建材秒知道
登录
建材号 > 基础建材 > 正文

水泥熟料煅烧过程与操作

周敏

水泥熟料煅烧过程与操作造价信息

市场价 信息价 询价

水泥熟料煅烧过程与操作常见问题

水泥熟料与水泥的区别

区别:水泥熟料是水泥的半成品。水泥熟料以石灰石和粘土为主要原料,按适当比例配制成生料,烧至部分或全部熔融,再经冷却而获得。在水泥工业中,最常用的酸盐水泥熟料主要化学成分为氧化、二氧化硅和少量的氧化...

水泥熟料休止角

水泥熟料的休止角为 33 度。

水泥熟料报价如何

灵寿县华亿矿产品加工厂:水泥熟料价格是870元一吨双城市双城鑫源建材商店:水泥熟料的价格是920元一吨上海微谱化工技术服务有限公司:水泥熟料的价格是945元一吨网上报价   ...

水泥,熟料,水泥熟料三者的区别和关联

在水泥生产中,熟料加石膏加混合材组成的就是水泥,熟料与水泥熟料是事,只是名称而已。

水泥熟料和水泥是什么关系

硅酸盐水泥熟料是由主要含CaO、SiO2、Al2O3、Fe2O3的原料,按适当比例磨成细粉烧至部分熔融所得以硅酸钙为主要矿物成分的水硬性胶凝物质。其中硅酸钙矿物不小于66%,氧化钙和氧化硅质量比不小于...

硅酸盐水泥熟料分类

水泥熟料按用途和特性分为:通用水泥熟料、低碱水泥熟料、中抗硫酸盐水泥熟料、高抗硫酸盐水泥熟料、中水泥熟料和低热水泥熟料。

水泥熟料烧成工艺与设备问答前言

如何应用国内外水泥生产的高新技术或现有实用技术,保证水泥工业可持续发展,是本书的主题。用一题一态的叙述方式叙述,便于读者针对性地解决问题。

新型干法水泥生产技术,单机规模增大,生产集中度提高,资源能源进一步降低,产品质量提高,具有高效、优质、节能、环保等特点,代表了水泥工业生产技术发展的方向。

本丛书对新型干法水泥生产,从理论到实用技术,进行了较全面的叙述,特别突出了水泥工艺技术的可操作性。本丛书主要为大型新型干法水泥行业服务,为先进技术服务。本丛书包括五个分册:《水泥化验与质量操作技术问答》,介绍了水泥化验和质量控制方法;《水泥矿山开采问答》,讲述了矿山开采全过程的应用技术和操作技术;《水泥熟料烧成工艺与设备问答》,对熟料烧成系统进行了叙述;《水泥粉磨工艺与设备问答》,介绍了现代水泥粉磨技术的应用和操作,突出了立式磨生产技术;《新型干法水泥生产附属设备操作问答》,介绍了新型干法水泥生产的附属设备操作技术。

本丛书在编写过程中得到刘凤礼、朱长城、陈尚利、张生、刘华、翟鹏、梁颐、刘翠青、梁永霞、宋丹、翟肖肖、高洪旭等人帮助,在此表示衷心的感谢。

周正立

2009年4月

硅酸盐水泥熟料煅烧

熟料煅烧顾名思义是将生的烧成熟的。煅烧因窑型不同而有差异。目前国内窑型有湿法窑;干法窑,干法中有中空窑、SP(不带分解炉)、新型干法窑;半干法中有立窑、立波尔窑。现介绍几个重要温度:

1. CaCO3-CaO+CO2分解温度为890℃,MgCO3-MgO+CO2分解温度为590℃,因此分解炉的温度控制为900℃左右;

2.C3S在出现液相以后才能形成,液相温度为1250℃,故熟料烧成温度为1300℃~1450℃(物料温度)。

3. C3S--C2S--C3A--C4AF最低共熔温度1338℃,故低于此温度矿物形成就有困难。

水泥窑气体温度高达1700℃,物料温度高达1400℃,经水泥窑处理的废弃物不会造成二次污染。由于垃圾焚烧炉的焚烧温度低于水泥窑,往往会造成二次污染,目前发达国家都有采用水泥窑代替焚烧炉处理垃圾的趋势。

水泥制作的工艺流程

水泥的制作方法和流程:

(1)破碎水泥生产过程中,大部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。

(2)原料预均化预均化技术就是在原料的存、取过程中,运用科学的堆取料技术,实现原料的初步均化,使原料堆场同时具备贮存与均化的功能。

每生产1吨硅酸盐水泥至少要粉磨3吨物料(包括各种原料、燃料、熟料、混合料、石膏),据统计,干法水泥生产线粉磨作业需要消耗的动力约占全厂动力的60%以上,其中生料粉磨占30%以上,煤磨占约3%,水泥粉磨约占40%。

水泥是怎么做出来的?

生产工艺 硅酸盐水泥生产工艺流程可分为生料制备、熟料煅烧、水泥制成(粉磨)和包装等过程。

1生料制备 包括从原料破碎开始至成分调配到合乎要求的生料过程。生料制备有干法和湿法两种方法。在干法制备过程中,石灰石等大块硬质原料,按传统工艺是先经过一次破碎至大小在100mm左右的块料,或再经第二次破碎至小于25mm的块料(近年来已发展一次即破碎至小于25mm的块料工艺)。粘土等含水原料则应经烘干再与石灰石、铁矿石等按比例送入磨机内,研磨成细的生料粉,输入搅拌库,在库中用压缩空气搅拌,并调整成分至合格的生料粉。湿法制备生料过程与干法的主要区别,在于粘土是先用水淘洗成泥浆,与石灰石和铁矿石共同研磨至含水分约为35%的生料浆。干法制备生料的主要优点是在煅烧水泥熟料时的热耗比湿法低,每千克熟料的热耗只需要36~46MJ,而湿法需要 52~63MJ。但湿法制备的生料成分较易均匀。一些先进干法生产水泥厂,近年来采用原料预均化和生料成分自动控制等措施,以保证生料粉成分的均匀。

生料的研磨在不同类型的磨机中进行,主要有球磨、管磨、立式磨和烘干与研磨同时进行的中间卸料磨等。为节约研磨过程的电能、提高磨机效率,生产中常采用闭路(圈流)式粉磨,即将出磨机物料先经过一个颗粒分级设备——选粉机,选出细颗粒部分作为产品,粗颗粒部分返回磨机内继续研磨。闭路系统粉磨比开路粉磨(不经过选粉机分级)的产量约可提高15%~25%,并减少了过粉碎现象。缺点是设备投资大、操作和管理较复杂。近年来,又采用一种新型的带选粉机的立式辊轮磨,将破碎、研磨、干燥和分级在同一个装置内完成。目前,最大的立式磨每小时产量可达400t。

2熟料煅烧 已制备好的生料在不同型式的窑内煅烧成水泥熟料。一般生料粉或生料浆在回转窑内煅烧,中国大多数小型水泥厂均采用立窑煅烧,用立窑煅烧时生料粉中混入需要的煤粉,并加适量水混合制成直径为10~30mm的生料球。立窑煅烧的水泥熟料质量略差,但煅烧温度低,耗煤量较小。为了节约能耗、提高回转窑的生产能力,自70年代开始发展了窑尾带预热器和分解炉的窑外分解技术。

