铸造造型材料实用手册 481 《铸造造型材料实用手册》是2009年3月机械工业出版社出版的图书,作者李远才。 目录铸造造型材料实用手册图书目录铸造造型材料实用手册造价信息铸造造型材料实用手册内容简介铸造造型材料
首先看你的材料成分。。碳不能过高。。其次废钢比例少一点。。基本生铁和废钢比例在7:3。。另外球化剂是铁水的12-15。。孕育剂是铁水的15-2。。视碳含量加入增碳剂。。视牌号加入硅或锰。。保温覆盖剂是少不了的。。另外还有除渣剂。。。铁水基本这样的。。不过是很基本的。。没有其他合金要求的。。。其他造型材料视你工艺而定。。。是树脂砂铸造、潮膜砂铸造、消失膜铸造。。。或者铁膜覆砂铸造。。。
(一)适用场合:手工造型因其操作灵活、工艺装备简单、适应性强、无需造型设备等特点,被广泛应用于单件小批量生产。
(二)常用手工造型方法:
(1)整模造型:对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。
(2)分模造型:对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。
(3)三箱造型:铸件形状 为两端截面大、中间截面小,如带轮、槽轮、车床四方刀架等,为保证顺利起模,应采用三箱分模造型。
(4)活块造型:铸件上妨碍起模的部分(如凸台、筋条等)做成活块,用销子或燕尾结构使活块与模样主体形成可拆连接。
(5)刮砂造型:当铸件的外部轮廓为曲面(如手轮等)其最大截面不在端部,且模样又不宜分成两半时,应将模样做成整体,造型时挖掉妨碍取出模样的那部分型砂,这种造型方法称为挖砂造型。
扩展资料
铸造是一种液态金属成形的工艺方法,主要用于生产零件毛坯。铸造具有悠久的历史。根据文献记载和出土文物考证,证明我国的铸造生产技术至少已有四千多年的历史。大致可分为两个大的发展阶段:前两千年是以青铜铸造为主,发展冶铸技术,形成灿烂的商周青铜文化。
如湖北省出土的青铜器总重达十吨左右、六十四件编钟,铸造精巧,音律准确,音色优美。充分证明了该时期铜合金的冶炼技术和铸造技术达到了很高的水平。后两千年是以铸铁生产为主,如以生铁铸造农具、手工工具为主的铸铁生产技术使社会生产面貌发生了巨大的变化,推动了铸造技术的发展。
近半个世纪以来,随着国民经济的快速发展,我国的铸造技术得到了迅速发展。铸造生产作为工业生产的基础产业,在机械制造业中占有重要位置。根据大致估计,在机械各行业中铸件重量所占的比例为:机床、内燃机、重型机器约占70-90﹪;风机、压缩机约占60-80﹪;拖拉机、农业机械约占40-70﹪;汽车约占20-30﹪。
铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:
1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;
2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;
3)造型与制芯;
4)熔化与浇注;
5)落砂清理与铸件检验等主要工序。
参考资料:
铸造安全技术详解
铸造作为一种金属热加工工艺,将熔融金属浇注、压射或吸入铸型型腔中,待其凝固后而得到一定形状和性能铸件的方法。铸造作业一般按造型方法来分类,习惯上分为普通砂型铸造和特种铸造。下面一起和我来看看看吧!
