建材秒知道
登录
建材号 > 铝合金 > 正文

钛铝合金的金相组织是什么样的

爱听歌的钢笔
激昂的哈密瓜,数据线
2022-12-22 13:30:24

钛铝合金的金相组织是什么样的?

最佳答案
专注的芹菜
个性的香菇
2025-08-02 23:21:28

纯钛是银白色的金属,它具有许多优良性能。钛的密度为4.54g/cm3,比钢轻43%

,比久负盛名的轻金属镁稍重一些。机械强度却与钢相差不多,比铝大两倍,比镁大五倍。钛耐高温,熔点1942k,比黄金高近1000k,比钢高近500k。

钛属于化学性质比较活泼的金属。加热时能与o2、n2、h2、s和卤素等非金属作用。但在常温下,钛表面易生成一层极薄的致密的氧化物保护膜,可以抵抗强酸甚至王水的作用,表现出强的抗腐蚀性。因此,一般金属在酸、碱、盐的溶液中变得千疮百孔而钛却安然无恙。

液态钛几乎能溶解所有的金属,因此可以和多种金属形成合金。钛加入钢中制得的钛钢坚韧而富有弹性。钛与金属al、sb、be、cr、fe等生成填隙式化合物或金属间化合物。

钛合金制成飞机比其它金属制成同样重的飞机多载旅客100多人。制成的潜艇,既能抗海水腐蚀,又能抗深层压力,其下潜深度比不锈钢潜艇增加80%。同时,钛无磁性,不会被水雷发现,具有很好的反监护作用。

钛具有“亲生物“’性。在人体内,能抵抗分泌物的腐蚀且无毒,对任何杀菌方法都适应。因此被广泛用于制医疗器械,制人造髋关节、膝关节、肩关节、胁关节、头盖骨,主动心瓣、骨骼固定夹。当新的肌肉纤维环包在这些“钛骨”上时,这些钛骨就开始维系着人体的正常活动。

钛在人体中分布广泛,正常人体中的含量为每70kg体重不超过15mg,其作用尚不清楚。但钛能刺激吞噬细胞,使免疫力增强这一作用已被证实。

最新回答
落后的溪流
落寞的白开水
2025-08-02 23:21:28

1 总论

1.1 变形铝及其合金的分类和状态

1.2 变形铝合金中的主要元素及相组成和力学性能

1.3 变形铝合金铸锭(DC)及其加工制品在各种状态下的组织与性质

1.3.1 半连续铸造铸锭(DC)的组织和均匀化

1.3.2 变形铝及其合金的塑性变形和半成品的恢复与再结晶

1.3.3 变形铝及其合金的动态恢复和动态再结晶及制品热加工状态的组织和性质

1.4 冷压延、冷拉伸及冷拔、冷轧状态的组织

1.5 变形铝合金热处理状态的组织和性质

1.5.1 退火状态的组织和性质

1.5.2 淬火及时效状态的组织和性质

1.5.3 淬火及时效状态组织的电子显微镜观察和电子衍衬金相分析

1.6 变形铝合金制品缺陷金相分析和对制品性能的影响

1.6.1 氧化膜

1.6.2 小亮点

1.6.3 光亮晶粒

1.6.4 羽毛状晶(花边状组织)

1.6.5 铜扩散

1.6.6 缩尾

1.6.7 粗晶环

1.6.8 过烧

2 1×××系(工业纯铝)

