铝锶合金在铝砂型铸件中的作用?
铝锶合金添加到铝合金中起到变质的效果,能有效地细化合金中的共晶硅及初晶硅,提高合金的机械性能,其变质具有良好的长效性,重熔稳定性及抗衰退性都比较好。锶的加入量一般控制在0.02-0.04%之间;比喻铝锶合金中锶的含量10%,添加比例就是0.2-0.4%之间。添加方法:锶合金预热到200-300度,除气之前按比例添加。
1、金属元素:铜元素的影响
铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着显著的时效强化效果。铝板中铜含量通常在2.5%-5%,铜含量在4%——6.8%时强化效果较好,所以大部门硬铝合金的含铜量处于这范围。
2、金属元素:硅元素的影响
Al-Mg2Si合金系合金平衡相图富铝部门Mg2Si在铝中的较大溶解度为1.85%,且随温度的降低而减速小,变形铝合金中,硅单独加入铝板中只限于焊接材料,硅加入铝中亦有一定的强化作用。
3、金属元素:镁元素的影响
镁对铝的强化是显著的,每增加1%镁,抗拉强度大约升高瞻远34MPa。假如加入1%以下的锰,可能增补强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物平均沉淀,改善抗蚀性和焊接机能。
4、金属元素:锰元素的影响
锰在固溶体中的较大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达较大值。Al-Mn合金长短时效硬化合金,即不可热处理强化。
5、金属元素:锌元素的影响
Al-Zn合金系平衡相图富铝部门275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。锌单独加入铝中,在变形前提下对铝合金强度的进步十分有限,同时存在应力侵蚀开裂、倾向,因而限制了它的应用。
6、金属元素:铁和硅的影响
铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅锻造合金中,均作为合金元素加的,在基它铝合金中,硅和铁是常见的杂质元素,对合金机能有显著的影响。它们主要以FeCl3和游离硅存在。在硅大于铁时,形成β-FeSiAl3(或Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过高时会使铸件产生脆性。
7、金属元素:钛和硼的影响
钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成TiAl2相,成为结晶时的非自发核心,起细化锻造组织和焊缝组织的作用。Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,假如有硼存在则减速小到0.01%。
8、金属元素:铬和锶的影响
铬在铝板中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力侵蚀开裂敏感性。但会场增加淬火敏感性,使阳极氧化膜呈黄色,铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低,锶对挤压用铝合金中加入0.015%——0.03%锶,使铸锭中β-AlFeSi相变成汉字形α-AlFeSi相,减少了铸锭平均化时间60%——70%,进步材料力学机能和塑性加工性改善制品表面粗拙度。对于高硅(10%——13%)变形铝合金中加入0.02%——0.07%锶元素,可使初晶减少至较低限度,力学机能也明显进步,抗拉强度бb由233MPa进步到236MPa,屈服强度б0.2由204MPa提高到210MPa,延伸率б5由9%增至12%。在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工机能,可顺利地热轧和冷轧。
铜元素
铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。
硅元素
Al—Si合金系富铝部分在共晶温度577 时,硅在 固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。
Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。
镁元素
Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。
锰元素
Al-Mn合金系平平衡相图部分在共晶温度658时,锰在 固溶体中的最大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。Al-Mn合金是非时效硬化合金,即不可热处理强化。锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁,形成(Fe、Mn)Al6,减小铁的有害影响。锰是铝合金的重要元素,可以单独加入形成Al-Mn二元合金,更多的是和其它合金元素一同加入,因此大多铝合金中均含有锰。
锌元素
Al-Zn合金系平衡相图富铝部分275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。锌单独加入铝中,在变形条件下对铝合金强度的提高十分有限,同时存在应力腐蚀开裂、倾向,因而限制了它的应用。在铝中同时加入锌和镁,形成强化相Mg/Zn2,对合金产生明显的强化作用。Mg/Zn2含量从0.5%提高到12%时,可明显增加抗拉强度和屈服强度。镁的含量超过形成Mg/Zn2相所需超硬铝合金中,锌和镁的比例控制在2.7左右时,应力腐蚀开裂抗力最大。如在Al-Zn-Mg基础上加入铜元素,形成Al-Zn-Mg-Cu系合金,基强化效果在所有铝合金中最大,也是航天、航空工业、电力工业上的重要的铝合金材料。