铸造设备就是利用这种技术将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的能用到的所有机械设备。铸造设备主要包括:
(1)砂处理设备,如碾轮式混砂机、逆流式混砂机、叶片沟槽式混砂矶、多边筛等。
(2)有造型造芯用的各种造型机、造芯机,如高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。
(3)金属冶炼设备,如冲天炉、电弧炉、感应炉、电阻炉、反射炉等。
(4)铸件清理设备,如落砂机、抛丸机、清理滚筒机等。
一、铸造作业危险有害因素
铸造作业过程中存在诸多的不安全因素可能导致多种危害,需要从管理和技术方面采取措旒,控制事故的发生,减少职业危害。
1火灾及爆炸
红热的铸件、飞溅铁水等一旦遇到易燃易爆物品,极易引发火灾和爆炸事故。
2灼烫
浇注时稍有不慎,就可能被熔融金属烫伤;经过熔炼炉时,可能被飞溅的铁水烫伤;经过高温铸件时,也可能被烫伤。
3机械伤害
铸造作业过程中,机械设备、工具或工件的非正常选择和使用,人的违章操作等,都可导致机械伤害。如造型机压伤,设备修理时误启动导致砸伤、碰伤。
4高处坠落
由于工作环境恶劣、照明不良,加上车间设备立体交叉,维护、检修和使用时,易从高处坠落。
5尘毒危害
在型砂、芯砂运输、加工过程中,打箱、落砂及铸件清理中,都会使作业地区产生大量的粉尘,因接触粉尘、有害物质等因素易引起职业病。冲天炉、电炉产生的烟气中含有大量对人体有害的一氧化碳,在烘烤砂型或砂芯时也有二氧化碳气体排出;利用焦炭熔化金属,以及铸型、浇包、砂芯干燥和浇铸过程中都会产生二氧化硫气体,如处理不当,将引起呼吸道疾病。
6噪声振动
在铸造车间使用的震实造型机、铸件打箱时使用的震动器,以及在铸件清理工序中,利用风动工具清铲毛刺,利用滚筒清理铸件等都会产生大量噪声和强烈的振动。
7高温和热辐射
铸造生产在熔化、浇铸、落砂工序中都会散发出大量的热量,在夏季车间温度会达到40℃或更高,铸件和熔炼炉对工作人员健康或工作极为不利。
二、铸造作业安全技术措施
由于铸造车间的工伤事故远较其他车间为多,因此,需从多方面采取安全技术措施。
(一)工艺要求
l工艺布置
应根据生产工艺水平、设备特点、厂区场地和厂房条件等,结合防尘防毒技术综合考虑工艺设备和生产流程的布局。污染较小的造型、制芯工段在集中采暖地区应布置在非采暖季节最小频率风向的下风侧,在非集中采暖地区应位于全面最小频率风向的下风侧。砂处理、清理等工段宜用轻质材料或实体墙等设施与其他部分隔开;大型铸造车间的砂处理、清理工段可布置在单独的厂房内。造型、落砂、清砂、打磨、切割、焊补等工序宜固定作业工位或场地,以方便采取防尘措施。在布置工艺设备和工作流程时,应为除尘系统的合理布置提供必要条件。
2工艺设备
凡产生粉尘污染的定型铸造设备(如混砂机、筛砂机、带式运输机等)。制造厂应配置密闭罩,非标准设备在设计时应附有防尘设施。型砂准备及砂的处理应密闭化、机械化。输送散料状干物料的`带式运输机应设封闭罩。混砂不宜采用扬尘大的爬式翻斗加料机和外置式定量器,宜采用带称量装置的密闭混砂机。炉料准备的称量、送料及加料应采用机械化装置。
3工艺方法
在采用新工艺、新材料时,应防止产生新污染。冲天炉熔炼不宜加萤石。应改进各种加热炉窑的结构、燃料和燃烧方法,以减少烟尘污染。回用热砂应进行降温去灰处理。
4工艺操作
在工艺可能的条件下,宜采用湿法作业。落砂、打磨、切割等操作条件较差的场合,宜采用机械手遥控隔离作业。
(1)炉料准备。炉料准备包括金属块料(铸铁块料、废铁等)、焦炭及各种辅料。在准备过程中最容易发生事故的是破碎金属块料。
(2)熔化设备。用于机器制造工厂的熔化设备主要是冲天炉(化铁)和电弧炉(炼钢)。