水泥生料在窑内受热过程中发生一系列物理和化学变化,如游离水的蒸发、粘土脱去结晶水、碳酸钙分解成氧化钙。后者与粘土中的氧化硅和氧化铝及铁矿石间发生固相反应生成化合物,它们的存在形式主要有四种,即硅酸三钙(3CaO·SiO2,简写C3S)、硅酸二钙(2CaO·SiO2,简写C2S),铝酸三钙(3CaO·AI2O3,简写C2A)和铁铝酸四钙(4CaO·Al2O3·Fe2O3,简写C4AF)。还有少量未化合的氧化钙和方镁石 (MgO)。有时还有硫酸盐、钛酸盐等,但数量更少。由于熟料中还含有其他氧化物,上述各化合物并不是以纯的状态存在,往往固溶有其他各种氧化物。故又将它们按照矿物相(即晶相)来命名,如硅酸三钙称阿利特,它在熟料中占50%以上;硅酸二钙称贝利特,约含有25%;铝酸三钙为铝酸盐;铁铝四钙称才利特。从反光显微镜下观察到的水泥熟料结构可见到六方晶体是阿利特,圆粒晶体是贝利特。晶体间的物质系由于物料在1450℃左右温度下有约30%熔融经冷却后形成,称中间相,其中亮的部分是才利特,又称白色中间相(即无定形的非晶相),暗色的是铝酸盐,又称黑色中间相。水泥熟料化学成分(%)有一定范围要求,氧化钙62~67,氧化硅20~24,氧化铝4~7,氧化铁3~5。

3水泥制成和包装 从窑内出来的水泥熟料经冷却后加入适量石膏(控制水泥中SO3≤35%),在磨机内研细,制成硅酸盐水泥。水泥研磨的细度对水泥质量影响较大,提高细度,可提高水泥的强度,但相应的电耗也增大。细度一般控制在008mm方孔筛上的筛余量不大于10%,或者比表面积在3000cm2/g左右。水泥研磨过程中的粉尘较大,因此在设备进出口、输送过程及包装处均应安装收尘设备,如沉降室、旋风收尘器、袋收尘器等。一些先进的工厂中均装有电除尘器。在中国还利用含K2O高的粘土或钾长石代替粘土原料,在煅烧过程中使氧化物挥发至尘埃中,收集含K2O较高的粉尘,可以作钾肥使用。水泥粉常用纸袋包装,但近年来已大量改用散装船、散装车输送,提高了装运效率,降低了成本。

用途 广泛用于民用和工业用的建筑工程,例如油田和气田的固井、水利工程中的大体积坝体、军事抢修工程,还可用于作耐酸、耐火材料,坑道中喷射封顶以代替坑木。水泥还可以代替木材和钢材用于多种场合,如电线杆、铁路枕轨、输油和输汽管道、贮原油和贮气罐等。

求水泥生产工艺流程

水泥制作流程如下:第一步就是把石灰石,水,铁矿石等材料一起破碎,然后初步混热合均匀。

第二步就是控制生产原料的比例,一般来说水泥粉只占40%左右,其他生料占60%左右,根据不同建筑构造的需求进行配比。

第三步就是当生产的所有原料被破碎成粉末之后,就均匀的混合在一起。

第四步就是预热原材料,并分解出需要的一些化学成分,而不需要的成分则丢弃。

第五步就是烧成水泥熟料,把分解出来的原料放入窑中烧,烧到变成变成液态状。

第六步就是烘干并磨成粉末状。就是把液态的水泥先烘干,之后再碾碎成粉末状,最后用包装袋装好。

水泥生产工艺流程

一、水泥:凡细磨物料,加适量水后,成塑性浆状,即能在空气硬化,又能在水中硬化的水硬性胶凝材料,并能把沙石等材料牢固地胶结在一起的叫水泥。一般来讲,水泥行业生产的是硅酸盐水泥,硅酸盐水泥是一种细致的、通常为灰色的粉末,它由钙 ( 来自石灰石 )、 硅酸盐、铝酸盐 ( 黏土 ) 以及铁酸盐组成。

从烧成窑分有立窑(包括机立),旋窑(回转窑)  生料进窑的形态有干法、湿法,如果生料为浆体,就是湿法。 一般用日产多少吨来论

(一)水泥按用途及性能分为: 

1、通用水泥, 一般土木建筑工程通常采用的水泥。通用水泥主要是指:GB175—1999、GB1344—1999和GB12958—1999规定的六大类水泥,即硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。 

2、专用水泥,专门用途的水泥。如:G级油井水泥,道路硅酸盐水泥。 

3、特性水泥,某种性能比较突出的水泥。如:快硬硅酸盐水泥、低热矿渣硅酸盐水泥、膨胀硫铝酸盐水泥。 

(二)水泥按其主要水硬性物质名称分为: 

(1)硅酸盐水泥,即国外通称的波特兰水泥;

(2)铝酸盐水泥;

(3) 硫铝酸盐水泥;

(4)铁铝酸盐水泥;

(5)氟铝酸盐水泥;

(6)以火山灰或潜在水硬性材料及其他活性材料为主要组分的水泥。 

(三)水泥按需要在水泥命名中标明的主要技术特性分为: 

(1) 快硬性:分为快硬和特快硬两类; 

(2) 水化热:分为中热和低热两类; 

(3) 抗硫酸盐性:分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀两类; 

(4) 膨胀性:分为膨胀和自应力两类; 

(5) 耐高温性:铝酸盐水泥的耐高温性以水泥中氧化铝含量分级。 

(四)水泥命名的一般原则:   

1、水泥的命名按不同类别分别以水泥的主要水硬性矿物、混合材料、用途和主要特性进行,并力求简明准确,名称过长时,允许有简称。 

2、通用水泥以水泥的主要水硬性矿物名称冠以混合材料名称或其他适当名称命名。 

3、专用水泥以其专门用途命名,并可冠以不同型号。 

4、特性水泥以水泥的主要水硬性矿物名称冠以水泥的主要特性命名,并可冠以不同型号或混合材料名称。 

5、 以火山灰性或潜在水硬性材料以及其他活性材料为主要组分的水泥是以主要组分的名称冠以活性材料的名称进行命名,也可再冠以特性名称,如石膏矿渣水泥、石灰火山灰水泥等

6、稍微了解水泥生产工艺的人,提到水泥的生产都会说到“两磨一烧”,它们即是:生料制备(一磨)、熟料煅烧(一烧)、水泥粉磨(二磨)。在一个硅酸盐 水泥工厂中,水泥生产有以下几个主要阶段。

二、生料的准备 

(一)石灰石是水泥生产的主要原材料,石灰石是水泥生产的主要原料,每生产一吨熟料大约需要13吨石灰石,生料中80%以上是石灰石。大多数工厂都位于石灰石采石场附近,以尽量降低运输成本。

1、通过爆破或者使用截装机来进行原料 ( 石灰石、页岩、 硅土和黄铁矿 ) 的提取。  · 原料被送至破碎机,在那里经过破碎或锤击变成碎块。

2、压碎的石灰石和其它原料通常覆盖储存,以防受外界环境的影响,同时也可最大程度地减小灰尘。 

3、在大多数情况下,采石场和水泥厂会需要分离的或单独的电源设备。  石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。

(二)原料破碎及预均化     

(1)破碎    水泥生产过程中,大部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。  

原燃材料由自卸汽车运输倒入卸车坑中,由板式喂料机喂入破碎机中破碎。破碎后的原燃材料由胶带输送机送至预均化堆场。     

(2)原料预均化    预均化技术就是在原料的存、取过程中,运用科学的堆取料技术,实现原料的初步均化,使原料堆场同时具备贮存与均化的功能。  

破碎后的原燃材料由堆料机进行预均化及分层堆料,然后由刮板取料机取料。取出的原燃材料由胶带输送机送至原料配料站等地。  

(三)主要设备         

1、石灰石板式喂料机     布置位置 位于石灰石破碎车间内   用 途 用于石灰石喂料      

2、石灰石破碎机    用 途 用于破碎石灰石    布置位置 位于厂区石灰石破碎车间  破碎型式 单段锤式(PCF2018)  