铁和硅
铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅铸造合金中,均作为合金元素加的,在基它铝合金中,硅和铁是常见的杂质元素,对合金性能有明显的影响。它们主要以FeCl3和游离硅存在。在硅大于铁时,形成β-FeSiAl3(或 Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过高时会使铸件产生脆性。
钛和硼
钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成 TiAl2相,成为结晶时的非自发核心,起细化铸造组织和焊缝组织的作用。Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,如果有硼存在则减速小到0.01%。
铬
铬在Al-Mg-Si系、Al-Mg-Zn系、Al-Mg系合金中常见的添加元素。600℃时,铬在铝中溶解度为0.8%,室温时基本上不溶解。铬在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性。但会场增加淬火敏感性,使阳极氧化膜呈黄色。铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低。
锶
锶是表面活性元素,在结晶学上锶能改变金属间化合物相的行为。因此用锶元素进行变质处理能改善合金的塑性加工性和最终产品质量。由于锶的变质有效时间长、效果和再现性好等优点,近年来在Al-Si铸造合金中取代了钠的使用。对挤压用铝合金中加入0.015% 0.03%锶,使铸锭中β-AlFeSi相变成汉字形α-AlFeSi相,减少了铸锭均匀化时间60% 70%,提高材料力学性能和塑性加工性;改善制品表面粗糙度。对于高硅(10% 13%)变形铝合金中加入0.02% 0.07%锶元素,可使初晶减少至最低限度,力学性能也显著提高,抗拉强度бb 由233MPa提高到236MPa,屈服强度б0.2由204MPa提 高到210MPa,延伸率б5由9%增至12%。在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工性能,可顺利地热轧和冷轧。
锆
锆也是铝合金的常用添加剂。一般在铝合金中加入量为0.1%~0.3%,锆和铝形成ZrAl3化合物,可阻碍再结晶过程,细化再结晶晶粒。锆亦能细化铸造组织,但比钛的效果小。有锆存在时,会降低钛和硼细化晶粒的效果。在Al-Zn-Mg-Cu系合金中,由于锆对淬火敏感性的影响比铬和锰的小,因此宜用锆来代替铬和锰细化再结晶组织。
稀土元素
稀土元素加入铝合金中,使铝合金熔铸时增加成分过冷,细化晶粒,减少二次晶间距,减少合金中的气体和夹杂,并使夹杂相趋于球化。还可降低熔体表面张力,增加流动性,有利于浇注成锭,对工艺性能有着明显的影响。各种稀土加入量约为0.1%at%为好。混合稀土(La-Ce-Pr-Nd等混合)的添加,使Al-0.65%Mg-0.61%Si合金时效G?P区形成的临界温度降低。含镁的铝合金,能激发稀土元素的变质作用。
杂质元素
钒 在铝合金中形成VAl11难熔化合物,在熔铸过程中起细化晶粒作用,但比钛和锆的作用小。钒也有细化再结晶组织、提高再结晶温度的作用。
钙 在铝合金中固溶度极低,与铝形成CaAl4化合物,钙又是铝合金的超塑性元素,大约5%钙和5%锰的铝合金具有超塑性。钙和硅形成CaSi,不溶于铝,由于减小了硅的固溶量,可稍微提高工业纯铝的导电性能。钙能改善铝合金切削性能。CaSi2不能使铝合金热处理强化。微量钙有利于去除铝液中的氢。
铅、锡、铋 元素是低熔点金属,它们在铝中固溶度不大,略降低合金强度,但能改善切削性能。铋在凝固过程中膨胀,对补缩有利。高镁合金中加入铋可防止钠脆。
锑 主要用作铸造铝合金中的变质剂,变形铝合金很少使用。仅在Al-Mg变形铝合金中代替铋防止钠脆。锑元素加入某些Al-Zn-Mg-Cu系合金中,改善热压与冷压工艺性能。
铍 在变形铝合金中可改善氧化膜的结构,减少熔铸时的烧损和夹杂。铍是有毒元素,能使人产生过敏性中毒。因此,接触食品和饮料的铝合金中不能含有铍。焊接材料中的铍含量通常控制在8μg/ml以下。用作焊接基体的铝合金也应控制铍的含量。
钠 在铝中几乎不溶解,最大固溶度小于0.0025%,钠的熔点低(97.8℃),合金中存在钠时,在凝固过程中吸附在枝晶表面或晶界,热加工时,晶界上的钠形成液态吸附层,产生脆性开裂时,形成NaAlSi化合物,无游离钠存在,不产生“钠脆”。当镁含量超2%时,镁夺取硅,析出游离钠,产生“钠脆”。因此高镁铝合金不允许使用钠盐熔剂。防止“钠脆”的方法有氯化法,使钠形成NaCl排入渣中,加铋使之生成Na2Bi进入金属基体;加锑生成Na3Sb或加入稀土亦可起到相同的作用。
变质处理
1.钠变质处理
(1)金属钠变质 直接将金属钠加入铝液中,将使共晶硅变质。国内钠的加入量为0.1%(质量分数)左右,将其压入靠近坩埚底部, 1 ~ 2min反应完毕。因钠的沸点低、活泼,处理时将引起铝液沸腾和飞溅。钠极易与水反应,生成氧化钠和[H],造成不良影响。钠的密度小,容易产生密度偏析,结果坩埚的上部铝液中钠量过多,造成过变质现象而下部的铝液,因钠量过低而变质不足,因此,要注意搅拌。目前该工艺应用较少。