冲天炉熔炼过程是:从炉顶加料口加入焦炭、生铁、废钢铁和石灰石,高温炉气上升和金属炉料下降,伴随着底焦的燃烧,使金属炉料预热和熔化以及铁水过热,在炉气和炉渣及焦炭的作用下使铁水成分发生变化。所以,其安全技术主要从装料、鼓风、熔化、出渣出铁、打炉修炉等环节考虑。
(3)浇注作业。浇注作业一般包括烘包、浇注和冷却三个工序。浇注前检查浇包是否符合要求升降机构、倾转机构、自锁机构及抬架是否完好、灵活、可靠;浇包盛铁水不得太满,不得超过容积的80%,以免洒出伤人}浇注时,所有与金属溶液接触的工具,如扒渣棒、火钳等均需预热,防止与冷工具接触产生飞溅。
(4)配砂作业。配砂作业的不安全因素有粉尘污染;钉子、铁片、铸造飞边等杂物扎伤;混砂机运转时,操作者伸手取砂样或试图铲出型砂,结果造成被打伤或被拖进混砂机等。
(5)造型和制芯作业。制造砂型的工艺过程叫做造型,制造砂芯的工艺过程叫做制芯。生产上常用的造型设备有震实式、压实式、震压式等,常用的制芯设备有挤芯机、射芯机等。很多造型机、制芯机都是以压缩空气为动力源,为保证安全,防止设备发生事故或造成人身伤害,在结构、气路系统和操作中,应设有相应的安全装置,如限位装置、联锁装置、保险装置。
(6)落砂清理作业。铸件冷却到一定温度后,将其从砂型中取出,并从铸件内腔中清除芯砂和芯骨的过程称为落砂。有时为提高生产率,若过早取出铸件,因其尚未完全凝固而易导致烫伤事故。
(二)建筑要求
铸造车间应安排在高温车间、动力车间的建筑群内,建在厂区其他不释放有害物质的生产建筑的下风侧。
厂房主要朝向宜南北向。厂房平面布置应在满足产量和工艺流程的前提下同建筑、结构和防尘等要求综合考虑。铸造车间四周应有一定的绿化带。
铸造车间除设计有局部通风装置外,还应利用天窗排风或设置屋顶通风器。熔化、浇注区和落砂、清理区应设避风夭窗。有桥式起重设备的边跨,宜在适当高度位置设置能启闭的窗扇。
(三)除尘
1炉窑
(1)炼钢电弧炉。排烟宜采用炉外排烟、炉内排烟、炉内外结合排烟。通风除尘系统的设计参数应按冶炼氧化期最大的烟气量考虑。电弧炉的烟气净化设备宜采用干式高效除尘器。
(2)冲天炉。冲天炉的排烟净化宜采用机械排烟净化设备,包括高效旋风除尘器、颗粒层除尘器、电除尘器。
2破碎与碾磨设备
颚式破碎机上部,直接给料,落差小于1m时,可只做密闭罩而不排风。不论上部有无排风,当下部落差大于等于lm时,下部均应设置排风密封罩。球磨机的旋转滚筒应设在全封闭罩内。
;砂型铸件的表面缺陷
11 机械粘砂和化学粘砂
砂型铸件表面的机械粘砂是金属液直接钻入砂型砂粒间孔隙,靠金属的包围和钩连作用与砂粒连结在一起,没有发生化学反应。产生化学粘砂的原因是高温金属液可能被氧化而生成金属氧化物,主要产物是氧化亚铁FeO,其熔点为1370℃。FeO与型砂的SiO2起化学反应生成硅酸亚铁(即铁橄榄石FeO•SiO2),化学反应如下:
SiO2 + 2FeO 2FeO•SiO2
硅酸亚铁的熔点极低,仅有1220℃,因此流动性很好,即使铸件表面已有凝固壳,新生成的硅酸亚铁仍呈液态,易于渗透入砂型孔隙中。凝结后的硅酸亚铁对铸件和型砂都有极强的粘结性,能够将型砂牢固粘附在铸件表面上而成个化学粘砂。
用湿型砂生产铸铁件一般只形成机械粘砂,而不会形成化学粘砂。这是因为铁液中含有多量碳,不会产生大量氧化铁等金属氧化物。砂型中又含有相当多的煤粉,浇注时产生的还原性气氛能防止金属氧化物。原砂的SiO2含量较低也不是湿型铸铁件形成化学粘砂的必然条件。研究结果表明,使用SiO2含量只有82%左右的黄河风积砂,用湿型生产铸铁件并未发现有化学粘砂。
凭肉眼区别两种粘砂是比较困难的,通常可用以下方法区分:
⑴显微观查:从粘砂层上敲取一小块,用液体树脂固定并磨制成试样,用金相显微镜观察。如果是机械粘砂,可以清楚看到单个砂粒夹在金属之中。渗入的金属与砂粒间有明显的分界线,不存在任何化学反应产物。渗入的金属金相组识与铸件本体的金相组织一致(见图2)。如果是化学粘砂,则可以看见在粘砂层中有新生相将铸件和砂粒粘连(见图3)。