3、石灰石混匀堆取料机

三、生料磨制    

1、生料制备  

水泥生产过程中,每生产1吨硅酸盐水泥至少要粉磨3吨物料(包括各种原料、燃料、熟料、混合料、石膏),据统计,干法水泥生产线粉磨作业需要消耗的动力约占全厂动力的60%以上,其中生料粉磨占30%以上,煤磨占约3%,水泥粉磨约占40%。因此,合理选择粉磨设备和工艺流程,优化工艺参数,正确操作,控制作业制度,对保证产品质量、降低能耗具有重大意义。  

在此阶段使用了立磨机和球磨机,前者利用滚筒外泄的压力 将通过的材料碾碎,后者则依靠钢球对材料进行研磨。     

(一)老式球磨机生产流程:在原料配料库内的四种原料按照设定的原料配比由7 台定量给料机和皮带机输送到磨头,再经闸板进入辊压机喂料仓,物料经辊压机预粉碎后, 经打碎机由提升机送到选粉机,选出的粗粉进入磨机粉磨,出磨物料经提升机送入选粉机(旋风筒) , 选粉机(旋风筒)选出的合格产品,送入生料库中。    

当辊压机出现故障时,可以通过闸板控制,直接将物料送入磨机粉磨, 磨好的原料由上部进入选粉机,被选粉机进行分选,粗粉由下部泄出, 合格的细粉被上升的气流带入旋风筒。 气料在旋风筒内进行分离,含尘废气由上部抽出去收尘器,成品由下部泄出,去生料仓。虽 然系统工作连续,但此时系统的生产效率会受到影响。 

生料磨通有来自烧成系统的废热气,在粉磨物料的过程中,同时对物料进行烘干, 出磨含尘废气会和另一股来自窑尾的废热气进入选粉机,由选粉机排出的含尘废气被送入 布袋收尘器 ,经净化后排入大气。 

(二)选粉机工作原理:

选粉机中间主体四周均布着四个旋风筒。磨好的原料由上部进入选粉机, 被选粉机进行 分选,粗粉由下部泄出,合格的细粉被上升的气流带入旋风筒。气料在旋风筒内进行分离, 含尘废气由上部抽出去收尘器,成品由下部泄出,去生料仓,为烧制做准备      

(三)新式生料立磨工作原理:(自带选粉机) 

1、生料粉磨采用立磨,这种型式磨机把粉磨和烘干的优点集中于一体,因而具有很高的烘干和粉磨能力,磨机入口采用三道闸门锁风喂料装置。

2、按比例配好的混合料从进料口落在立磨的磨盘中央,同时从窑尾高温风机来的300 ℃左右的窑尾废气从立磨进风口进入磨内,在离心力的作用下,物料向磨盘边缘移动,经过磨盘上的环形槽时受到磨辊的碾压而粉碎,粉碎后的物料在磨盘边缘被风环处高速气流带起,大颗粒直接落到磨盘上重新粉磨,气流中的物料经过分离器时,在旋转转子的作用下,粗粉落到磨盘上重新粉磨,合格细粉随气流一起出磨。

3、合格的细粉被上升的气流带入旋风筒。气料在旋风筒内进行分离, 含尘废气由上部抽出去收尘器,成品由下部泄出, 去生料仓,为烧制做准备。生料磨还有一部分粗粉通过风环处由于不能被气流带走,被刮板刮出,形成外循环物料。这部分最大循环量为40t。

4、原料球磨机主要用于水泥厂成品及原料的粉磨,也适用于冶金、化工、电力等工矿企业粉磨各种矿石及其他可磨性物料。可用于开流粉磨,也适用于与选粉机组成的循环圈流粉磨。      

5、原料球磨机具有对物料适应性强、能连续生产、破碎比大、易于调整粉磨产品的细度等特点。它既能干法生产也可以湿法生产,也可以粉磨与烘干同时进行作业。   

6、与球磨机相比,立磨机具有以下特点;      

7、粉磨效率高;烘干能力大;入磨物料料度大,大中型立磨可以省掉二级破碎;产品的化学成份稳定;颗料级配均齐,产品料度均齐,有利于煅烧;工艺流程简单;噪音低、扬尘少、操作环境清洁; 金属损耗小,利用率高; 使用经济。

(四)生料均化      

1、新型干法水泥生产过程中,稳定入窖生料成分是稳定熟料烧成热工制度的前提,生料均化系统起着稳定入窖生料成分的最后一道把关作用。 

2、生产线设置一座连续式生料均化库储存和均化生料。库中的生料经过交替分区充气后由周边环形区卸至混合室,生料在混合室被充气搅拌均匀。均化后的生料粉通过计量后,经空气输送斜槽和斗式提升机,再通过分料阀、锁风阀分别喂入双系列预热器的两个进料口。   

(五)生料均化原理:  采用空气搅拌,重力作用,产生“漏斗效应”,使生料粉在向下卸落时,尽量切割多层料面,充分混合。利用不同的流化空气,使库内平行料面发生大小不同的流化膨胀作用,有的区域卸料,有的区域流化,从而使库内料面产生倾斜,进行径向混合均化。       

(六)主要设备     

1、辊式磨   

2、窑尾袋收尘器   

3、窑尾袋收尘器排风机    用途 用于窑尾及原料磨系统废气处理    布置位置  位于窑尾袋收尘后     工作风温 正常: 80~150℃ 极限温度:200℃      

4、窑尾高温风机    用途 用于抽引预热器废气    布置位置 位于预热器后面、增湿塔后面   工作风温 正常温度:320~350℃;   极限温度:450℃;    风机叶片需采用优质耐磨材料制成,保证转子叶片有较长的寿命。       

5、原料磨循环风机    用途 用于原料磨系统通风    布置位置 位于原料磨组合式旋风筒后     工作风温 正常:90~100℃ 极限温度(短时):250℃    风机叶片需采用优质耐磨材料制成,保证转子叶片有较长的寿命。

四、熟料烧制 

1、 喂入预热器的生料粉,经过预热器的换热和分解炉的预分解后,由五级旋风筒的下料管进入回转窑,然后在回转窑内经过高温烧成,然后经过窑口下落到篦冷机进行冷却后,将熟料冷却到环境温度+65℃后,通过拉链机输送到熟料库和黄料库。   

2、窑头通风量主要由通过喷煤管的一次风(包括输送煤粉和供煤粉燃烧用的空气),和入窑的二次风(由篦冷机直接入窑的高温空气,气体温度为950~1100℃)),分解炉的三次风(由篦冷机直接通过三次风管到分解炉的高温空气,气体温度为800℃))构成。

3、篦冷机冷却所需风量由7台高压和中压风机提供。冷却风除了供给二次风和三次风外,余风一部分给煤磨提供热量(气体温度为400℃),多余的废气经过多管旋风收尘器收尘后排入大气。 

4、 约350度的窑尾废气从预热器顶部由高温风机抽出,在风机出口管道适合的地方进行分风,一部去煤磨烘干煤粉,一部分去生料磨烘干生料。其它气体进入增湿塔,在塔内喷水降温,粉尘初步沉淀后,气体排出,汇合生料磨排出的含尘气体进入布袋收尘器,经净化后排入大气。

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

水泥生产工艺流程,按生料制备方法的不同可分为干法与湿法两大类。原料经烘干、粉碎制成生料粉,然后喂入窑内煅烧成熟料的方法称为干法;将生料粉加入适量的水分制成生料球,再喂入立窑或立波尔窑内煅烧成熟料的方法一般称为半干法,亦可归入干法。将原料加水粉磨成生料浆,再喂入回转窑内煅烧成熟料的方法称为湿法。