(2)钠盐变质 目前在生产中应用广泛的钠变质剂是含氟化物的钠盐和钾盐,起变质作用的主要是NaF。
钠变质处理过程中,要注意防止过变质组织的出现,否则会对性能产生不利影响。出现过变质组织是钠在局部区域含量过高所致。其主要原因是:没有采取细化初晶α的处理,变质剂易分解,且处理温度偏高或变质元素在铝液中产生偏析,从而使初晶α相集聚,于是造成初晶α间隙中钠含量过高,致使过变质带出现。
如果变质温度低,则反应速度慢,变质反应时间长。一般操作为:撒上变质剂,覆盖10~15min后,搅拌2min;或覆盖10~15min后,将已结壳的变质剂压入铝液内2~3min。其变质效果可维持30~4Omin。
钠盐变质的缺点为:加入量较大,能耗大,变质反应时间较长,对坩埚有一定的腐蚀作用。
近年来发展了双色质块。它分为上下两层,以颜色区分,上层熔点高,在铝液保温停留时,以一定速度向铝液提供钠,使之不衰退下层熔点低,反应速度快,使铝液在15min之内达到变质。这样,可维持变质时间2~3h,加入的质量分数为1.2% -1.3%,可满足低压铸造和金属型小件铸造的工艺要求。
(3)无毒变质剂 为了减少公害,应尽量少用或不用氟盐做变质剂。国内相继出现了几种无毒变质剂,其中一种是在750℃时发生反应而生成钠,使合金液变质:
Na2C03 = Na20 + CO2
Na20 + Mg = MgO + 2Na
CO2 + 2Mg = 2MgO + C
Na2C03 + 3Mg = 3MgO + 2Na + C
无毒变质剂是否对铝液有氧化作用,有待深入研究。
2.锶变质处理
近十年来,锶变质剂获得了广泛应用,似具有取代钠变质剂的趋势。
锶变质剂与钠盐变质剂具有同等效果。但锶变质具有以下主要优点:氧化少,易于加入和控制,过变质问题少锶不易挥发,故可延长变质的有效时间处理方便,无蒸气析出变质剂易于保存处理后,合金流动性好,对铸件壁厚的敏感性小。
由于锶的密度比铝液大,故呈悬浮状态沉淀,与铝液接触时间长,利用率可达60%~90%。通常较为合理的含量是0.01%~0.02%(质量分数)。若质量分数超过0.03%,则在共晶区内以初晶析出Al4SrSi4若质量分数超过0.08%,则对伸长率影响很大。锶吸收氢气倾向大,处理后应脱气。因与氯气的反应激烈,所以应选用氮气除氢。为了变质处理更有效,必须有一定的保持时间,这取决于中间合金中的Al4Sr的含量。日本开发了一种含Sr90%、Al10%(质量分数)的Ohromasco新型中间合金,用于生产效果极好。经锶变质剂处理后的铝合金,在重熔处理后,变质效果不会有明显的损失,可以获得永久性变质处理的效果。
Faderal.Mogul公司用锶做变质剂,每月生产24000只活塞。采用容量27t的熔炼炉熔化的铝液经过和含氮87%、含氯13%(体积分数)的混合气体,在容量为900kg的浇包中脱气,然后转入保温炉,加入Al-Si-Sr(质量分数
为14%Si,10%Sr)中间合金,在676℃加入时,流动性提高17%,而在665℃加入时,流动性可提高32.5%。因此,锶变质可降低铝液浇注温度。
俄罗斯使用长效变质剂处理AJI4合金液,其中以Al-Sr中间合金的方式最合理、方便,变质效果最好,主要表现为提高了铸件力学性能,延长了有效变质时间。工艺如下:经氮气精炼后在720 ~ 740℃用钟罩压入,Al-Sr中间合金块度5 ~ 15mm,加入含Sr30%(质量分数)的Al-Sr中间合金,经20 ~ 25min浇注,铝液保持6h,每隔1h取样一次。Al-Sr30%中间合金加入量为金属液质量的0.05%~ 0.07%,Al-Sr54%的中间合金加入量以0.06% ~0.08%最佳。铸件经T6处理,抗拉强度250 ~ 280MPa伸长率4% ~6%硬度70 ~ 90HBS。
国内的生产经验表明,加入ωSr=0.02% ~ 0.03%可获得良好的变质效果。生产上多用Al-Sr(ωSr=10%)或Al-Si-Sr(ωSr=10%)合金形式加入。变质温度为720 ~ 730℃。
锶是长效变质剂,变质有效时间达6-8h,重熔后仍有变质效果,无过变质现象。变质后,铝液流动性有所下降,故浇注温度要适当提高。锶变质的铝液针孔倾向较大,当铝液中存在氯、氟和磷时,与锶起反应,使变质作用消失,故不能用氯盐和氟盐精炼,不能用含磷的回炉料。
3.稀土变质处理
加入0.03% - 0.05%(质量分数)的La、Eu、Ce或混合稀土金属,可使Al-Si合金的共晶硅变质,其变质寿命较长。生产中多以混合稀土合金的中间合金形式加入,加入量为0.2%-0.3%(质量分数),这些合金同时兼有净化铝液作用。变质和精炼需要30~40min的孕育期。可以将稀土变质剂同炉料一起投入。变质温度720~740℃。使用回炉料时,要考虑其中的稀土含量。稀土变质剂对坩埚无腐蚀作用,能改善铝液的流动性。
4.锑变质处理
向合金中加入ωSb=0.1% ~0.5%的锑,使共晶硅细化,习惯上称为锑变质。变质温度720 ~ 740℃,变质处理存在约15 ~ 20min的孕育期,生产上多以Al-Sb(ωSb=5%~8%)合金加入。
锑是长效变质剂,变质寿命约100h,重熔后,仍有变质效果,对坩埚无腐蚀作用,铝液氧化吸气倾向小,不影响铝液的流动性。
应注意防止密度偏析。此外,钠能中和锑的变质作用:
Sh+3Na=Na3Sb
所以不能将钠与锑复合使用。
锑变质对冷却速度敏感,冷却速度快时,变质效果显著,故锑变质适用于金属型铸造。
除上述几种元素外,钡、铋等也有变质作用,这里不作叙述。
变质机理
