中文名称 | 激光共聚焦扫描显微镜 | 外文名称 | laser scanning confocal microscope |
---|---|---|---|
简 称 | LSCM | 原 理 | 逐点、逐行、逐面快速扫描成像 |
市场价 | 信息价 | 询价 |
显微镜价钱
一般实验室用的几百到几万都有。一分钱一分货。
关于光学显微镜的问题
卤素灯的光谱会比较宽但相对较贵,荧光灯和白光LED比较便宜,楼主可以试试看各种灯。柯勒照明的实质是消除面光源亮度不均匀对成像质量的影响,核心原理在于把面光源上每个点都扩散成一个一个面光照射到样品上,即...
显微镜的价格?
金相显微镜这个要用到金相显微镜,价格在4500元到300000元左右,具体是要看您需要什么样的配置!
显微镜的价格?
这款显微镜在显微镜行业中叫做示教显微镜,除单目观察外可外接摄像装置接电脑观察图像拍照片等。看你这款显微镜应该是中低端的,采用3只物镜,载物台也不是中高档显微镜所采用的双层平台,只看出可以左右移动标本片...
显微镜的反光镜是什么镜?
使光线透过通光也反射到要观察的标本上......
从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描。共聚焦显微镜能提供无比精确的三维成像,以及对亚细胞结构和动力学过程的精准测试。
激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学 等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。
传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光电倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。
细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。
⒈细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化
⒉生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析
⒊药理学:药物对细胞的作用及其动力学
⒋生理学:膜受体、离子通道、细胞内离子含量、分布、动态
⒌神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布
⒍微生物学和寄生虫学:细菌、寄生虫形态结构
⒎病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HⅣ等
⒏遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断
基于共聚焦显微技术的显微镜和荧光显微镜的区别:
荧光显微镜主要应用在生物领域及医学研究中,能得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,是形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。
以共聚焦技术为原理的共聚焦显微镜,是用于对各种精密器件及材料表面进行微纳米级测量的检测仪器。
材料科学的目标是研究材料表面结构对于其表面特性的影响。因此,高分辨率分析表面形貌对确定表面粗糙度、反光特性、摩擦学性能及表面质量等相关参数具有重要意义。共焦技术能够测量各种表面反射特性的材料并获得有效的测量数据。
基于共聚焦显微技术的共聚焦显微镜,结合精密Z向扫描模块、3D 建模算法等,可以对器件表面进行非接触式扫描并建立表面3D图像,实现器件表面形貌3D测量。在材料生产检测领域中能对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。
应用1MEMS
微米和亚微米级部件的尺寸测量,各种工艺(显影,刻蚀,金属化,CVD, PVD,CMP等)后表面形貌观察,缺陷分析。
2精密机械部件,电子器件
微米和亚微米级部件的尺寸测量,各种表面处理工艺,焊接工艺后的表面形 貌观察,缺陷分析,颗粒分析。
3半导体/ LCD
各种工艺(显影,刻蚀,金属化,CVD,PVD,CMP等)后表面形貌观察, 缺陷分析 非接触型的线宽,台阶深度等测量。
4摩擦学,腐蚀等表面工程
磨痕的体积测量,粗糙度测量,表面形貌,腐蚀以及亚微米表面工程后的表面形貌。
一、普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。优点:操作简便,制样方便。
二、激光共聚焦扫描显微镜,用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的连续图像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结构,实现三维成像与解析,获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。优点:分辨率高于普通光学显微镜;能对样品进行连续无损光学切片,并去除了杂散光的影响,增加了图像的清晰度。