水泥生产工艺流程

20世纪50年代出现的悬浮预热窑,在20世纪60年代取得了较大发展,大大降低了熟料热耗;世纪70年代出现的窑外分解技术,使熟料产量成倍提高,热耗也有较大幅度的下降。同时,生料的均化和原料预均化技术的发展,烘干兼粉磨设备的不断改进,使熟料质量进一步提高;冷却机热风用于窑外分解炉,窑废气用于原料及煤粉的烘干,以及成功地利用窑尾废气进行发电,使余热得到了比较充分的利用。

烧成工段主要设备及其工作原理

水泥烧成设备有竖窑、湿法回转窑(旋窑)、普通中空干法窑、立波尔窑、预热机窑(SP)以及目前普遍使用的新型干法回转窑(旋窑)。回转窑(旋窑)是一个有一定斜度的圆筒状物,斜度为3~35%,借助窑的转动来促进料在回转窑(旋窑)内搅拌,使料互相混合、接触进行反应。窑头喷煤燃烧产生大量的热,热量以火焰的辐射、热气的对流、窑砖(窑皮)传导等方式传给物料。物料依靠窑筒体的斜度及窑的转动在窑内向前运动。

回转窑(旋窑)一方面是燃烧设备,煤粉在其中燃烧产生热量;同时也是传热设备,原料吸收气体的热量进行煅烧。另外有时输送设备,将原料从进料端输送到出料端。而燃料燃烧、传热及原料运动三者间必须合理配合,才能使燃料燃烧所产生的热量能在原料通过回转窑(旋窑)的时间内及时传给原料,已到达高产、优质、低消耗的目的。

水泥生产工艺流程举例

原料和燃料进厂后,由化验室采样分析检验,同时按质量进行搭配均化,存放于原料堆棚。粘土、煤、硫铁矿粉由烘干机烘干水分至工艺指标值,通过提升机提升到相应原料贮库中。

石灰石、萤石、石膏经过两级破碎后,由提升机送入各自贮库。化验室根

据石灰石、粘土、无烟煤、萤石、硫铁矿粉的质量情况,计算工艺配方,通过生料微机配料系统进行全黑生料的配料,由生料磨机进行粉磨,每小时采样化验一次生料的氧化钙、三氧

化二铁和细度的百分含量,及时进行调整,使各项数据符合工艺配方要求。磨出的黑生料经过斗式提升机提入生料库,化验室依据出磨生料质量情况,通过多库搭配和机械倒库方法进行生料的均化,经提升机提入两个生料均化库,生料经两个均化库进行搭配,将料提至成球盘料仓,由设在立窑面上的预加水成球控制装置进行料、水的配比,通过成球盘进行生料的成球。

水泥制备工艺和性能研究,给飞仔的

硅酸盐水泥熟料的煅烧

§5-1 生料在煅烧过程中的物理化学变化

§5-2 熟料形成的热化学

§5-3 矿化剂、晶种对熟料煅烧和质量的影响

§5-4 挥发性组分及其他微量元素的作用

§5-5 水泥熟料的煅烧方法及设备

掌握内容

1、 硅酸盐水泥熟料的形成过程:名称、反应特点、影响反应速度的因素;

2、 熟料的形成热、热耗的定义、一般数值、影响因素

3、 挥发性组分对新型干法水泥生产的影响

4、 悬浮预热器窑及预分解窑的组成、工作过程

5、 影响窑产、质量及消耗的因素

理解内容

1、 C3S的形成机理,形成条件;

2、 影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施;

3、 回转窑的结构、组成、及工作过程;

4、 回转窑内“带”的划分方法,预分解窑内“带”的划分。

了解内容

1、 水泥熟料的煅烧方法及设备类型;

2、 矿化剂、晶种:定义、类型、作用、使用;

3、 湿法窑的组成,工作过程

合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。 结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。

第一节 生料在煅烧过程中的物理化学变化

生料在加热过程中,依次进行如下物理化学变化:

一、干燥与脱水

(一)干燥

入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过10%。

(二)脱水

当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O)发

生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。

二、碳酸盐分解

当物料温度升高到600℃时,石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解(见下式),在CO2分压为一个大气压下,碳酸镁和碳酸钙的剧烈分解温度分别是750℃和900℃。

CaO+CO2(一)碳酸钙分解反应的特点

碳酸钙的分解过程是一个可逆反应,所以受系统温度、周围介质中CO2的分压影响较大;该过程是一个强吸热过程,每1kg纯碳酸钙在890℃时分解吸收热量为1645kJ/kg,是熟料形成过程中消耗热量最多的一个工艺过程,而碳酸钙在水泥生料中所占比例约为80%左右,因此,它是水泥熟料煅烧过程中重要的一个环节;该过程的烧失量大,在分解过程中放出大量的CO2气体,使CaO疏松多孔,强化固相反应。

(二)碳酸钙的分解过程

碳酸钙颗粒的分解过程有以下五个过程:

1、通过颗粒边界层由周围介质传进行分解所需的热量Qi;

2、热量Qi继续以传导方式,由表面传至反应面,并积聚达到一定的分解温度;

3、反应面在一定温度下,继续分解、吸收热量并放出CO2;

4、放出的CO2从分解面通过CaO层,向四周进行内部扩散;

5、扩散到颗粒边缘的CO2,通过边界层向介质扩散。

以上五个过程四个是物理过程,一个是化学反应过程,每个过程各有阻力,情况较为复杂,各个过程都会影响碳酸钙的分解,哪个过程最慢,哪个过程便是主控过程。

在悬浮态的反应器里,碳酸钙分解所需的时间主要取决于化学反应速率,即主要取决于化学分解分步过程:

1、在碳酸钙粒径较大时,以传热传质过程为主;在碳酸钙的粒径d=02cm时,物理、化学过程占同样重要的地位。如立窑、立波尔窑、回转窑内均属于传热、传质控制过程。

2、粒径较小时,如d≤0003cm,在悬浮状态分解时,决定于化学过程。

值得提出的是:在窑内分解带,颗粒虽细,但处于堆积状态,仍为传热传质控制过程。

(三)影响碳酸钙分解速度的因素

1、石灰质原料的特性:结构致密、结晶粗大的石灰石分解较慢;

2、生料细度及颗粒级配:生料较细,且颗粒均匀、粗粒少,生料比表面积增加,有利于反应进行;

3、生料的悬浮分散程度:分散度愈高,接触面积愈大,愈有利于反应进行;

4、分解温度:温度愈高,分解速度愈快:

5、窑系统的CO2分压:当温度一定时,分压愈低,愈易分解;

6、生料中粘土质组分的性质:活性高,则能直接与碳酸钙发生反应,可以促进碳酸钙的分解过程。

三、固相反应

(一)反应过程

水泥熟料的主要矿物是硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF),它们是由固态物质相互反应生成的。从原料分解开始,物料中便出现了性质活泼的游离氧化钙,它与生料中的SiO2、Al2O3、Fe2O3进行固相反应,形成熟料矿物:

800~900℃ 时

CaO+ Al2O3 CaO·Al2O3 (CA)

CaO+ Fe2O3 CaO·Fe2O3 (CF)

900~1100℃时

2 CaO+ SiO2 CaO· SiO2 (C2S)

7 CaO·Al2O3 12 CaO·7Al2O3(C12A7)

CaO·Fe2O3 2CaO·Fe2O3(C2F)

1100~1300℃时

12 CaO·7Al2O3 7(3CaO·Al2O3)(C3A)

7(2CaO·Fe2O3)+2 CaO+12 CaO·7Al2O3

7(4CaO·Al2O3·Fe2O3) (C4AF)