2.1 杂质含量及相组成

2.2 热处理特性

2.3铸锭(DC)及加工制品的组织和性能

3 2×××系(铝-铜系)合金

3.1 2×××系合金之一——铝-铜-镁系合金

3.1.1 化学成分及相组成

3.1.2 热处理特性

3.1.3 铸锭(DC)及加工制品的组织和性能

3.2 2×××系合金之二一一铝-铜-镁-铁-镍系合金

3.2.1 化学成分及相组成

3.2.2 热处理特性

3.2.3 铸锭(DC)及加工制品的组织和性能

3.3 2×××系合金之三——铝-铜-锰系合金

3.3.1 化学成分及相组成

3.3.2 热处理特性

3.3.3 铸锭(DC)及加工制品的组织和性能

4 3×××系(铝-锰系)合金

4.1 3×××系合金之一——3A21合金

4.1.1 化学成分及相组成

4.1.2 热处理特性

4.1.3 铸锭(DC)及加工制品的组织和性能

4.2 3×××系合金之二——3102合金

4.2.1 化学成分及相组成

4.2.2 热处理特性

4.2.3 铸轧料及各状态的组织和性能

4.3 3×××系合金之三——易拉罐体用AA3004/3104合金

4.3.1 化学成分及相组成

4.3.2 合金的热处理

4.3.3 铸锭与加工状态组织

5 4×××系(铝-硅系)合金

5.1 化学成分、变质处理与相组成

5.2 热处理特性

5.3 铸锭(DC)及加工制品的组织和性能

6 5×××系(铝-镁系)合金

6.1 化学成分及相组成

6.2 热处理特性

6.3 铸锭(Dc)及加工制品的组织和性能

7 6×××系(铝-镁-硅系)合金

7.1 6x××系合金之一——铝-镁-硅-铜系合金

7.1.1 化学成分及相组成

7.1.2 热处理特性

7.1.3 铸锭(Dc)及加工制品的组织和性能

7.2 6×××系合金之二——铝-镁-硅系合金

7.2.1 化学成分及相组成

7.2.2 热处理特性

7.2.3 铸锭(Dc)及加工制品的组织和性能

8 7×××系(铝-锌-镁-铜系)铝合金

8.1 化学成分及相组成

8.1.1 A1-Zn-Mg合金

8.1.2 A1-zn-Mg-Cu合金

8.2 热处理特性

8.2.1 均匀化处理

8.2.2 固溶处理

8.2.3 时效

8.2.4 退火

8.3 铸锭(DC)及加工制品的组织和性能

9 8×××系(以铝-铜-锂系为主)合金

9.1 化学成分和相组成

9.1.1 化学成分

9.1.2 相组成

9.2 热处理特性

9.3 铸锭(DC)及加工制品的组织和性能

10 粉末冶金铝合金

10.1 铝合金粉末

10.2 锭坯及加工制品特性

10.3 锭坯及加工制品的组织和性能

11 铝合金双金属复合板

11.1 铝合金双金属复合板

11.2 热轧复合

附录

附录1 变形铝合金化学成分

附录2 变形铝合金主要相晶体结构及浸蚀前后的特征

附录3 变形铝合金部分制品的力学性能参考数据

附录4 铝合金制品的表示方法

附录5 铝合金制品的状态代号

参考文献

部分照片彩图

唠叨的哈密瓜,数据线
尊敬的发夹
2025-08-02 23:21:28

ADC12是压铸铝合金。用于发动机的缸体、气缸头、气缸盖等零部件的制造。

其正常的组织为:α(Al)+(α+Si)共晶+少量Al2Cu+少量Mg2Si+杂质AlFeMnSi和细针状T(Al2FeSi2)相。

该合金的Cu的含量设计为2%左右。Cu的含量减少就会使金属间化合物Al2Cu减少。Al2Cu相属于硬质点强化相;对合金的耐磨性提高发挥了作用。同时,在合金的凝固过程中的前期就弥散析出,细化了铸态组织。提高了合金的韧性。

综上所述,Cu的含量减少会给合金的组织与性能带来不利的影响。

参看该合金的正常金相图:

糟糕的书本
留胡子的大侠
2025-08-02 23:21:28
一般的按装方法都是把搞好的铝合金架子用罗丝固定在墙上的,那些小缝隙就用水泥沙浆填平就可以的了.一般高铝合金的只是装好窗,其它的都是泥水工来做的.你不用担心的,你要求他们怎么做他们都会做的,在你看来是很难的事,但是他们就有办法的.

