势,结构重量较轻,同时能承受200-300度的高温,这对于提高飞行速度有很大的优势。除此之外,维护也简单的多。即使飞机蒙皮上覆盖的涂层损伤,对整机隐身特性的影响也不大,对于提高飞机出勤率,机场适应性有很大的作用。
现如今使用“结构型隐身涂料”的飞机就是FC-31,歼-20与F-35这3款。