变质的机理是多年来国内外学者致力研究的一个理论问题。深入了解变质过程中硅相的生长方式以及变质处理如何使这种生长方式得以改变,对于发展变质处理技术,无疑具有重要的作用。早期的变质处理理论常常是根据变质处理过程的一些现象来分析和臆断,难免与真实不符或片面。近年来由于晶体学理论的发展和电子显微镜等近代实验技术的应用,才有可能建立科学的变质理论。
1.早期的变质机理学说
早期的学说认为变质是由于Na增大合金结晶过冷度的作用。在通常的Al-Si合金中常含有微量的P,在未经变质前以AlP化合物形式存在。这种化合物的晶格结构与硅相同,都属于金刚石型,且晶格常数也相近(AlP的晶格常数为0.545μm,而Si为0.542μm,两者的失配度仅为0.5%),因而两者之间存在有共格关系。Si原子在铝液中又有很高的扩散速度,因而在共晶结晶过程中,Si即以AlP为晶核而在其上迅速长大。加Na变质后发生AlP + 3Na→Al + Na3P,生成的Na3P则与Si的晶格不同。因而变质处理的作用是消除了铝液中固有的晶核,从而使合金过冷至更低的温度才开始以均质形核为特征的结晶过程。在大的结晶过冷条件下形成大量的Si的均质晶核,因而使共晶硅细化。结晶过冷学说是从形核的角度来阐述变质的效果,但不能说明变质处理前后硅的共晶晶体形状发生的根本变化。
吸附薄膜学说认为,Na的变质作用是在Si的晶体表面形成一层对Si晶体生长起阻碍作用的Na的吸附薄膜。Na是表面活性元素,当铝液中生成Si晶体后,Na原子即富集在Si晶体与铝液的界面上,形成正吸附。由于表面活性元素的吸附有选择性,使得Si在不同的生长方向受到不同程度的抑制,在Si晶体的主要生长方向受到Na吸附薄膜的阻碍作用比其他方向更大,因而使得共晶硅成长为颗粒状。吸附薄膜学说虽比结晶过冷学说前进了一步,但仍未能正确阐明硅晶体的生长机制以及Na变质对于生长机制的影响。近年来,用深腐蚀方法显示铝硅合金中共晶硅的空间形状,并用扫描电子显微镜进行观察发现,在Na变质的铝硅合金的金相磨面上观察到的大量细小的共晶硅颗粒原来是带有很多细小晶枝的硅晶体的剖面,而不是单独的细小晶粒,因此这一学说也未能反映真实的情况。
2.近期的变质机理学说
近年来国内外有两种具有代表性的变质机理学说,即孪晶凹谷(TPRE)机制学说和界面台阶机制学说。
(1)孪晶凹谷机制学说 孪晶凹谷机制学说的要点如下:
1)硅的晶体结构特性与孪晶凹谷生长机制。硅的晶体属于金刚石立方型晶体结构(如下图)。由于晶体结构的特性使得晶体的生长是各向异性的,其中生长最慢的方向是垂直于最密排的(111)晶面的,即沿[111]晶向,而沿较不密排晶面的[211]系列的晶向则生长得较快。而且在硅晶体生长中易于沿(111)晶面长成孪晶,并且在孪晶的结晶前沿形成141°的凹谷。此凹谷处有较低的能位,容易接钠铝液中的Si原子或由Si原子构成的四面体,这样就更加速了沿[211]晶向的生长速度,从而促使硅晶体长成片状,可能是单片,也可能是出于同一结晶核心而以辐射状向四周伸展的一组硅片。但无论是单片或组片,硅片的面是与晶体的(111)晶面平行的。
a) 硅四面体(剖面线所示面为(111)晶面) b) 金刚石立方晶体中的多层孪晶
然而硅晶体的片状生长并不是一成不变的,在生长过程中会产生分枝和改变生长方向。分枝经常是产生70.5°的方向改变,形成的枝晶仍保持沿[211]晶向的择优生长趋势。至于产生分枝的驱动力则是由于当硅晶体以辐射状向外生长时,硅晶体生长端之间的距离不断增加,造成原子扩散距离变长,而分枝则使其缩短,从而有利于晶体的生长。至于晶体不断改变生长方向则是由于重复产生晶体分枝的结果。
硅晶体产生分枝和改变生长方向的倾向与合金的结晶过冷度及硅晶体生长的孪晶凹谷生长机制是否受到抑制有关。在结晶过冷度极小和孪晶凹谷机制不受阻碍时,硅晶体将一直向前伸展而不产生分枝或变更生长方向反之则会产生分枝或变更方向,由此就产生两种变质方法,即激冷变质和微量元素变质。用Na或Sr对铝硅合金的变质,即属于微量元素变质。
2)Na的变质作用。用Na进行变质处理后,铝液中含有大量Na原子。由于Na原子的选择性吸附,使硅晶体生长前端的孪晶凹谷处富集有Na的原子,从而降低了硅原子或硅原子四面体长上去的速度,因而使孪晶凹谷生长机制受到抑制。当这种机制被有效地抑制时,硅晶体的生长方向即改变晶向。这样就使得硅晶体由片状变为圆断面的纤维状。孪晶凹谷生长机制的抑制,也促进了硅晶体的分枝,因而Na变质使共晶硅由片状变成高度分枝的、弯曲而具有圆断面的纤维状。
硅晶体生长机制的改变导致了AI-Si共晶体生长方式的变化。在未经变质条件下,硅与铝的共晶结晶属于小晶面/非小晶面共生方式。作为小晶面相的硅具有比铝快得多的生长速率,因而固-液界面是不平滑的,硅晶体总是有一段超前距离。在这种生长条件下,共晶体的形态由主导相硅相所决定。经过Na变质后,由于生长机制的改变,硅晶体的生长速率比在未变质条件下大为降低,国-液界面是平滑的,硅相的超前量为零,硅相由小平面型生长变为非小平面型生长。硅相与铝相伴同生长的结果形成互相协调的共晶组织。
3)激冷变质与微量元素变质的复合作用。采用激冷变质,即通过加大冷却速率,增大硅晶体生长前沿处的过冷度,也能收到一定的变质效果。激冷变质的作用在于改变共晶两相的扩散速率,因而使铝相生长速率的降低程度比硅相小。同时硅相的小晶面结晶倾向随过冷度的增加而减小,因而当达到一定的临界转变温度时,能形成纤维状生长方式。增大结晶过冷度也有利于促进密集分枝。微量元素变质与激冷变质具有复合的作用。如经过同样变质处理的铝液,在薄壁铸件上产生的变质效果比厚壁铸件大。又如金属型铸造时,辅之以Na变质,可使纤维状硅晶体进一步细化,而使合金的力学性能得到进一步的提高。
