中文名称 | 激光扫描共聚焦荧光显微镜 | 半导体激光器 | 405nm(近紫外谱线) |
---|---|---|---|
扫描模块 | 针孔光栏等 | 基本结构 | 激光光源、荧光显微镜等 |
市场价 | 信息价 | 询价 |
活细胞工作站和荧光显微镜的区别
荧光显微镜只是工作站的一部分。
激光扫描枪价格多少钱
智能激光扫描枪报价:1Symbol DS6708参考报价:¥13002Symbol  ...
激光扫描仪价格是多少?
激光扫描仪价格在:700元到3000元之间;激光扫描仪是借着扫描技术来测量工件的尺寸及形状等工作的一种仪器,激光扫描仪必须采用一个稳定度及精度良好的旋转马达,当光束打 ( &...
关于光学显微镜的问题
卤素灯的光谱会比较宽但相对较贵,荧光灯和白光LED比较便宜,楼主可以试试看各种灯。柯勒照明的实质是消除面光源亮度不均匀对成像质量的影响,核心原理在于把面光源上每个点都扩散成一个一个面光照射到样品上,即...
三维激光扫描仪价格多少
网上有很多价格信息,我归下类: 100万左右的,较大型进口三维扫描仪,一般为激光测绘或... 国内的便携式,手持式三维扫描仪 5...
从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描。共聚焦显微镜能提供无比精确的三维成像,以及对亚细胞结构和动力学过程的精准测试。
激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学 等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。
传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光电倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。
共聚焦显微技术是在荧光显微分析技术的基础上发展起来的,利用荧光显微镜可以对生物样品发出的荧光进行观察和分析,但是荧光显微镜收集到的是样品的整体荧光,来自样品内不同部位的荧光信号相互干扰。难以区分,无法获得准确的定位和定量信息。 共聚焦显微技术的出现很好地解决了这一问题,这一技术可以获取细胞内某个薄层面上的荧光信息,而该层以外的信号被消除掉,成像清晰程度大大提高;结合计算机自动控制,可以对荧光信号的分布、强度和动态变化进行全方位的分析,得到丰富的信息。
与传统显微镜相比共聚焦显微镜可抑制图像的模糊,获得清晰的图像;具有更高的轴向分辨率,并可获取连续光学切片;增加侧向分辨率;由于点对点扫描去除了杂散光的影响。
这要看你的荧光探针激发波长和发射波长是多少,以及自身荧光激发波长和发射波长是多少。二者若激发波长有重叠,则会同时受激发光;而发射的光经过滤光片被接收,如果二者发射波长相差很大,自身荧光可以被滤光片滤掉的话就不会影响;反之就会。
荧光显微镜和激光共聚焦显微镜的区别
激光共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。
同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。
最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。
不能。
因为共聚焦的光源是激光,激光有一定的危险性,激光照射的时候不能通过目镜观察,在需要荧光观察配合显微操作的时必须用荧光显微镜。
激光的波长在紫外波段不是特别丰富,比如钙成像需要的FURA-2探针,需要340和380波长的双激发,就没有合适的激光,此时用荧光显微镜就比较方便。
还有些比较容易进入三线态的染料,因为激发后发光的时间比较长,不适合共聚焦的扫描成像,只能用荧光显微镜CCD成像。
一、普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。优点:操作简便,制样方便。
二、激光共聚焦扫描显微镜,用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的连续图像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结构,实现三维成像与解析,获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。优点:分辨率高于普通光学显微镜;能对样品进行连续无损光学切片,并去除了杂散光的影响,增加了图像的清晰度。
要抓住“细胞机构“(PS:细胞结构)级别解释一下。举例,如果要观察细胞凋亡,就要大牛档次显微镜,因为你要记录整个过程,因为你要荧光进行标示,因为要看漏出来的DNA。只能是荧光显微镜。一次荧光显微镜的实验,成本大约在200大洋左右,而且使用时候对荧光显微镜的汞灯保养特别注意。一只国产汞灯就要300大洋以上了。就”细胞壁“而言,一般的显微镜一般情况下是可以看到了,但是,我不建议你看水中的微生物,想要好玩而又容易地看到细胞壁(如:响叶杨细胞横截面的壁厚平均尺寸为2230μm),建议看植物表皮的细胞壁,如中学课本的洋葱,就像看到各种各样的艺术品那样。当年,虎克大叔就是从死掉的植物细胞才有大量发现的,之前观察水,也有发现但是那个难吖,现在,讲讲水中细胞壁观察难在那里。一般的显微镜的分辨率是02um,你要观察的细胞壁要大过这个值才可以分辨出来(还不一定看得很清楚)。如果是微生物酵母的话,其细胞壁一般为15-30nm,<200nm,要设法加厚才可以看到,就要规规矩矩做”细菌细胞壁的染色法“。再有,要考虑水的折射率,人眼睛在水下视力会降低一旦使用显微镜遇到水的问题就会出现视野模糊的状况。最后,水中的微生物是运动状态的(参考:布朗运动)很难捕捉到静止的画面。结论,用普通显微镜,看”水中微生物的细胞壁“理论是可行的,但要考虑到被约束条件。没有科研环境不建议做。如果需要一般的显微镜要看细胞壁,最好找取材容易的植物。
激光共聚焦皿不能用普通荧光显微镜看。共聚焦的光源是激光,激光有一定的危险性,激光照射的时候不能通过目镜观察,在需要荧光观察配合显微操作的时必须用荧光显微镜。激光的波长在紫外波段不是特别丰富,比如钙成像需要的FURA-2探针,需要340和380波长的双激发,就没有合适的激光,此时用荧光显微镜就比较方便。还有些比较容易进入三线态的染料,因为激发后发光的时间比较长,不适合共聚焦的扫描成像,只能用荧光显微镜CCD成像。