建材秒知道
登录
建材号 > 基础建材 > 正文

X光显微镜

周敏

X光显微镜造价信息

市场价 信息价 询价

X光显微镜常见问题

显微镜价钱

一般实验室用的几百到几万都有。一分钱一分货。

关于光学显微镜的问题

卤素灯的光谱会比较宽但相对较贵,荧光灯和白光LED比较便宜,楼主可以试试看各种灯。柯勒照明的实质是消除面光源亮度不均匀对成像质量的影响,核心原理在于把面光源上每个点都扩散成一个一个面光照射到样品上,即...

显微镜的价格?

相显微镜这个要用到金相显微镜,价格在4500元到300000元左右,具体是要看您需要什么样的配置!

显微镜的价格?

这款显微镜在显微镜行业中叫做示教显微镜,除单目观察外可外接摄像装置接电脑观察图像拍照片等。看你这款显微镜应该是中低端的,采用3只物镜,载物台也不是中高档显微镜所采用的双层平台,只看出可以左右移动标本片...

显微镜的反光镜是什么镜?

使光线透过通光也反射到要观察的标本上......

熔深测量显微镜 苏州南光详解熔深测量显微镜测量熔深的具体步骤

熔深测量显微镜是汽配行业使用较多的一款显微镜,随着汽车行业的发展,熔深测量显微镜的使用将越来越广泛。熔深测量显微镜是解决汽车配件行业检测汽车配件的得力帮手,怎样选择和使用熔深测量显微镜是购买者需要考虑的问题。

苏州南光专业熔深测量显微镜厂家,熔深测量显微镜品种多,可根据您的具体产品和焊缝尺寸等具体情况推荐最合适的熔深测量显微镜,欢迎您咨询我们。

熔深测量显微镜测量熔深的一般包含:取样----微小试样要镶嵌---预磨抛光----显微镜观察---检测---报告---电脑打印机。下面给出一些熔深测量的效果图供大家参考。

熔深测量显微镜的具体配置及价格请咨询我们,有关于熔深分析的技术问题也可以咨询我们,大家一起讨论,解决实际问题,tel:0512-85187300

文本出自:http://www.szngdz.com

光电关联显微镜扫描电子显微镜

电子显微镜的光源是短波长的电子束,汇聚电子束的是透镜,探测器采集入射束跟样品作用后的二次信号(背散射电子,X光子等),来获取样品的结构和成分信息 。扫描电镜用汇聚的电子束逐点逐行在样品表面扫描,由于样品形貌或成分不同,各点被激发出的二次信号的强度不同,探头采集这些信号来成像 。

显微镜摄像头显微镜与摄像头的连接

普通的显微镜需要添加显微镜摄像头,必须添加一个数码显微镜接口。如果是三目显微镜的话,就可以用第三目镜上面的标准C接口直接和显微摄像头的C接口连接(一般正规的厂家生产的显微摄像头都是标准C接口的)当然,添加摄像头后亦需添加一台电脑,这样也就是把普通的显微镜改造成一台高性价比的数码显微镜。

X光结晶学是怎样的?

你可能从来没有听说过X光结晶学的名字,也不知道这是门什么样的学问,但是,就像你即使不明白重力是怎么回事,可它却还是会实实在在地影响着我们的生活一样,X光结晶学也在科学生活中影响着一系列学科的进步。没有它,生物学、冶金学、化学都不会在几十年间取得这样大的进展。

X光结晶学基本上可以算是显微镜学的一种,但是,世界上还没有一台显微镜可以把组成物质的原子放大,而X光结晶学就填补了这项空白。科学家们让X光透过细小的结晶粒,把资料记录下来,然后根据折射光线的模式,进行大量的计算工作,最后还原出立方体结构,也就是原子的立体图。20世纪最大的一项科研成果——脱氧核糖核酸(DNA)的立体结构能为人所知,便是X光结晶学的功劳。其他一些物质,如肌红蛋白、血红蛋白等的原子结构也是通过X光结晶学得到的。

X光结晶学还帮助科学家们洞悉了几种物质的立体结构。比如,伤风及感冒病毒的立体结构,这将有利于科学家找到它们的致病原因并削弱其功能,从而可以有效地治疗感冒。一些跟DNA有接触的分子,它们是开启或关闭遗传因子的钥匙,了解了它们的结构,有利于科学家寻找到医治某些疾病的方法。在治疗艾滋病方面,X光结晶学也有其独到的作用。X光结晶学对制药业非常重要。专家认为,只要人们能掌握与某种疾病有关的蛋白质的立体结构,进而研究它的特点和发病过程,就可以采取相应对策,研制出针对这些疾病的药物来。因此,X光结晶学很受重视。

当然,用X光结晶学解析原子结构是件很困难、很繁琐的工作。科学家取得了结晶粒折射光线的模式,还要进行大量的计算工作。以典型蛋白质为例,科学家先要取得3万个折射光线参数,然后进行10万个计算程序的运算,才能取得其结构模式。如果没有超级计算机帮助的话,10万个程序的计算就要花上10年时间。

科学家依靠X光结晶学已经取得了1000多种蛋白质的结构了,到2000年,这个数目可以达到2万个,总有一天,人们可以找到生命本身的结构。

古玩鉴定的X光检测准确不准确?