(2)界面台阶机制学说 界面台阶机制学说的要点如下:
1)界面台阶生长源。这种理论根据试验研究结果指出,在未经变质的铝硅合金中,生长中的硅晶体表面上只是偶然地存在有孪晶,其密度极小。而在晶体生长前沿上,存在很多固有的界面台阶。这些台阶提供了适于接钠铝液中硅原子或硅原子八面体的场所,从而使硅晶体择优生长成为板片状。当通过激冷变质时,可供共晶硅细化,并促进密集分枝,使之呈纤维状生长。由于过冷度增大,硅晶体生长的各向异性受到抑制,因而晶体的横断面近似于圆形。尽管如此,硅晶体的生长机制并未因激冷而发生根本的变化,仍是以界面台阶作为生长源。
2)Na的变质作用。当将铝硅合金用Na(或Sr等)变质剂进行变质处理后,硅晶体的生长动力学发生了根本的变化。其一是Na原子吸附于硅晶体生长前沿的界面台阶处,"毒化"了界面台阶生长源,使之不能再起接钠硅原子的作用其二是由于Na变质处理的作用,在硅晶体表面上产生了高密度的孪晶(称为诱发孪晶),而由孪晶凹谷代替界面台阶来接纳硅原子,从而构成硅晶体的生长源,即TPRE机制在硅晶体生长过程中起统治作用。
这种理论将诱发孪晶的产生归因于吸附Na原子使相邻晶面上Si原子的排列发生变化。Na原子吸附在硅晶体生长前沿处的密排,由于与Si原子在尺寸上的差别,使得该层原子的排列发生变化,从而在与其相垂直酌面上形成孪晶。根据理论计算,当尺寸因数即r变质剂/rSi = 1.648时,最适于形成孪晶。实际上,尺寸因数与这一理论值相接近的元素(Na为1.58)均有诱发孪晶的条件。
3)变质处理条件下硅晶体的结构。变质处理后,硅晶体按照孪晶凹谷机制生长的结构中,晶体主干沿[100]晶向生长,而分枝则沿[211]晶向(多数情况下有四个对称的晶枝在空间中互成90°)生长。这种理论认为,变质处理并不使硅的小晶面生长方式有所改变。同时,硅晶体的生长仍保留其各向异性的特征,表现在硅晶体(包括主干和晶枝)的横断面仍为片状。
上面介绍的关于共晶硅生长的两种机制理论-孪晶凹谷生长机制和界面台阶生长机制都有大量试验研究作为依据,具有可信性。但两种理论中有一些方面是不一致的,因而关于这一理论问题,还有必要作进一步的研究。
变质效果检验
1.断口检验
用砂型或金属型浇注φ20mm的圆棒,凝固冷却后击断,观察其断口。如果断口呈银白色,晶粒细小,呈丝绒状,无硅相的小亮点,则表明变质良好若断口呈暗灰色,晶粒粗大,有明显的硅相亮点,则表明变质不足,需要再次变质。
2.热分析法
根据各变质元素对AI-Si合金凝固特性的影响不同,可以通过热分析曲线加以判别。
(1)钠和锶的变质检验 钠变质铝液的冷却曲线特点是:①共晶平台的温度比未变质要低8℃左右②典型的共晶平台表现为两个阶段,先是伪平台(pseudo-shelf),而后转为真正的平台,约565℃。锶变质的过冷度约4℃。
(2)锑变质的检验 锑变质引起冷却曲线的过冷度较小,约2 ~ 3℃,处于一般热电偶的误差范围之内,因此影响了测报率。可用凝固时间作为锑变质程度的判据。对一定成分的合金和在一定的凝固条件下,存在着一个临界的凝固时间,若共晶凝固时间<临界的凝固时间,则变质否则变质不良或不变质。
变质处理指的是向金属液内添加少量物质,促进金属液生核或改变晶体生长过程的方法。而铝合金制造过程中变质处理是必不可少的工艺,加入不同的变质剂对合金的工艺性能有着不同的影响。
铝合金的制备主要有铸造和压力变形两种。铝合金制造过程中的缺陷有氧化夹渣、气孔气泡、缩松疏松、裂纹等。这些缺陷严重影响铝合金的性能,容易造成断裂和磨损。为了防止这些缺陷的产生,提高铝合金的工艺性能,加入变质剂就是一种有效的措施。变质处理的目的主要是细化晶粒、改善脆性相、改善晶粒形态和分布状况。变质处理的机理众说纷纭,主要分为两种:一是不溶性质点存在于金属液中的非均质晶核作用二是以溶质的偏析及吸附作用。在变质剂完全溶解于金属液且不发生化学反应生成化合物的情况下,变质剂就像溶质一样,在凝固过程中,由于偏析使固/液界面前沿液体的平衡液相线温度降低,界面处成分过冷度减少,致使界面上晶体的生长受到抑制,枝晶根部出现缩颈而易于分离。同时,由于变质剂易偏析和吸附,故阻碍晶体生长的作用也加强。因此,往往只需加入少量变质剂,就能显著细化晶粒。其中,不同的变质剂所发挥的作用有所不同,常见以下几种变质剂:
(1) 钠盐变质剂:Na元素可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶
温度,增加过冷度,细化晶粒。其细化效果,对冷的慢的砂型、石膏型铸件而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件有重要的作用。钠盐变质法的成本低,制备也比较简单,适合批量小、要求不很高的产品,但其缺点是,由于钠是化学活泼性元素,在变质处理中氧化、烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。钠还使Al-Mg系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化,所以Al-Mg系合金和含Mg量高于2%的Al-Si合金,一般都不用钠盐变质剂来进行变质处理,以免出现所谓“钠脆”现象。
(2) 铝锶中间合金变质剂:这是国外使用的较多的一种高效变质方法。加入量为炉
料总重量的0.04-0.05%的Sr。其优点是变质效果比钠盐好,氧化烧损也比钠盐小,有效变质持续时间长,对坩埚的腐蚀性也比钠盐小,因而可使坩埚的