以上反应在进行时放出一定的热量,故称为“放热反应”阶段。

(二)影响固相反应的主要因素

1、生料细度及其均匀程度;

2、原料物理性质对固相反应的影响;

3、温度对固相反应的影响;

4、其他因素。

四、熟料烧结

(一)熟料烧结过程

水泥熟料中的主要的矿物是硅酸三钙,而它的形成需在液相中进行,当温度达到1300℃R2OC2S及CaO很快被高温熔融的液相所溶解并进C3S:

2 CaO· SiO2 3 CaO· SiO2 (C3S)

该反应称为烧结反应,它是在1300~1450~1300℃范围进行,故称该温度范围为烧成温度范围;在1450℃时反应迅速,故称该温度为烧成温度。为使反应完全,还需有一定的时间,一般为10~20分钟。

由于反应不完全,没有参与反应的CaO就随着温度降低,凝固于凝固体中,这些CaO称为游离氧化钙(fCaO)(为了便于下面的区别,称其为一次游离氧化钙,其对水泥安定性有重要影响)。

(二)影响熟料烧结过程的因素

1、最低共熔温度;

2、液相量:一般为20~30%;3、液相粘度:粘度愈小,愈有利于C3S的形成;

4、液相的表面张力:表面张力愈小,愈易润湿固相物质或熟料颗粒,有利于固液反应,促进C3S的形成;

5、CaO和C2S溶于液相的速率:其速率愈大,C3S的成核与发育愈快。

五、熟料冷却

熟料冷却时需急速冷却,其目的和作用是:

1、为了防止C3S在1250℃时分解,出现二次游离氧化钙(对水泥安定性没有大的影响),降低熟料的强度;

2、为了防止C2S在500℃时发生晶型转变,使其密度由328g/cm3变为297 g/cm3,从面使熟料体积膨胀,变成粉末,产生“粉化”现象;

3、防止C3S晶体长大而强度降低且难以粉磨;

4、减少MgO晶体析出,使其凝结于玻璃体中,避免造成水泥安定性不良;

5、减少C3A晶体析出,不使水泥出现快凝现象,并提高水泥的抗硫酸盐性能;

6、使熟料产生应力,增大熟料的易磨性。

此外,急冷还可以收回热量,提高热的利用率。

第二节 熟料形成的热化学

一、熟料的形成热

1、定义:在一定生产条件下,用某一基准温度(一般是0℃或20℃)的干燥物料,在没有任何物料损失和热量损失的条件下,制成1kg同温度的熟料所需要的热量称为熟料的形成热(熟料形成热效应)。

2、影响因素:熟料的形成热是熟料形成在理论上消耗的热,它仅与原、燃料的品种、性质及熟料的化学成分与矿物组成、生产条件有关。

3、计算原理:理论热耗=吸收的总热量—放出的总热量,一般为1630~1800kJ/kg-ck。

二、熟料形成热的计算方法

以普通原料配料、以煤为燃料为例说明:

计算基准:1kg熟料,温度为0℃

已知数据:⑴熟料的化学成分;⑵煤的工业分析及煤灰的化学成分;⑶熟料的单位煤耗。

一生成1kg熟料干物料消耗量的计算;

二生成1kg熟料吸收热量的计算;

三生成1kg熟料放出热量的计算;

四熟料的形成热。

三、熟料热耗

(一)、定义:每煅烧1kg熟料窑内实际消耗的热量称为熟料实际热耗,简称熟料热耗,也叫熟料单位热耗。

热耗>熟料形成热,因为有各种热损失,要降低热耗,实际上就是要降低各种热损失。

(二)、影响熟料热耗的因素

1、生产方法与窑型;

2、废气余热和利用;

3、生料组成、细度及生料易烧性;

4、燃料的燃烧情况;

5、窑体的散热损失;

6、矿体剂及微量元素的作用。

第三节 矿化剂、晶种对熟料煅烧和质量的影响

一、矿化剂

1、定义:在熟料煅烧过程中,为降低液相出现温度,加速熟料矿物的形成,提高熟料质量,降低能耗,加入的物质,统称为矿化剂。

单独用一种,称矿化剂;

两种或两种以上的矿化剂同时使用时,称为复合矿化剂。

2、可以作矿化剂的物质:

(1)含氟化合物:常用萤石(CaF2)

(2)硫化物:常用石膏(包括天然石膏、工业副产石膏)

(3)氯化物:CaCl2

(4)其他:铜矿渣、磷矿渣等

常用的复合矿化剂:石膏—萤石、重晶石—萤石、磷石膏-萤石等,最常用的是石膏—萤石复合矿化剂。

3、矿化剂的作用:

(1)加速碳酸盐的分解;

(2)促进固相反应

(3)降低液相出现的温度和粘度,促进C3S的形成。

4、使用矿化剂易引起的问题:凝结时间不正常,快凝或慢凝。

二、晶种技术

1、晶种:是晶体结晶过程的晶核,,或称为晶核剂、核化剂。水泥工业中的晶种指通过水泥窑煅烧而成的硅酸盐水泥熟料。

2、晶种技术:在入磨原材料中掺入少量的硅酸盐水泥熟料共同磨制出生料,业已存在的硅酸盐水泥熟料矿物在煅烧过程中作为晶核剂诱导水泥窑中物料迅速烧结,从而达到提高熟料产量,降低煤耗目的的技术。

三、使用矿化剂、晶种时的注意事项:

使用矿化剂、晶种有积极的一面,也有消极的一面,如增加成本,有副作用等,使用时应注意:

1、根据实际情况考虑是否采用;

2、选择合适的品种;

3、掺量要合适,计量要精确;

4、掺入要均匀;

5、相应调整配料方案及操作措施;

6、矿化剂、晶种可以同时使用。

第四节 挥发性组分及其他微量元素的作用

挥发性组分及其他微量元素是由原、燃料带入的伴生组分。数量虽然不多,但往往对熟料煅烧和质量有不同程度的影响。有正作用也有副作用,如能合理利用,可以化害为利。

一、挥发性组分的影响

挥发性组分主要指:碱、氯、硫。

主要来源:原料、燃煤

特点:(1)低温下呈固态,高温下挥发成气体;

(2)当其含量大时,可降低最低共熔温度,增加液相量,降低液相粘度,起助熔作用。

挥发性组分对新型干法水泥生产的影响:

1、挥发性组分的挥发凝聚循环

碱、氯、硫化合物在煅烧过程中,随生料进入窑系统,随温度的不断升高,先后分解、气化和挥发,并随窑内气流向低温区窑尾系统。当温度降低到一定限度时挥发组分中的一部分凝聚、聚集、粘附于生料颗粒表面并随生料再返回高温区,然后再挥发、凝聚,如此循环,在循环过程中富集。

2、危害:

(1)结皮、堵塞:

结皮:物料在设备或气体管道内壁上逐步分层粘挂,形成疏松多孔的层状覆盖物; 堵塞:窑后通风系统或料流系统被结皮物料堵塞。(不一定是堵死)

(2)结大块、结圈

3、防止措施:

(1)限制原燃料中碱、氯、硫的含量;

新型干法水泥生产:生料中:K2O+Na2O<10%

Cl- < 0015%~0020% SO3S06~08R085KO129NaO22生料和燃料的硫碱比:

(2)严格控制系统各处的温度

(3)旁路放风

(4)及时清理:如定期用高压风吹扫结皮、空气炮清除等

二、非挥发性组分

主要指:氧化镁、氧化磷、氧化钛、氧化钒;