深情的宝贝
粗犷的薯片
2025-08-02 23:21:28

在时效热处理过程中,“6063铝合”金组织有以下几个变化过程:

1、形成溶质原子偏聚区-G·P(Ⅰ)区

在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。

2、G·P区有序化-形成G·P(Ⅱ)区

随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。

3、形成过渡相θ

随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。

4、形成稳定的θ相

过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。

魁梧的夕阳
烂漫的蓝天
2025-08-02 23:21:28
那就拿铝的说吧

一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。

6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:

在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。

在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择

6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。

另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。

2.杂质元素的影响

①铁,铁是铝合金中的主要杂质元素,在6063合金中,国家标准中规定不大于0.35,如果生产中用一级工业铝锭,一般铁含量可控制在0.25以下,但如果为了降低生产成本,大量使用回收废铝或等外铝,铁就根容易超标。Fe在铝中的存在形态有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械性能、抗蚀性能变差,氧化后的型材表面发青,光泽下降,着色后得不到纯正色调,因此,铁含量必须加以控制。

为了减少铁的有害影响可采取如下措施。

a)熔炼、铸造用所有工具在使用前涂涮涂料,尽可能减少铁溶人铝液。

b)细化晶粒,使铁相变细,变小,减少其有害作用。

c)加入适量的锶,使β相转变成α相,减少其有害作用。

d)对废杂料细心挑选,尽可能的减少铁丝、铁钉、铁屑等杂物进入熔铝炉造成铁含量升高。

②其它杂质元素

其它杂质元素在电解铝锭中都很少,远远低于国家标准,在使用回收废杂铝时就可能超过标准;在生产中,不但要控制每个元素不能超标,而且要控制杂质元素总量也不能超标,当单个元素含量不超标,但总量超标时,这些杂质元素同样对型材质量有很大影响。特别需要提出强调的是,实践证明,锌含量到0.05时(国标中不大于0.1)型材氧化后表面就出现白色斑点,因此锌含量要控制到0.05以下。 三.6063铝合金的熔炼 1.控制好熔炼温度

铝合金熔炼是生产优质铸棒的最重要工艺环节之一,若工艺控制不当,会在铸捧中产生夹渣、气孔,晶粒粗大,羽毛晶等多种铸造缺陷,因此必须严加控制。

6063铝合金的熔炼温度控制在750-760℃之间为佳,过低会增大夹渣的产生,过高会增大吸氢、氧化、氮化烧损。研究表明,铝液中氢气的溶解度在760℃以上急剧上升,当热减少吸氢的途径还有许多,如烘干溶炼炉和熔炼工具,防止使用熔剂受潮变质等。但熔炼温度是最敏感因素之一,过离的熔炼温度不但浪费能源,增加成本,而且是造成气孔,晶粒粗大,羽毛晶等缺陷的直接成因。

2.选用优良的熔剂和适当的精炼工艺

熔剂是铝合金熔炼中使用的重要辅助材料,目前市场上所售熔剂中主要成份为氯化物,氟化物,其中氯化物吸水性强,容易受潮,因此,熔剂的生产中必须烘干所用原料,彻底除去水份,包装要密封,运输、保管中要防止破损,还要注意生产日期,如保管日期过长,同样会发生吸潮现象,在6063铝合金的熔炼中,使用的除渣剂、精炼剂、覆盖剂等熔剂如果吸潮,都会使铝液产生不同程度的吸氢。

选择好的精炼剂,选择合适的精练工艺也是非常重要的,目前6063铝合金的精炼绝大多数采用喷粉精炼,这种精炼方法能使精炼剂与铝液充分接触,可使精炼剂发挥最大效能。虽然这个特点是显而易见的,但是精炼工艺也必须注意,否则得不到应有效果,喷粉精炼中所用氮气压力以小为好,能满足吹出粉剂为佳,精炼中如果使用的氮气不是高纯氯(99.99%N2),吹入铝液的氮气越多,氟气中的水份使铝液产生的氧化和吸氢越多。另外,氟气压力高,侣液产生的翻卷波浪大,增大产生氧化夹渣的可能性。如果精炼中使用的是高纯氮,精炼压力大,产生的气泡大,大气泡在铝液中的浮力大,气泡迅速上浮,在铝液中的停留时间短,除氢效果并不好,浪费氮气,增加成本。因此氮气应少用,精炼剂应多用,多用精炼剂只有好处,没有坏处。喷粉精炼的工艺要点是用尽可能少的气体,喷进铝液尽可能多的精炼剂。