使用寿命延长。这种变质法操作也比使用钠盐安全卫生,不产生对人体和环境有害的气体,变质效果也比钠盐好,一般有80-90%的良好变质合格率。其缺点是,成本比钠盐高,要预先配制成中间合金,没有钠盐那样的有分散铸件缩窝的作用。
(3) 铝锑中间合金变质剂:这种方法也是用的较多的一种长效变质方法。加入量为
炉料总重量的0.2-0.3%的Sb,可获得长效变质效果,即使到铝合金重熔,此变质效果仍起作用。其变质效果与合金的冷却速度有关,冷却速度快(如在金属型中铸造),变质效果好冷却速度慢(如在石膏型、砂型中铸造),则变质效果差。但应注意,已经过钠盐或锶盐或铝锶中间合金变质过的铝合金不能再加Sb来变质,因为这样会形成Na3Sb化合物而使合金的晶粒粗大、性能变坏,从而反使钠、锶的变质效果降低。
(4) 铝钛中间合金变质剂:其中含有4%左右的钛,钛是细化晶粒效果很好的元素,
形成的TiAl3成为初晶α枝晶的异质结晶核种,能有效地细化晶粒和防止铸造裂纹,对易产生铸造裂纹的Al-Cu-Mg合金(如ZL207)很合适。由于钛量太多,又是通过与炉料一起熔化、扩散、融合来细化晶粒的,故其细化效果虽没有钛硼熔剂好,但仍可达到一级晶粒的效果。其次是TiAl3的密度比铝合金液大,如合金保温时间过长,就有可能沉降,凝聚成夹杂物,要严格注意。
(5) SR813磷复合细化剂和SR814磷盐复合细化剂:这是近年开发的一种适合过
共晶型铝硅合金的初晶Si的细化剂。因为P在铝合金液中形成AlP的微细结晶核种,细化晶粒的效果很好,有效持续孕育时间也长,但它会与Na、Sr、Sb形成化合物,降低它们对共晶硅结晶的细化效果,所以,已经使用Na、Sr、Sb作过变质处理的铝合金,不要再加P来作变质处理。
(6) 铝钡中间合金变质剂:这是利用1-4%Ba-Al中间合金或钡盐来对铝合金液进行
变质处理的方法。其优点是变质过程中无吸气倾向,合金经变质处理强度高,不腐蚀坩埚,也不污染环境。缺点是变质效果不如钠,变质效果受冷却速度的影响大,变质后合金的延伸率提高不多
除了以上几种常用的变质剂,关于细化晶粒的变质剂的研究正在不断进行中。铝钛硼丝细化法是一种最先进的细化晶粒的现代科技方法。其优点是:①细化效果好,细化剂实际利用率高,使用量大大节省②由于细化剂均匀地进入所有待细化的铝合金液,故细化后的组织均匀,无粗细晶粒交错的混晶区,从而大大提高了合金的强度和延伸率,减少了裂纹等废品③避免了上述TiAl3和TiB2的沉降,凝集所引起的夹杂和熔炉的结瘤,减少了清炉和洗炉的工作量④很适合长时间大批量的连续铸造⑤实现了细化处理自动化无人化,省人省事⑥使细化处理和合金液凝固时间大为缩短,提高了生产效率⑦因无TiAl3和TiB2等夹杂物的沉降、凝集,使产品在阳极氧化处理后的表面质量好,特别是箔材、印刷板、激光全息膜、饮料罐和食品罐等薄或超薄铝材的最理想的细化剂。很适用作变形铝合金的晶粒细化处理。稀土变质法利用Al-RE中间合金的稀土变质法,是在铝合金液温度为720-760℃时,加入占炉料总重量的0.2-1.0%的Al-RE中间合金。其优点是它对α(Al)及共晶组织均有明显的细化效果,还兼有较好的精炼净化作用,可显著提高合金的机械性能,变质有效时间也长。缺点是当操作不当时,会使稀土氧化,烧损也较大,还可能产生高熔点的偏聚物沉降。
要想制备优质的铝合金,变质处理就必不可少。当今使用的变质剂已经品种繁多,生产者可以根据成品的性能需求来选择经济实惠的变质剂。然而,人类对材料的性能的追求永不止步。这就说明,变质处理工艺将会更加完善、高效以及经济化。有关变质处理的研究将会成为有色金属领域的热门。
以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。即Si,Fe ,Cu,Mn,Mg,Cr,Ni,Zn,还有Ti,Zr,这是里面常用的合金元素,一般都是执行国标GB-T3190--2008.具体每种材料的合金成分都不一样。按照系列为1,2,3,4,5,6,7,这几个系列,每个系列的又有很大的差别,同一系列基本差不多的。
1)铝硅系合金,也叫“硅铝明”或“矽铝明”。有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在10%~25%。有时添加0.2%~0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。有时添加适量的铜和镁,能提高合金的力学性能和耐热性。此类合金广泛用于制造活塞等部件。
(2)铝铜合金,含铜4.5%~5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。
(3)铝镁合金,密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。
(4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。在铸造条件下,该合金有淬火作用,即“自行淬火”。不经热处理就可使用,以变质热处理后,铸件有较高的强度。经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。
二、铝合金特点及分类
铝合金密度低,但比强度高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。
铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,力学性能高于铸态。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、日常生活用品、建筑用门窗等。
铝合金按加工方法可以分为变形铝合金和铸造铝合金。变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。
铝合金可以采用热处理获得良好的机械性能,物理性能和抗腐蚀性能。
铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金和铝锌合金。
三、各种常用铝合金区分
1、【纯铝产品】
纯铝分冶炼品和压力加工品两类,前者以化学成份Al表示,后者用汉语拼音LG(铝、工业用的)表示。2、【压力加工铝合金】
铝合金压力加工产品分为防锈(LF)、硬质(LY)、锻造(LD)、超硬(LC)、包覆(LB)、特殊(LT)及钎焊(LQ)等七类。常用铝合金材料的状态为退火(M焖火)、硬化(Y)、热轧(R)等三种。
3、【铝材】
铝和铝合金经加工成一定形状的材料统称铝材,包括板材、带材、箔材、管材、棒材、线材、型材等。
4、【铸造铝合金】
[编辑本段]
铸造铝合金(ZL)按成分中铝以外的主要元素硅、铜、镁、锌分为四类,代号编码分别为100、200、300、400。
5、【高强度铝合金】
高强度铝合金指其抗拉强度大于480兆帕的铝合金,主要是压力加工铝合金中硬铝合金类、超硬铝合金类和铸造合金类。
6、【不同牌号铝合金的典型用途】
[编辑本段]
合 金 典 型 用 途
1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉
1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途
1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具
1145 包装及绝热铝箔,热交换器
1199 电解电容器箔,光学反光沉积膜
1350 电线、导电绞线、汇流排、变压器带材
2011 螺钉及要求有良好切削性能的机械加工产品
2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件
2017 是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件
2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件
2036 汽车车身钣金件
2048 航空航天器结构件与兵器结构零件
2124 航空航天器结构件
2218 飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环
2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300摄氏度。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力
2319 焊拉2219合金的焊条和填充焊料
2618 模锻件与自由锻件。活塞和航空发动机零件
2A01 工作温度小于等于100摄氏度的结构铆钉
2A02 工作温度200~300摄氏度的涡轮喷气发动机的轴向压气机叶片
2A06 工作温度150~250摄氏度的飞机结构及工作温度125~250摄氏度的航空器结构铆钉
2A10 强度比2A01合金的高,用于制造工作温度小于等于100摄氏度的航空器结构铆钉
2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉
2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件
2A14 形状复杂的自由锻件与模锻件
2A16 工作温度250~300摄氏度的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱
2A17 工作温度225~250摄氏底的航空器零件
2A50 形状复杂的中等强度零件
2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等
2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等
2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件
2A90 航空发动机活塞
3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件,或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化工产品处理与贮存装置,运输液体产品的槽、罐,以薄板加工的各种压力容器与管道
3004 全铝易拉罐罐身,要求有比3003合金更高强度的零部件,化工产品生产与贮存装置,薄板加工件,建筑加工件,建筑工具,各种灯具零部件
3105 房间隔断、档板、活动房板、檐槽和落水管,薄板成形加工件,瓶盖、瓶塞等
3A21 飞机油箱、油路导管、铆钉线材等;建筑材料与食品等工业装备等
5005 与3003合金相似,具有中等强度与良好的抗蚀性。用作导体、炊具、仪表板、壳与建筑装饰件。阳极氧化膜比3003合金上的氧化膜更加明亮,并与6063合金的色调协调一致
5050 薄板可作为致冷机与冰箱的内衬板,汽车气管、油管与农业灌溉管;也可加工厚板、管材、棒材、异形材和线材等
