建材秒知道
登录
建材号 > 基础建材 > 正文

电子显微镜X射线泄漏剂量

周敏

电子显微镜X射线泄漏剂量基本信息

外文名称 The Dose of X-rays LEAkage From Electron Microscope 书名 电子显微镜X射线泄漏剂量
作者 中华人民共和国国家质量监督检验检疫总局 出版日期 2004年4月1日
语种 简体中文 ISBN 155066120553
出版社 中国标准出版社 页数 1页
开本 16 品牌 北京劲松建达科技图书有限公司

电子显微镜X射线泄漏剂量概述

《电子显微镜X射线泄漏剂量(GB 7667-2003)》由中国标准出版社出版。

电子显微镜X射线泄漏剂量造价信息

市场价 信息价 询价

电子显微镜X射线泄漏剂量常见问题

电子显微镜除了包括亚显微镜还包括什么?

电子显微镜的分类 1、透射电镜 (TEM) 样品必须制成电子能穿透的,厚度为100~2000 Å的薄膜。成像方式与光学生物显微镜相似,只是以电子透镜代替玻璃透镜。放大后的电子像在荧光屏上显示出来,TE...

电子显微镜成像原理

电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。 电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射...

电子显微镜的工作原理是什么?

顾名思义,所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开...

简述电子显微镜的工作原理,它在高聚物研究中有哪些广泛的用途?分别予以论述。

电子显微镜(electron microsocope)简称电镜,是以电子束为照明源,通过电子流对样品的透射以及电磁透镜的多级放大后的荧光屏上成像的大型精密仪器。 电子与物质相互作用会产生透射电子, 弹...

显微镜价钱

一般实验室用的几百到几万都有。一分钱一分货。

电子显微镜种类

电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。

透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。

电子显微镜组成

电子显微镜由镜筒、真空装置和电源柜三部分组成。

镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。

电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。

样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加、降温 、拉长等)的装置。

探测器用来收集电子的信号或次级信号。

真空装置用以保障显微镜内的真空状态,这样电子在其路径上不会被吸收或偏向,由机械真空泵、扩散真空阀门等构成,并通过抽气管道与镜筒相联接。

电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。

实用电子显微镜技术目录

第一章 电子显微镜技术发展简史

第一节 电子显微镜发展简史

一、国外电子显微镜生产简况

二、国内电子显微镜生产简况

三、电子显微镜的发展

第二节 电子显微镜技术的发展与应用

一、电子显微镜技术的发展

二、电子显微镜技术的应用

第三节 其他显微技术的发展

第四节 电子显微学主要学术组织和刊物

一、国内电子显微学学术组织及刊物

二、国际电子显微学的主要期刊杂志及主要参考书

提要

思考题

第二章 样品包埋块制作

第一节 概述

一、光镜和电镜样品差异

二、包埋块制作程序与质量标准

第二节 取材与固定

一、取材

二、固定

第三节 漂洗与脱水

一、漂洗

二、脱水

第四节 浸透与包埋

一、包埋剂

二、包埋剂配制注意事项

三、包埋模具

第五节 制作包埋块常规实验方法

一、取材与固定

二、脱水与浸透

三、包埋与聚合

四、制样常规操作程序

第六节 制作包埋块特殊实验方法

一、组织的快速包埋

二、重新包埋

三、可逆包埋技术

提要

思考题

第三章 超薄切片

第一节 切片刀具与修整包埋块

一、玻璃刀

二、钻石

三、制作水槽

四、修整包埋块

第二节 载网

一、载网种类及特性

二、载网的处理

第三节 支持膜

一、方华膜

二、

三、火棉胶基底碳膜

四、硝化纤维素基底碳膜

五、微筛膜

六、单孔及大孔网制膜技巧

第四节 切片

一、组织面粗切

二、切片前的调整

三、切片

四、切片问题分析与解决

第五节 半薄切片

一、切片装置及切片方法

二、捞片、染色及保存

提要

思考题

第四章 正染色

第一节 概述

一、电子显微镜图像反差形成原理

二、染色的必要性

……

第五章 免疫电子显微镜术

第六章 冷冻复制

第七章 冷冻固定和冷冻置换

第八章 负染色技术

第九章 核酸大分子电镜样品制备技术

第十章 透射电子显微镜

第十一章 扫描电子显微镜及样品制备

第十二章 电子显微镜的实验室安全

参考文献

中英文名词索引

附录 电子显微照片

扫描电子显微镜的原理及应用

扫描电子显微镜工作原理

(1)扫描

电子枪产生的高能电子束入射到样品的某个部位时,在相互作用区内发生弹性散射和非弹性散射事件,从而产生背散射电子、二次电子、吸收电子、特征和连续谱X射线、俄歇电子、阴极荧光等各种有用的信号,利用合适的探测器检测这些信号大小,就能够确定样品在该电子入射部位内的某些性质,例如微区形貌或成分等。

为了研究样品上更多部位的特征,必须利用扫描系统移动入射电子到样品上的不同位置。

(2)成像

扫描电镜的成像是靠扫描作用实现的。扫描发生器同时控制高能电子束和荧光屏中的电子束“同步扫描”,当电子束在样品上进行栅格扫描时,在荧光屏上也以相同的方式同步扫描,因此“样品空间”上的一系列点就与“显示空间”逐点对应。

换言之,样品上电子束的各个位置与荧光屏上的各点确立了严格的对应关系。样品表面被电子束扫描,激发出各种物理信号,其强度与样品的表面特征有关,这些信号通过探测器按顺序、成比例地转为视频信号,经过放大,用来调制荧光屏对应点的电子束强度,即光点的亮度,这就形成了扫描电镜的图像。而图像上强度的变化反映出样品的特性。