3.晶粒细化

晶粒细化是铝合金熔铸中晕重要的工艺之一,也是解决气孔、晶粒粗大、光亮晶、羽毛晶、裂纹等铸造缺陷的最有效措施之一。在合金铸造中,均是非平衡结晶,所有的杂质元素(当然也包括合金元素)绝大部分集中分布在晶界,晶粒越小,晶界面积就越大,杂质元素(或合金元素)的均匀度就越高。对杂质元素而言,均匀度高,可减少它的有害作用,甚至将少量杂质元素的有害变为有益;对合金元素面言,均匀度高,可发挥合金元素更大的合金化艘能,达到充分利用资源的目的。

细化晶粒、增大晶界面积、增大元素均匀度的作用可通过下面的计算加以说明。

假设金属块1与2有同样的体积V,均由立方体晶粒构成,金属块1的晶粒边长为2a,2的边长为a,那么金属块1的晶界面积为: 金属块2的晶界面积为: 金属块2的晶界面积是金属块1的2倍。

由此可见合金晶粒直径减小一倍,晶界面积就要增大—倍,晶界单位面积上的杂质元素将减少一倍。

在6063铝合金的生产中,对磨砂料来说,由于要通过腐蚀使型材产生均匀砂面,那么合金元素及杂质元素的均匀分布就显得尤为重要。晶粒越细,合金元素(杂质元素)的分布越均匀,腐蚀后得到的砂面就越均匀。 四.6063铝合金的浇铸 1.选择合理的浇铸温度

合理的浇铸温度也是生产出优质铝棒的重要因素,温度过低,易产生夹渣、针孔等铸造缺陷。温度过高,易产生晶粒粗大、羽毛晶等铸造缺陷。

做了晶粒细化处理后的6063铝合金液,铸造温度可适当提高,一般可控制在720-740℃之间,这是因为:①铝液经晶粒细化处理后变粘,容易凝固结晶。②铝棒在铸造中结晶前沿有一个液固两相过度带,较高的铸造温度有较窄的过度带,过度带窄有利于结晶前沿排出的气体逸出,当然温度不可过高,过高的铸造温度会缩短晶粒细化剂的有效时间,使晶粒变得相对较大。

2.有条件时,充分预热,烘干流槽、分流盘等浇铸系统,防止水分与铝液反应造成吸氢。

3.铸造中,尽可能的避免铝液的紊流和翻卷,不要轻易用工具搅动流槽及分流盘中的铝液,让铝液在表面氧化膜的保护下平稳流人结晶器结晶,这是因为工具搅动铝液和液流翻卷都会使铝液表面氧化膜破裂,造成新的氧化,同时将氧化膜卷入铝液。经研究表明,氧化膜有极强的吸附能力,它含有2%的水份,当氧化膜卷入铝液后,氧化膜中的水份与铝液反应,造成吸氢和夹渣。

4.对铝液进行过滤,过滤是除去铝液中非金属夹渣最有效的方法,在6063铝合金的铸造中,一般用多层玻璃丝布过滤或陶瓷过滤板过滤,无论是采取何种过滤方法,为了保证铝液能正常的过滤,铝液在过滤前应除去表面浮渣,因为表面浮渣易堵塞过滤材料的过滤网孔,使过滤不能正常进行,除去铝液表面浮渣的最简单方法是在流槽中设置一挡渣板,使铝液在过滤前除去浮渣。 五.6063铝合金的均化处理 1.非平衡结晶

如图三所示,是由A、B两种元素构成的二元相图的一部分,成份为F的合金凝固结晶,当温度下降到T1时,固相平衡成份应为G,实际成份为G’,这是因为在铸造生产中,冷却凝固速度快,合金元素的扩散速度小于结晶速度,即固相成份不是按CD变化,而是按CD’变化,从而产生了晶粒内化学成份的不平衡现象,造成了非平衡结晶。