英国30年来最大的科学设备日前落成并投入使用,这个被称为“超级显微镜”的设备能发出世界上最耀眼的光线,分子乃至原子的内部结构在它的照射下也能一览无余。该设备可用于从医学探秘到太空探索的各项研究。

英国政府投入38亿英镑

据英国《卫报》2月7日报道,这个被称为“钻石光源同步加速器”的设备建在英国南牛津郡的一个环形建筑中,占地5个足球场,是英国30年来建成的最大的科学设备,也是英国政府资助的迄今耗资最大的科研项目,目前已投入38亿英镑资金。

作为科学界目前的最强大的光源,这个超大的加速器能产生比已知的最亮光还要亮100万倍的光线,比宇宙中超亮光线的光谱范围也要大得多。

据介绍,大量电子首先通过电子枪进入一个垂直加速器,随后进入一个小型的圆形助推加速器,再射入外围的环形真空存储室内,其周长达5626米。室内磁场将把电子加速到接近光速。电子在旋转的过程中将释放出红外线、紫外线、可见光、X光等电磁辐射。最后,光线将通过光线传输管道,照亮研究材料最细微的内部结构。电子将持续不断地成批进入加速器,每批约1000万个。

第一批科研项目已展开

负责建造“钻石光源”的工程人员表示,在一期工程完工后,它将拥有7条光线传输管道,在2011年前每年还将增加4至5条管道。每条管道输出的光线分别用于不同的科学实验。

目前,第一批科研项目已经开始在“钻石光源”内展开。牛津大学的戴夫·斯图尔特教授领导的小组将探索人类细胞外层细胞膜内的一对分子的结构。这对分子释放出的信号能控制分子的分裂和发育。

自然历史博物馆的保罗·斯科菲尔德教授领导的小组将利用这个设备研究1875年在巴西的海岸发现的一颗陨石的分子结构。科学家认为这颗陨石是14亿年前从一颗小行星上脱离并在1万年至10万年前坠落到地球上的。

x光辐射的范围是直射吗

你好!

我来为你回答这个问题吧,首先X光确实不是用来鉴定的,一般在医学上用的比较多,我想你说的应该是C14(碳十四)和热视光吧,不过这两种方法现在已经对于高仿品已经没什么用了,我先介绍几种能够高科技作假方法,这些方法能够躲避仪器的检测

①现在乘地铁或飞机不是要安检的嘛,在安检的时候,会经过热视光类似的检测仪,物品的年份会向前推移,如果多安检几次,自然而然年份就往前很多了,以后再想经碳14鉴定的话,就麻烦了。

②用拼接法,比如是一副字画,画是新的,但是裱是旧的,那碳14和热视光也就没什么用了。再比如说一件开门新的瓷器,作假的人把底足挖了,再接上旧的底足,如果用C14测的话。显示的年代是这个底足的年代。

总而言之,这些不能完全相信高科技的鉴定仪器,最科学的方法就是依靠眼力和经验鉴定,高科技的仪器只能做为辅助,这样的结果才是最完美的。

SEM、TEM、XRD、AES、STM、AFM的区别

辐射是光波,光波有波粒二重性,也是说有直射的和非直射。

X光现代的仪器都能做到主光区为主要的辐射范围,但是还是会有少量的散射X光分散到4周,或者主光碰到障碍也会向四周散射。但是都是微弱的X光,距离远一点就安全了。

扩展资料:

辐射分类

轫致辐射:当高速电子流撞击阳极靶受到制动时,电子在原子核的强电场作用下,速度的量值和方向都发生急剧的变化,一部分动能转化为光子的能量而辐射出去,这就是轫致辐射。

x射线管在管电压较低的时,被靶阻挡的电子的能量不越过一定限度,只发射连续光谱的辐射。

特征辐射:一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。

波长分类

X射线是一种波长极短,能量很大的电磁波,X射线的波长比可见光的波长更短),它的光子能量比可见光的光子能量大几万至几十万倍。

物理特性

1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。

2、电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。

3、荧光作用。X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。

这种作用是X射线应用于透视的基础,利用这种荧光作用可制成荧光屏,用作透视时观察X射线通过人体组织的影像,也可制成增感屏,用作摄影时增强胶片的感光量。

4、热作用。物质所吸收的X射线能大部分被转变成热能,使物体温度升高。

5、干涉、衍射、反射、折射作用。这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。

参考资料:

百度百科-X光

X射线是什么?

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。

x射线:X射线是一种波长极短,能量很大的电磁波。

x射线的性质及物理特性:

1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。

2、电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。

3、荧光作用。X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。

4、热作用。物质所吸收的X射线能大部分被转变成热能,使物体温度升高。

5、干涉、衍射、反射、折射作用。这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。

相关内容