5052 此合金有良好的成形加工性能、抗蚀性、可烛性、疲劳强度与中等的静态强度,用于制造飞机油箱、油管,以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品等
5056 镁合金与电缆护套铆钉、拉链、钉子等;包铝的线材广泛用于加工农业捕虫器罩,以及需要有高抗蚀性的其他场合
5083 用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,诸如舰艇、汽车和飞机板焊接件;需严格防火的压力容器、致冷装置、电视塔、钻探设备、交通运输设备、导弹元件、装甲等
5086 用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,例如舰艇、汽车、飞机、低温设备、电视塔、钻井装置、运输设备、导弹零部件与甲板等
5154 焊接结构、贮槽、压力容器、船舶结构与海上设施、运输槽罐
5182 薄板用于加工易拉罐盖,汽车车身板、操纵盘、加强件、托架等零部件
5252 用于制造有较高强度的装饰件,如汽车等的装饰性零部件。在阳极氧化后具有光亮透明的氧化膜
5254 过氧化氢及其他化工产品容器
5356 焊接镁含量大于3%的铝-镁合金焊条及焊丝
5454 焊接结构,压力容器,海洋设施管道
5456 装甲板、高强度焊接结构、贮槽、压力容器、船舶材料
5457 经抛光与阳极氧化处理的汽车及其他装备的装饰件
5652 过氧化氢及其他化工产品贮存容器
5657 经抛光与阳极氧化处理的汽车及其他装备的装饰件,但在任何情况下必须确保材料具有细的晶粒组织
5A02 飞机油箱与导管,焊丝,铆钉,船舶结构件
5A03 中等强度焊接结构,冷冲压零件,焊接容器,焊丝,可用来代替5A02合金
5A05 焊接结构件,飞机蒙皮骨架
5A06 焊接结构,冷模锻零件,焊拉容器受力零件,飞机蒙皮骨部件
5A12 焊接结构件,防弹甲板
6005 挤压型材与管材,用于要求强高大于6063合金的结构件,如梯子、电视天线等
6009 汽车车身板
6010 薄板:汽车车身
6061 要求有一定强度、可焊性与抗蚀性高的各种工业结构性,如制造卡车、塔式建筑、船舶、电车、家具、机械零件、精密加工等用的管、棒、形材、板材
6063 建筑型材,灌溉管材以及供车辆、台架、家具、栏栅等用的挤压材料
6066 锻件及焊接结构挤压材料
6070 重载焊接结构与汽车工业用的挤压材料与管材
6101 公共汽车用高强度棒材、电导体与散热器材等
6151 用于模锻曲轴零件、机器零件与生产轧制环,供既要求有良好的可锻性能、高的强度,又要有良好抗蚀性之用
6201 高强度导电棒材与线材
6205 厚板、踏板与耐高冲击的挤压件
6262 要求抗蚀性优于2011和2017合金的有螺纹的高应力零件
6351 车辆的挤压结构件,水、石油等的输送管道
6463 建筑与各种器具型材,以及经阳极氧化处理后有明亮表面的汽车装饰件
6A02 飞机发动机零件,形状复杂的锻件与模锻件
7005 挤压材料,用于制造既要有高的强度又要有高的断裂韧性的焊接结构,如交通运输车辆的桁架、杆件、容器;大型热交换器,以及焊接后不能进行固熔处理的部件;还可用于制造体育器材如网球拍与垒球棒
7039 冷冻容器、低温器械与贮存箱,消防压力器材,军用器材、装甲板、导弹装置
7049 用于锻造静态强度与7079-T6合金的相同而又要求有高的抗应力腐蚀开裂勇力的零件,如飞机与导弹零件——起落架液压缸和挤压件。零件的疲劳性能大致与7075-T6合金的相等,而韧性稍高
7050 飞机结构件用中厚板、挤压件、自由锻件与模锻件。制造这类零件对合金的要求是:抗剥落腐蚀、应力腐蚀开裂能力、断裂韧性与抗疲劳性能都高
7072 空调器铝箔与特薄带材;2219、3003、3004、5050、5052、5154、6061、7075、7475、7178合金板材与管材的包覆层
7075 用于制造飞机结构及期货 他要求强度高、抗腐蚀性能强的高应力结构件、模具制造
7175 用于锻造航空器用的高强度结构性。T736材料有良好的综合性能,即强度、抗剥落腐蚀与抗应力腐蚀开裂性能、断裂韧性、疲劳强度都高
7178 供制造航空航天器的要求抗压屈服强度高的零部件
7475 机身用的包铝的与未包铝的板材,机翼骨架、桁条等。其他既要有高的强度又要有高的断裂韧性的零部件
7A04 飞机蒙皮、螺钉、以及受力构件如大梁桁条、隔框、翼肋、起落架等
7、【变形铝及铝合金状态、代号】
1.范围
本标准规定了变形铝合金的状态代号。
本标准适用于铝及铝加工产品。
2.基本原则
2.1基础状态代号用一个英文大写字母表示。
2.2细分状态代号采用基础状态代号后跟一位或多位阿拉伯数字表示。
2.3基本状态代号
基本状态分为5种
代号 名称 说明与应用
F 自由加工状态 适用于在成型过程中,对于加工硬化和热处理条件特殊要求的产品,该状态产品的力学性能不作规定。
O 退火状态 适用于经完全退火获得最低强度的加工产品。
H 加工硬化状态 适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理。
W 固熔热处理状态 处理状态 一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处于自然时效阶段。
T 热处理状态(不同于F、O、H状态) 适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。T代号后面必须跟有一位或多位阿拉伯数字。