作用:总体说,这些微量成分,少量存在时,对水泥生产有好处,多了有副作用。

第五节 水泥熟料的煅烧方法及设备

一、回转窑内熟料的煅烧

(一)回转窑的煅烧工艺流程

回转窑是一个斜置在数对托轮上的回转钢筒体,筒体内壁镶砌耐火材料,它是一种以化学反应、燃料煅烧及传热为主要功能的水泥烹生产设备。回转窑分干法、湿法回转窑两类,这两类的共同特点是:生料的整个煅烧过程都在回转窑窑筒内和冷却机内完成。通常,回转窑与冷却机、煤粉燃烧装置、鼓风机、排风机及收尘设备等组成完整的熟料烧成系统。

(二)回转窑内熟料的煅烧过程

生料进入回转窑后,在窑内气体温度控制下,依次发生干燥、粘土矿物脱水分解、碳酸盐分解、固相反应、熟料烧结以及冷却过程,最终由生料变成熟料。根据其形成过程,回转窑相应划分为六个带:即干燥带、预热带、分解带、放热反应带、烧成带、冷却带。这些带的划分是人为的,各带的位置及长度不是不变的,而且分界不是明确的,有的相互交错。

干燥带:物料入窑后首先进行水分蒸发,这一过程所占的空间称为“干燥带”,其任务就是蒸发自由水。该带物料温度为20~200℃。

预热带:物料升温至450℃时,粘土开始脱水,该过程所占据的空间为“预热带”,该带的主要任务是粘土脱水,即脱去化学结合水而成为无定形氧化物。该带物料的温度为200~750℃。

分解带:物料在该带进行剧烈的分解反应,生成大量的CO2气体,由于大量气体存在,物料流动的速度较快,使该带较长,约占全窑的50%左右,碳酸盐分解需要大量的热,约占熟料热耗的40%左右。该带物料的温度为750~1000℃。

放热反应带:物料在该带进行固相反应,形成熟料中的三种矿物,包括熔剂矿物,该带进行的是放热反应,其温度与分解带的温差较大,在该带的物料发光性强,从窑头看过去,在相界处出现“黑影”,看火工由此判断窑内的煅烧情况。该带物料的温度为1000~1300℃。

烧成带:该带也称为“烧结带”或“石灰吸收带”,物料在此带内进行烧结反应,形成主要矿物硅酸三钙,物料在该带的温度为1300~1450~1300℃,是全窑内温度最高的地方。

冷却带:物料在该带内开始进行冷却,而且需要急冷,防止硅酸三钙的分解,该带物料的温度为1300~1000℃,为了加强熟料的冷却,需要使熟料尽快地进入冷却机。

二、带悬浮预热器回转窑内熟料的煅烧

带悬浮预热器回转窑是由一组悬浮预热器和一台回转窑组合而成,根据悬浮预热器的形式不同,可分为旋风预热器窑、立筒预热器窑和组合预热器窑。现以旋风预热器窑为例说明如下。

(一)旋风预热器窑生产工艺流程

(二)熟料煅烧特点

其特点:

21、使物料与气体间的传热面积大大增加(1kg生料在窑内的传热面积是0157㎝,在

2悬浮预热器里是1250㎝,后者是前者的8000倍);

2、传热效率提高,传热速率增大(以生料的升温速率比较,在窑内仅为58℃/min,立波尔窑的加热机,其速率也只有50℃/min,而悬浮预热器内的速率可达1000℃/min);

3、总体上看物料与气流是逆向运动,而在管道和旋风筒内则是顺流运动。传热主要是在管道中进行(约占80%),旋风筒主要起气固相分离作用,传热较少(约占20%)。这是因为在筒内中部物料稀少,而边部料粉浓度大,传热面积减少;而在管道内,相对速度很大,传热速度较高;

4、入窑物料碳酸钙分解率达30~40%,从而减轻了回转窑的负荷,使窑的长度缩短。

5、窑内没有干燥带、预热带,只有其余四个带

三、预分解窑内熟料的煅烧

预分解窑是20世纪70年代发展起来的一种煅烧工艺设备。它是在悬浮预热器和回转窑之间,增设一个分解炉或利用窑尾烟室管道,在其中加入30~60%的燃料,使燃料的燃烧放热过程与生料的吸热分解过程同时在悬浮态或流化态下极其迅速地进行,使生料在入回转窑接受基本上完成碳酸盐的分解反应,因而窑系统的煅烧效率在幅度提高。这种将碳酸盐分解过程从窑内移到窑外的煅烧技术称窑外分解技术,这种窑外分解系统简称预分解窑。

(一)预分解窑的工艺流程

(二)预分解窑煅烧熟料的特点

1、在一般分解炉中,当分解温度为820~900℃时,入窑物料的分解率可达85~95%,需要分解时间平均仅为4~10s,而在窑内分解时约需30多分钟,效率之高可想而知。

2、由于碳酸钙的分解从窑内移到窑外进行,所以窑的长度可以大大缩短,降低占地面积。

3、由于在分解炉内物料呈悬浮状态,传热面积增大,传热速率提高,从而使熟料单位热耗大大降低。

4、由于减轻了回转窑的热负荷,延长耐火材料的使用寿命,提高窑的运转率,同时提高了窑的容积产量。

但由于对物料的适应性较差,容易引起结皮和睹塞,同时系统的动力消耗较大。

5、窑内分三个带:过渡带(主要是少量分解反应、固相反应)、烧成带、冷却带。

水泥怎么做

水泥制备工艺和性能研究

一 水泥的制备

(一)生料制备

一 实验目的

1 进一步熟悉生料配料计算方法;

2 了解生料均匀性细度的控制方法

3 了解易烧性实验中物料成型方法

二 实验原理

在硅酸盐水泥熟料烧成过程中,合适的组成、细度和均匀的生料有利于固相反应的进行。生料制成大小合适、表观密度一致的料段,保证加热时均匀一致。

混合时将颗粒打散,手工拌和时,一边拌一边压。用搅拌机、球磨混合较好。

三 实验原料

石灰石、粘土、萤石、铁粉和石膏

四 实验设备

1 秤

2 搅拌机

3 球磨机

4 量筒

5 成型模具

6 烘箱

7 牛角匙、搅拌棒等

五 实验步骤

1 配料计算

(1) 选择熟料的率值和矿物组成

(2) 原材料的粉磨

(3) 配料秤量

(4) 均混

(5) 生料成分的检验和调整

(6) 加水成型和烘干

(7) 易烧性试验的物料准备

(二)熟料的煅烧

一 实验目的

水泥的质量主要取决于是你熟料的质量,而熟料的质量不仅与水泥生料的成分、均匀性有关,而且与煅烧的热工制度有关。因此,在水泥研究和生产中往往要通过实验来了解生料的易烧性和研究熟料的煅烧过程,为水泥生产提供依据。

1 掌握实验室常用实验设备、仪器的使用方法

2 掌握水泥烧成的实验方法、了解水泥熟料烧成过程

3 了解生料的易烧性、升温速率、保温时间和冷却制度对不同配料熟料煅烧的影响

二 实验原理

1矿物组成

硅酸盐水泥熟料中主要形成四种矿物:硅酸三钙,3 CaO·SiO2,简写C3S,占50~60%,称阿利特(Alite)或A矿;硅酸二钙,2 CaO·SiO2,简写C2S,占20~25%,称贝利特(Belite)或B矿;铝酸三钙,3CaO·Al2O3,简写C3A,占5~10%;铁相固溶体,通常以铁铝酸四钙表示,4CaO·Al2O3·Fe2O3,简写C4AF,占10~15%,称才利特(Celite)或C矿。

2 水泥熟料的形成过程

(1)水分蒸发:

自由水分随物料温度而逐渐蒸发,当温度升高至100~150℃时,生料中自由水分全部被排除。

湿法生产中,料浆可达32~40%,故此干燥过程对产量、质量及热耗影响极大。

(2)粘土质原料脱水:

生料温度升至450℃时,高岭土脱去化学结合水。

在900℃~950℃时,无定形物质又转变为晶体,同时放出热量。

(3)碳酸盐分解:

碳酸钙与碳酸镁在600℃都开始分解,碳酸镁在750℃时分解即剧烈进行,而碳酸钙约在900℃时才快速分解。

MgCO3=MgO+CO2

CaCO3=CaO+CO2

(4)固相反应:

水泥熟料中的主要矿物在800~1300℃时可以由固相物质相互反应而生成。

800~900℃时,CaO与Al2O3、Fe2O3反应,生成CA、CF;

900~1100℃时, 生成C12A7、C2F、C2S;

1100~1300℃时, 生成C3A、C4AF。

以上反应进行时放出一定热量,物料本身温度上升很快。

(5)硅酸三钙(C3S)的形成和烧成反应:

硅酸三钙要在液相中才能大量形成。当温度升高到近1300℃时,C3A、C4AF、R2O等熔剂矿物变成液相,C2S与CaO溶解在高温液相中,互相反应生成C3S;C3S的生成速度与烧成温度和反应时间有关。其生成温度范围一般为1300~1450℃。

熟料烧成后,温度开始下降,C3S形成速度减慢直至液相凝固。

(6)熟料的冷却过程:

在冷却过程中,将有部分熔剂矿物形成晶体析出,另一部分来不及析晶而呈玻璃态存在。

C3S在1250℃时容易分解,所以要求在1300℃以下熟料要快冷,使C3S来不及分解,越过1250℃以后,C3S就比较稳定了。

C2S在<500℃时,由β-C2S转变为γ-C2S,密度减少而使体积增大10%左右,从而使熟料块变成粉末状。粉化后的γ-C2S与水反应时,几乎没有水硬性,因此在<500℃温度段时应急冷,使其来不及转化。

四 实验设备

1 高温炉

2 坩埚

3 坩埚钳

五 实验步骤

1 检查高温炉是否正常。

2 生料易烧性实验,将试件放在105~110℃下烘干,60min以上,取6组相同的试样煅烧,煅烧时间从放入试样到取样止。

3 保温结束后取出试样。

六 思考题

易烧性实验应注意哪些?

二 水泥及粉状材料细度的测试

一 试验目的

1 了解水泥细度检测方法的国家标准

2 测定水泥的80μm和45μm的方孔筛筛余量

二 试验原理

本标准是采用45μm方孔筛和80μm方孔筛对水泥试样进行筛析试验,用筛上筛余物的质量百分数来表示水泥样品的细度。

三 原料

水泥

四 设备

1 试验筛

试验筛由圆形筛框和筛网组成,筛网符合GB/T 6005 R20/3 80μm,GB/T 6005 R20/3 45μm的要求,分负压筛、水筛和手工筛三种,负压筛和水筛的结构尺寸见图1和图2,负压筛应附有透明筛盖,筛盖与筛上口应有良好的密封性。手工筛结构符合GB/T 60031,其中筛框高度为50mm,筛子的直径为150mm。

2 负压筛析仪

负压筛析仪由筛座、负压筛、负压源及收尘器组成,其中筛座由转速为30 r/min士2 r/min的喷气嘴、负压表、控制板、微电机及壳体构成,见图3。

五 操作步骤

1 试验准备

试验前所用试验筛应保持清洁,负压筛和手工筛应保持干燥。试验时,80μm筛析试验称取试样25g,45μm筛析试验称取试样10g。

2 负压筛析法

(1)筛析试验前应把负压筛放在筛座上,盖上筛盖,接通电源,检查控制系统,调节负压至4000Pa~6000Pa范围内。

(2)称取试样精确至00lg,置于洁净的负压筛中,放在筛座上,盖上筛盖,接通电源,开动筛析仪连续筛析2min,在此期间如有试样附着在筛盖上,可轻轻地敲击筛盖使试样落下。筛毕,用天平称量全部筛余物。

3 水筛法

(1)筛析试验前,应检查水中无泥、砂,调整好水压及水筛架的位置,使其能正常运转,并控制喷头底面和筛网之间距离为35mm~75mm。

(2)称取试样精确至001g,置于洁净的水筛中,立即用淡水冲洗至大部分细粉通过后,放在水筛架上,用水压为005MPa士002MPa的喷头连续冲洗3min,筛毕,用少量水把筛余物冲至蒸发皿中,等水泥颗粒全部沉淀后,小心倒出清水,烘干并用天平称量全部筛余物。

4 手工筛析法

(1) 称取水泥试样精确至001g,倒人手工筛内。

(2) 用一只手持筛往复摇动,另一只手轻轻拍打,往复摇动和拍打过程应保持近于水平。拍打速度每分钟约120次,每40次向同一方向转动600,使试样均匀分布在筛网上,直至每分钟通过的试样量不超过003g为止,称量全部筛余物。

5 试验筛的清洗

试验筛必须经常保持洁净,筛孔通畅,使用10次后要进行清洗。金属框筛、铜丝网筛清洗时应用专门的清洗剂,不可用弱酸浸泡。

六 结果与处理

水泥试样筛余百分数按下式计算:

F=R/W×100

R 一 水泥试样的筛余百分数,单位为质量百分数(%);

R — 水泥筛余物的质量,单位为克(g);

W— 水泥试样的质量,单位为克(g);

结果计算至01%

注:负压筛析法、水筛法和手工筛析法测定的结果发生争议时,以负压筛析法为准。

三 水泥标准稠度,凝结时间和体积安定性测试

一 实验目的

1 了解水泥标准稠度用水量的测定方法。

2 掌握凝结时间的测定方法

二 实验原理

1 水泥标准神摩净浆对标准试杆(或试锥)的沉人具有一定阻力。通过试验不同含水量水泥净浆的穿透性,以确定水泥标准稠度净浆中所需加人的水量。

2 凝结时间以试针沉人水泥标准稠度净浆至一定深度所需的时间表示。

3 安定性

(1)雷氏法是观测由二个试针的相对位移所指示的水泥标准稠度净浆体积膨胀的程度。

(2)试饼法是观测水泥标准稠度净浆试饼的外形变化程度。

三 实验原料

水泥 水

四 实验设备

1 水泥净浆搅拌机

2 标准法维卡仪

如图1所示,标准稠度测定用试杆〔见图lc〕有效长度为50mm±1mm、由直径为φ10mm±005mm的圆柱形耐腐蚀金属制成。测定凝结时间时取下试杆,用试针[见图1d)、e]代替试杆。试针由钢制成,其有效长度初凝针为50mm±1mm、终凝针为30mm±1mm,直径为φ113mm±005mm的圆柱体。滑动部分的总质量为300g±1g。与试杆、试针联结的滑动杆表面应光滑,能靠重力自由下落,不得有紧涩和晃动现象。

盛装水泥净浆的试模〔见图la)〕应由耐腐蚀的、有足够硬度的金属制成。试模为深40mm±02mm、顶内径φ65mm±05mm、底内径φ75mm±05mm的截顶圆锥体。每只试模应配备一个大于试模、厚度≥25mm的平板玻璃底板。

3 代用法维卡仪

4 雷氏夹

由铜质材料制成,其结构如图2。当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g质量的砝码时,两根指针针尖的距离增加应在175mm±25mm范围内,即2x=175mm±25mm(见图3),当去掉砝码后针尖的距离能恢复至挂砝码前的状态。