⑵电测:机械粘砂中连结物是金属,具有良好的导电能力。将万用电表的旋钮开到电阻测定档,用一个电极接触铸件,另一电极接触粘砂部位。如果电阻接近为零,表明粘砂是金属包裹砂粒形成的机械粘砂。如果显示有巨大电阻,表明粘砂部位已经形成不导电的硅酸亚铁,属于化学粘砂。
⑶化学鉴别:用扁铲凿下一小块粘砂块,浸入盛有浓盐酸的试管中。如果缓慢发生气泡,一夜之后液体颜色由无色透明变为棕红色。反应终了时粘砂块消失,试管底部留下少数单个砂粒,说明是机械粘砂,铁质部分已被盐酸溶解成为氯化铁。化学反应式为:
2Fe + 6HCl 2FeCl3 +3H2↑
如果是化学粘砂,则气泡产生很少,酸液也没有明显的变化。最后的残留物是多孔性团絮状物质。
111 各种因素对机械粘砂的影响
实际生产经验表明,湿型铸件的重量一般不超过一、二百千克,壁厚大多不超过50mm,型砂中水分引起激冷效应使铸件外壳较快冷却和凝固,对型砂的加热作用并不过分严重。虽然铸铁用原砂中除了含有石英(熔点1715℃)以外,还含有相当数量熔点较低的长石(熔点1170~1550℃)、云母(熔点1150~1400℃)及其它矿物质,但同时铸铁湿型砂中含有的煤粉抑制了氧化铁的生成,因而不致引起化学反应。生产经验表明,湿型铸钢件一般也都是机械粘砂,而不是化学粘砂。这是因为湿型铸钢件都不是厚大铸件,而且所用硅砂含SiO2较高,铸件对型砂的热作用并不严重,不产生明显多的铁橄榄石。
以下将分别讨论铸件产生机械粘砂的各种影响因素:
1111 砂型紧实程度
手工造型和震压造型的紧实程度如果较低,则砂型表面的砂粒比较疏松,砂型型腔的坑凹处和拐角处局部也都更容易出现疏松。如金属液钻入砂粒之间孔隙不深,将使铸件表面显得粗糙;钻入较深和包裹砂粒则形成机械粘砂。造型工人可以采取手指塞紧、用冲锤的尖头冲紧砂型局部。高生产率的高密度造型是否有局部疏松,则取决于型砂流动性如何,因而很多工厂尽量降低型砂紧实率来提高型砂的流动性。在填砂和压实过程中采用微震提高砂型紧实程度是十分有效的。此外,也取决于紧实装置设定液压或气压的高低。图4为一灰铁汽车铸件出现机械粘砂,使用进口静压造型机,一箱两件。但液压系统的压力调节不适当,砂箱的压实比压较低;而且两件之间和与砂箱的吃砂量仅有25mm左右。砂型平面硬度只有50~60,边缘侧面硬度不足40。
1112 型砂的粒度和透气性
湿型的砂粒粗细一方面要保证浇注后排气通畅,另一方面湿型砂的透气能力又不可太高,以免金属液容易渗透入砂粒之间孔隙中。手工造型生产小件的砂型上扎有较多排气孔,而且往往采用面砂,砂粒可以细些,面砂透气率40~60大约已然合适。机器造型湿型单一砂的型砂粒度大致在70/140目,透气率大多在60~90的范围内。高密度砂型比较密实,则要求型砂有较高透气能力。粒度大多在50/140或140/50目,透气率较多集中在100~140。很多工厂的砂芯用原砂粒度比型砂粒度粗,例如汽车发动机缸体砂芯用原砂粒度为50/100目,长期生产会有大量芯砂混入型砂而使型砂粒度变粗。以致有些工厂的型砂透气率高达160以上,甚至达到200左右。除非在砂型表面喷涂料,否则铸件表面变得粗糙,甚至可能有局部机械粘砂。美国有一工厂在混制湿型砂时加入100、140目两筛细粒新砂5%来纠正型砂变粗现象,使型砂粒度维持在50/140的四筛分布。
1113 金属液压力
金属液压力越高,机械粘砂就越严重。因此,高大铸件的底部比较容易形成机械粘砂。
1114 浇注温度和铸件壁厚
金属液温度高,流动性好,就容易渗入砂粒之间孔隙而产生机械粘砂。但从避免铸件产生气孔、冷隔等缺陷考虑,浇注温度不可任意降低。生产复杂薄壁铸件时尤需较高浇注温度。