扫描电镜成像虽然不同光镜和透射电镜那样直接由物体发出的光线或电子束成像,这种成像过程如同利用信号探测器作为摄像机,对样品表面逐点拍摄,把各点产生的信号转换到荧光屏上成像。

荧光屏上的图像实际上是由一系列灰度不同的亮点组成,这个亮点称为像素(Pixle)。像素点数越多,则图像的分辨率越高。

主要用途及适用范围

扫描电镜可应用于陶瓷材料分析、金属材料失效分析。在石油、地质、矿物领域,电子、半导体领域,医学、生物学领域,化工、高分子材料领域,公安刑侦工作领域,以及农、林业等方面都有广泛应用。

扫描电镜可进行显微形貌分析,如果配备了其它分析仪器也可进行成分的常规微区分析,包括元素定量、定性成分分析。进行显微形貌分析时,空间分辨率可达亚微米级;能够进行晶界的状态测量,或者晶体/晶粒的相鉴定,以及晶体、晶粒取向测量等;进行微区成分分析时,能够通过快速的多元素面扫描和线扫描进行分布测量。

在现代产业化生产和科学研究中,扫描电镜发展成为材料分析、监控工农业生产、保证产品质量、保障大生产流程安全高效的必要手段;同时在生物、环保、医学等有关人类的生存、发展领域的应用也日新月异;在军事现代高科技方面的发展(例如生物武器、化学武器战争、现场毒物检测、生命保障任务等)发挥了巨大的作用。

电子显微镜简介

电子显微镜可以看病毒。

病毒是一种没有细胞结构的特殊生物。它们的结构非常简单,由蛋白质外壳和内部的遗传物质组成。病毒不能独立生存,必须生活在其他生物的细胞内,一旦离开活细胞可就不表现任何生命活动迹象。病毒个体极其微小,绝大多数要在电子显微镜下才能看到。

电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为02μm,透射电子显微镜的分辨率为02nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。

扩展资料:

电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。

透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。

参考资料来源:百度百科-电子显微镜

目录 1 拼音 2 英文参考 3 注解 1 拼音

diàn zǐ xiǎn wēi jìng

2 英文参考

electronmicroscope

eletron microscope

EM

EMS

microscope,electron

supermicroscope

3 注解

普通光学显微镜通过提高和改善透镜的性能,使放大率达到1000-1500倍左右,但一直未超过2000倍,这是由于普通光学显微镜的放大能力受光的波长的限制。有人采用波长比可见光更短的紫外线,放大能力也不过再提高一倍左右。

要想看到组成物质的最小单位——原子,光学显微镜的分辨本领还差3-4个量级。为了从更高的层次上研究物质的结构,必须另辟蹑径,创造出功能更强的显微镜。

有人设想用波长比紫外线更短的X射线,这种显微镜的放大能力和分辨本领一定会大大提高,但是找不到适用于X射线的透镜。

20世纪20年代法国科学家德布罗意发现电子流也具有波动性,其波长与能量有确定的关系,能量越 长越短,比如电子经 1000伏特的电场加速后其波长是0.388埃,用10万伏电场加速后波长只有0.0387埃。于是科学家们就想到是否可以用电子束来代替光波?这是电子显微镜即将诞生的一个先兆。

用电子束来制造显微镜,关键是找到能使电子束聚焦的透镜,显然一般光学透镜是无法会聚电子束的。

1923年,德国科学家蒲许提出了关干电子在磁场中运动的理论。他指出:“具有轴对称性的磁场对电子束来说起著透镜的作用。”这样,蒲许就从理论上解决了电子显微镜的透镜问题,因为对电子束来说,磁场显示出透镜的作用,所以称为“磁透镜”。

德国柏林工科大学的年轻研究员卢斯卡,1932年制作了第一台电子显微镜它是一台经过改进的阴极射线示波器,成功地得到了铜网的放大像第一次由电子束形成的图像。加速电压为7万伏,最初放大率仅为12倍。尽管放大率微不足道,但它却证实了使用电子束和电子透镜可形成与光学像相同的电子像。

经过不断地改进,1933年卢斯卡制成了二级放大的电子显微镜,获得了金属箔和纤维的1万倍的放大像。

1937年应西门子公司的邀请,卢斯卡建立了超显微镜学实验室。1939年西门子公司制造出分辨本领达到30埃的世界上最早的实用电子显微镜,并投入批量生产。

电子显微镜的出现使人类的洞察能力提高了好几百倍,不仅看到了病毒,而且看见了一些大分子,即使经过特殊制备的某些类型材料样品里的原子,也能够被看到。

但是,受电子显微镜本身的设计原理和现代加工技术手段的限制,目前它的分辨本领已经接近极限。要进一步研究比原子尺度更小的微观世界,必须要有概念和原理上的根本突破。

1978年一种新的物理探测系统“扫描隧道显微镜”已被德国学者宾尼格和瑞士学者罗雷尔系统地论证了,并于1982年制造成功。这种新型的显微镜,放大倍数可达3亿倍,最小可分辨的两点距离为原子直径的1/ 10,也就是说它的分辨率高达0.l埃。

扫描隧道显微镜采用了全新的工作原理,它利用一种奇妙的电子隧道现象,将样品本身作为一个电极,另一个电极是一根非常尖锐的探针,把探针移近样品,并在两者之间加上电压。当探针和样品表面相距只有数十埃时,由于隧道效应在探针与样品表面之间就会产生隧穿电流,并保持不变,若表面有微小起伏,那怕只有原子大小的起伏,也将使隧穿电流发生成千上万倍的变化,这种携带原子结构的信息,输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图象。

相关内容