2.非平衡结晶产生的问题

铸造生产出的铝合金棒其内部组织存在两方面的问题:①晶粒间存在铸造应力;②非平衡结晶引起的晶粒内化学成份的不平衡。由于这两个问题的存在,会使挤压变得困难,同时,挤压出的产品在机械性能、表面处理性能方面都有所下降。因此,铝棒在挤压前必须进行均匀化处理,消除铸造应力和晶粒内化学成份不平衡。

3.均匀化处理

均匀化处理就是铝棒在高温(低于过烧温度)下通过保温,消除铸造应力和晶粒内化学成份不平衡的热处理。Al-Mg-Si系列的合金过烧温度应该是595℃,但由于杂质元素的存在,实际的6063铝合金不是三元系,而是一个多元系,因此,实际的过烧温度要比595℃低一些,6063铝合金的均匀化温度可选在530-550℃之间,温度高,可缩短保温时间,节约能源,提高炉子的生产率。

4.晶粒大小对均匀化处理的影响

由于固体原子之间的结合力很大,均匀化处理是在高温下合金元素从晶界(或边沿)扩散到晶内的过程,这个过程是很慢的。容易理解,粗大晶粒的均化时间要比细晶粒的均匀化时间长得多,因而晶粒越细,均匀化时间就越短。

5.均匀化处理的节能措施

均匀化处理需要在高温下通过较长时间保温,对能源需求大,处理成本高,因此,目前绝大多数型材厂对铝棒未进行均匀化处理。其最重要的原因就是均匀化处理需要较高成本所致。降低均匀化处理成本的主要措施有:

①细化晶粒

细化晶粒可有效的缩短保温时间,晶粒越细越好。

②加长铝棒加热炉,按均匀化和挤压温度分段控制,满足不同工艺要求。这一工艺主要好处是:

a)不增加均匀化处理炉。

b)充分利用铝捧均匀化后的热能,避免挤压时再次加热铝棒。

c)铝捧加热保温时间长,内外温度均匀,有利于挤压和随后的热处理。

综上所述,生产出优质6063铝合金铸棒,首先是根据生产的型材选择合理的成分,其次是严格控制熔炼温度、浇铸温度,做好晶粒细化处理、合金液的精炼、过滤等工艺措施,细心操作,避免氧化膜的破裂与卷入。最后,对铝棒进行均匀化处理,这样就可生产出优质铝棒,为生产优质型材提供一个可靠的物质基础。

热情的钢铁侠
幽默的翅膀
2025-08-02 23:21:28
根据热处理过程中是否发生第二相析出,即发生沉淀强化行为或叫弥散强化行为,如果发生就成为可热处理强化合金。

一般可以通过合金相图判定,即溶解度曲线(曲面)随温度降低而迅速减少的合金体系属于可热处理强化合金~

甜美的时光
干净的时光
2025-08-02 23:21:28

金和铝合金化学上可以用观察法、灼烧法、酸洗法、碱洗法等方法区别

[金]金是一种金属元素,化学符号是Au,原子序数是79。金的单质在室温下为固体,密度高、柔软、光亮、抗腐蚀,其展性是已知金属中最高的。金是一种过渡金属,在溶解后可以形成三价及单价正离子。金与大部分化学物都不会发生化学反应,但可以被氯、氟、王水及氰化物侵蚀。金能够被水银溶解,形成汞齐(但这并非化学反应);能够溶解银及碱金属的硝酸不能溶解金。

[铝合金]铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。目前铝合金是应用最多的合金。其主要成分是铝,元素符号Al,密度轻,具有两性,易溶于强酸强碱。

[鉴别方法]1、观察法:纯金通常呈现纯净的金黄色,而铝合金大多是银白色

2、灼烧法:取等质量的金和铝合金置于酒精灯火焰上灼烧,一段时间后,没有明显变化的是金,变红并融化的是铝合金

3、酸洗法:取等质量的金和铝合金放入稀盐酸(大约1mol/L即可)中,有气泡冒出并部分溶解的是铝合金,没有明显变化的是金

4、碱洗法:取等质量的金和铝合金放入稀氢氧化钠(大约1mol/L即可)中,有气泡冒出并部分溶解的是铝合金,没有明显变化的是金