1115 砂型涂料
生产重量较大的湿型铸件,可以向砂型的型腔喷刷醇基涂料,点燃后即可下芯与合型。一般上型可以不喷涂料,因为所受金属液压头比下型小。喷涂料的另一优点是提高了砂型表面耐冲刷能力。但是湿型用涂料的配方不同于砂芯用涂料,其强度不可太高,必须与砂型强度匹配,否则可能使涂层开裂翘皮,并使铸件产生夹砂缺陷。对内腔要求不高的一般铸铁的湿砂型中如果有树脂芯或油砂芯,为了防止金属液钻入砂芯,可以在硬化后的砂芯表面局部容易渗透金属液处,涂抹用机油或其他粘结剂加石墨粉、石英粉或其它耐火粉料调制的涂料膏,凉干后即可下芯。当生产内腔清洁度和光洁度要求很高的铸铁件(如内燃机缸盖、机体、液压系统阀件等)时,必须对砂芯采取整体浸或浇涂料而后表面烘干。手工生产铸铁件时,常用软毛刷将土石墨粉细心涂刷在湿砂型和砂芯表面上。也有的喷土石墨与水混合液,晾干后即可浇注。石墨粉可以填塞孔隙,又不被铁液润湿,铁液难以钻入砂粒之间。美国Caterpillar铸造工厂用高压造型大量生产工程机械大型发动机汽缸体,其克服机械粘砂的措施是靠对上、下砂型全面自动喷水基涂料。然后用大火焰喷枪自动喷烤,使涂层和砂型表层干燥。这种表面烘干的型砂所用膨润土、煤粉等材料的品种和加入量,以及型砂性能控制均不同于普通湿型砂。
1116 型砂的煤粉量
湿型铸铁件防止粘砂和改善表面光洁程度最主要的型砂加入物是煤粉。但是市售煤粉良莠不齐。一般生产中等大小铸铁件型砂中有效煤粉量可能在35~70%,主要取决于煤粉品质和对铸态表面的要求不同。为了排除煤粉品质的影响,可以只用1g型砂在900℃的发气量代表有效煤粉含量。例如普通机器造型的型砂发气量可以在20~26mL/g之间,高宻度造型的型砂发气可以是16~22mL/g范围内。国外常用测定灼减量方法估计型砂中煤粉含量是否足够多。例如有些工厂要求型砂灼减量在30~50%。在实际生产中可以观看铸件的外表形貌就可以查觉出型砂所含有效煤粉量是否合适。如果铸件表面毛糙,而型砂的透气率和砂型紧实程度都无不妥之处,可能有效煤粉不足或者煤粉品质不良。如果铸件表面有明显的蓝色,但较为粗糙,可能有效煤粉量已够,而型砂透气性偏高,或砂型紧实程度不够。
目前我国有多种煤粉代用品商品供应。其中淀粉材料的抗粘砂效果与优质煤粉基本相当。但只适合用来生产灰铁铸件,如用于生产球铁件有可能产生皮下气孔缺陷,因为不能产生足够还原性气氛。还有些“煤粉代用品”商品,其真实的具体配方不详,使用效果也有很大差异。用户应当靠浇注试验来判断其实际抗粘砂效果。可用同样的原砂(不可用旧砂,以免干扰试验结果)和膨润土、水,再分别加入不同抗粘砂材料混制型砂。应设法保持型砂透气率相同或接近,造型硬度相同,浇注温度相同。比较铸件表面光洁程度,然后即可做出选用决定。
国外生产抗粘砂商品主要有两类:①增效煤粉(高效煤粉):在煤粉中加入20~40%高软化点石油沥青,使其光亮碳含量提高到12~20%,抗粘砂能力大为提高。现在我国也有几家公司供应增效煤粉。②混合附加物:是优质膨润土与优质煤粉的混合物,也可再根据需要加入淀粉、木粉等材料。大型铸造工厂一条生产线中的产品特征接近,膨润土与煤粉的比例不需经常改变。采用混合附加物易于控制管理,设备简化。配方由供需双方的工程师根据铸件生产条件共同制定。用散装罐车运送到车间,气力输送进材料罐。用户混砂时只加一种附加物即可。