5 沸煮箱

有效容积约为410mm×240mm×310mm,蓖板的结构应不影响试验结果,蓖板与加热器之间的距离大于5Omm。箱的内层由不易锈蚀的金属材料制成,能在30min±5min内将箱内的试验用水由室温升至沸腾状态并保持3h以上,整个试验过程中不需补充水量。

6雷氏夹膨胀测定仪

如图4所示,标尺最小刻度为05mm。

7 量水器:最小刻度01mL,精度1%。

8 天平:最大称量不小于1000g,分度值不大于lg

五 实验步骤

1标准稠度用水量的测定(标准法)

(1)试验前必须做到

a) 维卡仪的金属棒能自由滑动;

b)调整至试杆接触玻璃板时指针对准零点;

c)搅拌机运行正常。

(2)水泥净浆的拌制

用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,将拌和水倒人搅拌锅内,然后在5s~10s内小心将称好的500g水泥加人水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮人锅中间,接着高速搅拌120s停机。

(3)标准稠度用水量的测定步骤

拌和结束后,立即将拌制好的水泥净浆装人已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速将试摸和底扳移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,使试杆垂直自由地沉入水泥净浆中。在试杆停止沉人或释放试杆30s时记录试杆距底板之间的距离,升起试杆后,立即擦净;整个操作应在搅拌后15min内完成。以试杆沉人净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。其拌和水量为该水泥的标准稠度用水量(P),按水泥质量的百分比计。

2 凝结时间的测定

(1)测定前准备工作:调整凝结时间测定仪的试针接触玻璃板时,指针对准零点。

(2)试件的制备:以标准稠度用水量按72条制成标准稠度净浆一次装满试模,振动数次刮平,立即放人湿气养护箱中。记录水泥全部加人水中的时间作为凝结时间的起始时间。

(3)初凝时间的测定:试件在湿气养护箱中养护至加水后30min时进行第一次测定。测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触。拧紧螺丝1s~2s后,突然放松,试针垂直自由地沉人水泥净浆。观察试针停止下沉或释放试针30s时指针的读数。当试针沉至距底板 4mm±1mm时,为水泥达到初凝状态;由水泥全部加人水中至初凝状态的时间为水泥的初凝时间,用 “min”表示。

(4)终凝时间的测定:为了准确观测试针沉人的状况,在终凝针上安装了一个环形附件〔见图1e)。 在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转大端向上,小端向下放在玻璃板上,再放人湿气养护箱中继续养护,临近终凝时间时每隔15min一测定一次,当试针沉人试体05mm时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加人水中至终凝状态的时间为水泥的终凝时间,用“min”表示。

(5)测定时应注意,在最初测定的操作时应轻轻扶持,金属柱,使其徐徐下降,以防试针撞弯,但结果以自由下落为准;在整个测试过程中试针沉人的位置至少要距试模内壁l0mm。临近初凝时,每隔5min测定一次,临近终凝时每隔15min测定一次,到达初凝或终凝时应立即重复测一次,当两次结论相同时才能定为到达初凝或终凝状态。每次测定不能让试针落人原针孔,每次测试完毕须将试针擦净并将试模放回湿气养护箱内,整个测试过程要防止试模受振。

3安定性的测定

标准法

(1) 测定前的准备工作

每个试样需成型两个试件,每个雷氏夹需配备质量约75g~85g的玻璃板两块,凡与水泥净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一层油。

(2) 雷氏夹试件的成型

将预先准备好的雷氏夹放在已稍擦油的玻璃板上,并立即将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约lOmm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±12h。

(3)沸煮

调整好沸煮箱内的水位,使能保证在整个沸煮过程中都超过试件,不需中途添补试验用水,同时又能保证在30min±5min内升至沸腾。

脱去玻璃板取下试件,先测量雷氏夹指针尖端间的距离(A),精确到0 5mm,接着将试件放入沸煮箱水中的试件架上,指针朝上,然后在30min±5min内加热至沸并恒沸180min±5min。

(4) 结果判别

沸煮结束后,立即放掉沸煮箱中的热水,打开箱盖,待箱体冷却至室温,取出试件进行判别。测量雷氏夹指针尖端的距离(C),准确至05,当两个试件煮后增加距离(C-A)的平均值不大于50mm时,即认为该水泥安定性合格,当两个试件的(C-A)值相差超过40mm时,应用同一样品立即重做一次试验。再如此,则认为该水泥为安定性不合格。

代用法

(1)测定前的准备工作

每个样品需准备两块约l00mm×l00mm的玻璃板,凡与水泥净浆接触的玻璃板都要稍稍涂上一层油。

(2)试饼的成型方法

将制好的标准稠度净浆取出一部分分成两等份,使之成球形,放在预先准备好的玻璃板上,轻轻振动玻璃板并用湿布擦过的小刀由边缘向中央抹,做成直径70mm~80mm、中心厚约10mm、边缘渐薄、表面光滑的试饼,接着将试饼放人湿气养护箱内养护24h±2h

六 思考题

1 水泥凝结时间的影响因素有哪些?

2 水泥沸煮法安定性试验测出水泥安定性不良的原因是什么?为什么?

四 水泥胶砂强度测试

一 实验目的

1 掌握水泥胶砂强度的测定方法

2 掌握强度的计算方法

二 实验原理

制作成试块养护一定时间后用压力机进行试验,测试它的抗压强度,得知水泥胶砂的强度。

三 实验原料

水泥、砂、水

四 实验设备

1 搅拌机

2 压力机

3 振动台

五 实验步骤

1成型前将试模擦净,四周的模板与底座的接触面上应涂黄干油,紧密装配,防止漏浆,内壁均匀刷一层机油。

2 配料

水泥450g、砂1350g和水225ml

3 搅拌

4 试件制备

在搅拌胶砂的同时将试模及下料漏斗卡紧在振动台台面中心。将搅拌好的全部胶砂均匀地装人下料漏斗中,开动振动台。振动完毕,取下试模,用刮平刀轻轻刮去高出试模的胶砂并抹平。接着在试体上编号。编号后,将试模放人养护箱养护。养护箱内篦板必须水平。24±3h后取出脱模,脱模时应防止试体损伤。硬化较慢的水泥允许延期脱模,但须记录脱模时间。

5 强度计算

各龄期的试体必须在下列时间内进行强度试验:龄期3d 时间3d±2h

(1)抗折强度试验

试验前须擦去试体表面的附着水分和砂粒,清除夹具上圆柱表面粘着的杂物,试体放入抗折夹具内,应使侧面与圆柱接触。抗折试验加荷速度为5±05kgf/s。

计算:

Rf=(15PL)/(b3)

式中:

Rf-抗折强度,Mpa;

P-破坏荷重,N;

L-支撑圆柱中心距,即10cm;

b-试体断面边长,mm。

(2)抗压强度试验

抗折试验后的二个断块应立即进行抗压试验。

Rc=(Fc/S)

式中:

Rc-抗压强度,Mpa;

Fc -破坏荷重,N;

S——受压面积,mm2。

六 思考题

水泥胶砂强度测定的试件养护时为什么要规定标准养护?

水泥制作流程如下:第一步就是把石灰石,水,铁矿石等材料一起破碎,然后初步混热合均匀。

第二步就是控制生产原料的比例,一般来说水泥粉只占40%左右,其他生料占60%左右,根据不同建筑构造的需求进行配比。

第三步就是当生产的所有原料被破碎成粉末之后,就均匀的混合在一起。

第四步就是预热原材料,并分解出需要的一些化学成分,而不需要的成分则丢弃。

第五步就是烧成水泥熟料,把分解出来的原料放入窑中烧,烧到变成变成液态状。

第六步就是烘干并磨成粉末状。就是把液态的水泥先烘干,之后再碾碎成粉末状,最后用包装袋装好。

相关内容