单一砂混砂时煤粉的补加量首先取决于煤粉本身的品质优劣如何,同时也受砂/铁比、铸件厚度、浇注温度、冷却时间、清理方法、对铸件表面光洁度具体要求等等因素的影响。德国有些工厂表示煤粉补加量的单位为每100kg铁水和每1%光亮碳形成物(即有效煤粉)的煤粉补加量kg。例如Mettmann铸造工厂统计生产中光亮碳形成物(煤粉)补加量在014~027kg / 1%光亮碳形成物 / 100kg铁。德国南方化学公司的实例中砂/铁比为10:1,浇注每吨铁的ECOSIL煤粉消耗量18kg / t Fe。即浇注每吨铁水用10吨型砂,型砂中补加18kg ECOSIL煤粉,折合混砂时煤粉补加量为018%,如果按照我国大多数工厂砂/铁比6:1左右,则ECOSIL煤粉混砂加入量应为030%。根据铸造手册“造型材料”(第2版103~104页)介绍,我国东风汽车公司、一汽铸造有限公司、中国一拖集团公司、上海汽车发动机公司和南京泰克西铸铁有限公司的高密度造型线湿型单一砂配方14种。混砂时煤粉加入量最高者3~4%,最低者03~05%。另外一汽、泰克西、上海发动机厂的震击造型单一砂4种。混砂煤粉加入量最高者3~5%,最低者1~125%。上述我国工厂中大多数的煤粉补加量绝大多数的煤粉补加量高的原因在于这些工厂所用煤粉品质低。笔者由近几年我国个别工厂使用优质煤粉和增效煤粉的经验表明,一般湿型铸铁件单一砂的混砂煤粉补加量在015~03%之间,个别厚大件为05%。抚顺某厂的气冲线砂铁比平均为11:1,同一车间内的挤压线砂铁比平均为75:1,两条线共用砂处理系统混砂的增效煤粉加入量仅为008~012%。由此可见,即使优质和增效煤粉价格稍高(不到普通煤粉的两倍),但消耗量仅为普通煤粉的几分之一。使用后不仅生产成本大幅度下降,还节省了贮存和运输费用。而且型砂中含泥量、含水量、大幅度下降,韧性、透气率、起模性得到提高。不但铸件表面光洁,而且气孔、砂孔等缺陷必然明显减少。
12 爆炸粘砂
在机械化铸造工厂的浇注流水线上,经常看到浇注后,几乎每一个砂箱与小车台面之间都会发生爆炸,这并不会发生铸件缺陷。但是有时偶尔还可以看到另一种在型腔内部发生能够引起铸件表面粘砂的爆炸,称为爆炸粘砂。高密度造型的铸件可能会出现这种爆炸粘砂缺陷,与通常机械粘砂出现在浇注位置的下表面和热节处不同,爆炸粘砂大多发生在铸件浇注位置的上表面。爆炸产生原因是开始浇注时砂型的水分蒸发凝聚在温度较低的型腔上表面,当金属液面上升与型腔上表面接触时水分骤然蒸发而发生爆炸,产生的巨大气体压力迫使金属液钻入砂型表面而成粘砂。有时爆炸相当猛烈,金属液甚至从冒口喷出直冲房顶。型砂含水量和紧实率高、含煤粉量高、砂型硬度高、通气条件不良和浇注速度过快时较易发生爆炸粘砂。
13 热粘砂
热粘砂是比较少见的粘砂。有以下几种现象:
⑴铸铁件湿型砂用原砂的SiO2含量较低,例如是黄河风积砂和一些当地河砂或山砂的SiO2含量只有80%左右,原砂本身的烧结温度较低。浇注厚大件时,铸件表面被一厚层砂包裹。如果型砂中含有充分的煤粉,烧结砂层容易脱落被清理掉,不出现机械粘砂。
⑵河北省有一家用挤压造型机生产灰铸铁汽车件工厂,平日铸件落砂后大部分表面都能显露出来,经过短时间抛丸清理后铸件表面相当清洁。但是有一次突然发现铸件落砂后表面被一层砂子包裹。铸件抛丸清理后能够较容易地露出表面,表明铁液并未钻入砂型中,不属于机械粘砂。所出现的异常现象属于“热粘砂”缺陷。产生原因不会是原砂二氧化硅降低,因为该厂一直使用品质稳定的内蒙砂。铁液浇注温度也未过高。怀疑是膨润土公司处理活化膨润土时加入碳酸钠配料量过高引起的。碳酸钠本身是冶金用熔剂,能够降低硅砂和膨润土的烧结点和熔点而引起热粘砂。
常用铸造金属
1灰铸铁
2球墨铸铁
3可锻铸铁
4铸钢
常用铸造有色金属
1黄铜
2锡青铜
3无锡青铜
4铝合金
铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。铸造是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。[1] 被铸物质多为原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是砂、金属甚至陶瓷。因应不同要求,使用的方法也会有所不同。